Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Nutrient restriction in early ovine pregnancy stimulates C-type natriuretic peptide production

Sengodi Madhavan A , Timothy C. R. Prickett B , Eric A. Espiner B and Graham K. Barrell A C
+ Author Affiliations
- Author Affiliations

A Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch, New Zealand.

B Department of Medicine, University of Otago, PO Box 4345, Christchurch 8140, New Zealand.

C Corresponding author. Email: graham.barrell@lincoln.ac.nz

Reproduction, Fertility and Development 29(3) 575-584 https://doi.org/10.1071/RD15192
Submitted: 13 November 2014  Accepted: 29 August 2015   Published: 21 September 2015

Abstract

C-type natriuretic peptide (CNP), a paracrine growth factor promoting vasodilation and angiogenesis, is upregulated in human and ovine pregnancy in response to vascular stress or nutrient restriction (NR) in late gestation. Postulating that maternal plasma CNP products are increased by modest NR (50% of metabolisable energy requirement) early in pregnancy, and further enhanced by litter size, we studied serial changes of maternal plasma CNP in pregnant ewes receiving a normal (NC, n = 12) or restricted (NR, n = 13) diet from Day 30 to Day 93 or 94 of gestation. Liveweight of NR ewes was 10 kg less than that of NC ewes at slaughter. Plasma CNP products increased progressively after Day 40 and were higher in NR (P < 0.05) ewes after Day 60; they were also enhanced by litter size (P < 0.01) and were positively associated with increased placental efficiency. In contrast, whereas fetal and placental weight were reduced by NR, fetal plasma CNP products (Day 93/94) were not affected. We conclude that increases in CNP during rapid placental growth are further enhanced by both increasing nutrient demands and by reduced supply, presumably as part of an adaptive response benefitting placental–fetal exchange.

Additional keywords: N-terminal pro C-type natriuretic peptide, placenta, sheep.


References

AFRC (1993). ‘Energy and Protein Requirements of Ruminants: an Advisory Manual’. (CAB International: Wallingford, UK.)

Barry, J. S., and Anthony, R. V. (2008). The pregnant sheep as a model for human pregnancy. Theriogenology 69, 55–67.
The pregnant sheep as a model for human pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmu7nJ&md5=df505a94680d090da38427e8f6b91b9fCAS | 17976713PubMed |

Doi, K., Itoh, H., Nakagawa, O., Igaki, T., Yamashita, J., Chun, T. H., Inoue, M., Masatsuqu, K., and Nakao, K. (1997). Expression of natriuretic peptide system during embryonic stem cell vasculogenesis. Heart Vessels 12, 18–22.
| 9476535PubMed |

Espiner, E. A., Prickett, T. C. R., Taylor, R. S., Reid, R. A., and McCowan, L. M. (2015). Effects of pre-eclampsia and fetal growth restriction on C-type natriuretic peptide. BJOG , .
Effects of pre-eclampsia and fetal growth restriction on C-type natriuretic peptide.Crossref | GoogleScholarGoogle Scholar | 25846957PubMed |

Fowden, A. L., Sferruzzi-Perri, A. N., Coan, P. M., Constancia, M., and Burton, G. J. (2009). Placental efficiency and adaptation: endocrine regulation. J. Physiol. 587, 3459–3472.
Placental efficiency and adaptation: endocrine regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Wrs7s%3D&md5=e2414ef627e4eb811ae056e4fab9bf95CAS | 19451204PubMed |

Honing, M. L. H., Smits, P., Morrison, P. J., Burnett, J. C., and Rabelink, T. J. (2001). C-type natriuretic peptide-induced vasodilation is dependent on hyperpolarisation in human forearm resistance vessels. Hypertension 37, 1179–1183.
C-type natriuretic peptide-induced vasodilation is dependent on hyperpolarisation in human forearm resistance vessels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFCgt7o%3D&md5=ed03e3fc15c202f6915e1c6601b253d3CAS |

Hopkins, D. L., Anderson, M. A., Morgan, J. E., and Hall, D. G. (1995). A probe to measure GR in lamb carcasses at chain speed. Meat Sci. 39, 159–165.
A probe to measure GR in lamb carcasses at chain speed.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbntlSlsA%3D%3D&md5=bd0860654b43714f601d742975ee298eCAS | 22059822PubMed |

Itoh, H., Bird, I. M., Nakao, K., and Magness, R. R. (1998). Pregnancy increases soluble and particulate guanylate cyclases and decreases the clearance receptor of natriuretic peptides in ovine uterine, but not systemic arteries. Endocrinology 139, 3329–3341.
Pregnancy increases soluble and particulate guanylate cyclases and decreases the clearance receptor of natriuretic peptides in ovine uterine, but not systemic arteries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktV2hurs%3D&md5=17cabcd6c685a2a676fee28f79323ffbCAS | 9645709PubMed |

Kwon, H., Ford, S. P., Bazer, F. W., Spencer, T. E., Nathanielsz, P. W., Nijland, M. J., Hess, B. W., and Wu, G. (2004). Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol. Reprod. 71, 901–908.
Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFejurY%3D&md5=afc08c9ed705d9a1104d5580b76b0042CAS | 15140798PubMed |

MacLaughlin, S. M., Walker, S. K., Kleemann, D. O., Tosh, D. N., and McMillen, I. C. (2010). Periconceptual undernutrition and being a twin each alter kidney development in the sheep fetus during early gestation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R692–R699.
Periconceptual undernutrition and being a twin each alter kidney development in the sheep fetus during early gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFGntro%3D&md5=dbb338e4f23ea10d7377e0680c88afe5CAS | 20053964PubMed |

McNeill, B. A., Barrell, G. K., Wellby, M., Prickett, T. C., Yandle, T. G., and Espiner, E. A. (2009). C-type natriuretic peptide forms in pregnancy: maternal plasma profiles during ovine gestation correlate with placental and fetal maturation. Endocrinology 150, 4777–4783.
C-type natriuretic peptide forms in pregnancy: maternal plasma profiles during ovine gestation correlate with placental and fetal maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OktrvF&md5=92d9772ed3c5d22d7be22d7ac8362d22CAS | 19608649PubMed |

McNeill, B. A., Barrell, G. K., Wooding, F. B., Prickett, T. C., and Espiner, E. A. (2011). The trophoblast binucleate cell is the source of maternal circulating C-type natriuretic peptide during ovine pregnancy. Placenta 32, 645–650.
The trophoblast binucleate cell is the source of maternal circulating C-type natriuretic peptide during ovine pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSru7vP&md5=913c363bb9bb75083bb59b97eb3702a8CAS | 21705079PubMed |

McNeill, B. A., Barrell, G. K., Ridgway, M. J., Wellby, M. P., Prickett, T. C., and Espiner, E. A. (2012). Caloric restriction, but not caloric loading, affects circulating fetal and maternal C-type natriuretic peptide concentrations in late ovine gestation. Reprod. Fertil. Dev. 24, 1063–1070.
Caloric restriction, but not caloric loading, affects circulating fetal and maternal C-type natriuretic peptide concentrations in late ovine gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKrt77L&md5=bdb98db8fcc525be6056e3548161384cCAS | 23043793PubMed |

Myatt, L., and Webster, R. P. (2009). Is vascular biology in pre-eclampsia better? J. Thromb. Haemost. 7, 375–384.
Is vascular biology in pre-eclampsia better?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlGnsL8%3D&md5=f58d142ae69082ca83aba62563694c34CAS | 19087223PubMed |

Olney, R. C., Permuy, J. W., Prickett, T. C. R., Han, J. C., and Espiner, E. A. (2012). Amino-terminal propeptide of C-type natriuretic peptide (NTproCNP) predicts height velocity in healthy children. Clin. Endocrinol. (Oxf.) 77, 416–422.
Amino-terminal propeptide of C-type natriuretic peptide (NTproCNP) predicts height velocity in healthy children.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2gt7vJ&md5=cd8dc7c67f71dee181998f588d2e3242CAS | 22435455PubMed |

Osgerby, J. C., Wathes, D. C., Howard, D., and Gadd, T. S. (2002). The effect of maternal undernutrition on ovine fetal growth. J. Endocrinol. 173, 131–141.
The effect of maternal undernutrition on ovine fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1ejtr4%3D&md5=df11dffd24c4499bb8c9fd2188c33ff7CAS | 11927392PubMed |

Potter, L. R., Abbey-Hosch, S., and Dickey, D. M. (2006). Natriuretic peptides, their receptors and cyclic guanosine monophosphate-dependent signalling functions. Endocr. Rev. 27, 47–72.
Natriuretic peptides, their receptors and cyclic guanosine monophosphate-dependent signalling functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFSit7c%3D&md5=60a309ccb64931d42e706c61433d9309CAS | 16291870PubMed |

Prickett, T. C. R., Lynn, A., Barrell, G. K., Darlow, B. A., Espiner, E. A., Richards, A. M., and Yandle, T. G. (2005). Amino-terminal proCNP: a putative marker of cartilage growth activity in postnatal growth. Pediatr. Res. 58, 334–340.
Amino-terminal proCNP: a putative marker of cartilage growth activity in postnatal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFWks7w%3D&md5=73c05a7efdbd0ca6f950d74b5777a1daCAS |

Prickett, T. C., Rumball, C. W., Buckley, A. J., Bloomfield, F. H., Yandle, T. G., Harding, J. E., and Espiner, E. A. (2007). C-type natriuretic peptide forms in the ovine fetal and maternal circulations: evidence for independent regulation and reciprocal response to undernutrition. Endocrinology 148, 4015–4022.
C-type natriuretic peptide forms in the ovine fetal and maternal circulations: evidence for independent regulation and reciprocal response to undernutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Oitb0%3D&md5=1947c7e834d2267b8c4b09dac7479da3CAS | 17510241PubMed |

Prickett, T. C. R., Dixon, B., Frampton, C., Yandle, T. G., Richards, A. M., Espiner, E. A., and Darlow, B. A. (2008). Plasma amino-terminal pro C-type natriuretic peptide in the neonate: relation to gestational age and postnatal linear growth. J. Clin. Endocrinol. Metab. 93, 225–232.
Plasma amino-terminal pro C-type natriuretic peptide in the neonate: relation to gestational age and postnatal linear growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVyhsQ%3D%3D&md5=cd8bca595f0836c2a8b11a8fd7853cf9CAS |

Prickett, T. C. R., Ryan, J. F., Wellby, M., Barrell, G. K., Yandle, T. G., Richards, A. M., and Espiner, E. A. (2010). Effect of nutrition on plasma C-type natriuretic peptide forms in adult sheep: evidence for enhanced C-type natriuretic peptide degradation during caloric restriction. Metabolism 59, 796–801.
Effect of nutrition on plasma C-type natriuretic peptide forms in adult sheep: evidence for enhanced C-type natriuretic peptide degradation during caloric restriction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVehsLo%3D&md5=78414534e6b53cc81be5e903b886e247CAS |

Qian, J.-Y., Haruno, A., Asada, Y., Nishida, T., Saito, Y., Matsuda, T., and Ueno, H. (2002). Local expression of C-type natriuretic peptide suppresses inflammation, eliminates shear stress-induced thrombosis and prevents neointima formation through enhanced nitric oxide production in rabbit injured carotid arteries. Circ. Res. 91, 1063–1069.
Local expression of C-type natriuretic peptide suppresses inflammation, eliminates shear stress-induced thrombosis and prevents neointima formation through enhanced nitric oxide production in rabbit injured carotid arteries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslOqt74%3D&md5=0c1f9b5952d12b60763983071a0ea95eCAS | 12456493PubMed |

Reid, R. A., Prickett, T. C. R., Pullar, B. E., Darlow, B. A., Gullam, J. E., and Espiner, E. A. (2014). C-type natriuretic peptide in complicated pregnancy: increased secretion precedes adverse events. J. Clin. Endocrinol. Metab. 99, 1470–1478.
C-type natriuretic peptide in complicated pregnancy: increased secretion precedes adverse events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlekurY%3D&md5=af1fdc4f425844253ac6c8f2ad3b4214CAS | 24446655PubMed |

Reynolds, L. P., and Redmer, D. A. (2001). Angiogenesis in the placenta. Biol. Reprod. 64, 1033–1040.
Angiogenesis in the placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1artbk%3D&md5=689525437ced2698ae0ade3215f82d3fCAS | 11259247PubMed |

Reynolds, L. P., Borocwicz, P. P., Vonnahme, K. A., Johnson, M. L., Grazul-Bilska, A. T., Redmer, D. A., and Caton, J. S. (2005). Placental angiogenesis in sheep models of compromised pregnancy. J. Physiol. 565, 43–58.
Placental angiogenesis in sheep models of compromised pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslyru7w%3D&md5=7b159f5c9bacd3a6fa1de06f0d4b3fe2CAS | 15760944PubMed |

Reynolds, L. P., Borowicz, P. P., Caton, J. S., Vonnahme, K. A., Luther, J. S., Hammer, C. J., Maddock Carlin, K. R., Grazul-Bilska, A. T., and Redmer, D. A. (2010). Developmental programming: the concept, large animal models and the key role of utero–placental vascular development. J. Anim. Sci. 88, E61–E72.
Developmental programming: the concept, large animal models and the key role of utero–placental vascular development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3psl2ksw%3D%3D&md5=39ba731cdd373c0c5cbf1bd94c64980cCAS | 20023136PubMed |

Rumball, C. W. H., Bloomfield, F. H., and Harding, J. E. (2008). Cardiovascular adaptations to pregnancy in sheep and effects of periconceptual undernutrition. Placenta 29, 89–94.
Cardiovascular adaptations to pregnancy in sheep and effects of periconceptual undernutrition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2FisFKrtA%3D%3D&md5=00e958cf892b99e4707298ac620fbbfcCAS |

Schröder, H. J. (1995). Comparative aspects of placental exchange functions. Eur. J. Obstet. Gynecol. Reprod. Biol. 63, 81–90.
Comparative aspects of placental exchange functions.Crossref | GoogleScholarGoogle Scholar | 8674572PubMed |

Sellitti, D. F., Koles, N., and Mendonca, M. C. (2011). Regulation of C-type natriuretic peptide expression. Peptides 32, 1964–1971.
Regulation of C-type natriuretic peptide expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGltbrN&md5=56f707924e24a163d06fae8f923de3ccCAS | 21816187PubMed |

Stepan, H., Faber, R., Stegemann, S., Schultheiss, H. P., and Walther, T. (2002). Expression of C-type natriuretic peptide in human placenta and myometrium in normal pregnancies and pregnancies complicated by intrauterine growth retardation – preliminary results. Fetal Diagn. Ther. 17, 37–41.
Expression of C-type natriuretic peptide in human placenta and myometrium in normal pregnancies and pregnancies complicated by intrauterine growth retardation – preliminary results.Crossref | GoogleScholarGoogle Scholar | 11803215PubMed |

Suga, S., Itoh, H., Komatsu, Y., Ogawa, Y., Hama, N., Yoshimasa, T., and Nakao, K. (1993). Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells: evidence for CNP as a novel autocrine/paracrine regulation from endothelial cells. Endocrinology 133, 3038–3041.
| 1:CAS:528:DyaK2cXks1KisQ%3D%3D&md5=12de23d15c47556895581f59ddf84fffCAS | 8243333PubMed |

Vatnick, I., Schoknecht, P. A., Darrigrand, R., and Bell, A. W. (1991). Growth and metabolism of the placenta after unilateral fetectomy in twin pregnant ewes. J. Dev. Physiol. 15, 351–356.
| 1:STN:280:DyaK38%2FptFKqsw%3D%3D&md5=cbe00ef94069ccbe6648604051167a21CAS | 1753075PubMed |

Vonnahme, K. A. (2012). How the maternal environment impacts fetal and placental development: implications for livestock production. Anim. Reprod. 9, 789–797.

Vonnahme, K. A., Hess, B. W., Hansen, T. R., McCormick, R. J., Rule, D. C., Moss, G. E., Murdoch, W. J., Nijland, M. J., Skinner, D. C., Nathanielsz, P. W., and Ford, S. P. (2003). Maternal undernutrition from early- to mid-gestation leads to growth retardation, cardiac ventricular hypertrophy and increased liver weight in the fetal sheep. Biol. Reprod. 69, 133–140.
Maternal undernutrition from early- to mid-gestation leads to growth retardation, cardiac ventricular hypertrophy and increased liver weight in the fetal sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCnt7o%3D&md5=29fe5e98410d927d36e173896f601f64CAS | 12606329PubMed |

Vonnahme, K. A., Wilson, M. E., Li, H. L., Rupnow, T. M., Phernetton, T. M., Ford, S. P., and Magness, R. R. (2005). Circulating levels of nitric oxide and vascular endothelial growth factor throughout ovine pregnancy. J. Physiol. 565, 101–109.
Circulating levels of nitric oxide and vascular endothelial growth factor throughout ovine pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslyru7g%3D&md5=1eb4a8c82179938422b76aea2982f4d2CAS | 15774525PubMed |

Yamahara, K., Itoh, H., Chun, T. H., Ogawa, Y., Yamashita, J., Sawada, N., Fukunaga, Y., Sone, M., Yurugi-Kobayashi, T., Miyashita, K., Tsujimoto, H., Kook, H., Feil, R., Garbers, D. L., Hofmann, F., and Nakao, K. (2003). Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proc. Natl. Acad. Sci. USA 100, 3404–3409.
Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVCnur4%3D&md5=3632c626ad52e045a8a947e8bda08b7aCAS | 12621153PubMed |

Yandle, T. G., Fisher, S., Charles, C., Espiner, E. A., and Richards, A. M. (1993). The ovine hypothalamus and pituitary have markedly different distributions of C-type natriuretic peptide forms. Peptides 14, 713–716.
The ovine hypothalamus and pituitary have markedly different distributions of C-type natriuretic peptide forms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvFKmtrk%3D&md5=5aa6f39ebcfdb69eef7a68bfb9ad5f36CAS | 8234014PubMed |