Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Modulation of embryonic development due to mating with immunised males

Ludmila A. Gerlinskaya A C , Svetlana O. Maslennikova A , Margaret V. Anisimova A , Nataly A. Feofanova A , Evgenii L. Zavjalov A , Galina V. Kontsevaya A , Yuri M. Moshkin A and Mikhail P. Moshkin A B C
+ Author Affiliations
- Author Affiliations

A Department of Genetic Resources of Experimental Animals, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk 630090, Russia.

B Department of Zoology, Tomsk State University, pr. Lenina 36, Tomsk 634050, Russia.

C Corresponding authors. Emails: mmp@bionet.nsc.ru; lgerlinskaya@bionet.nsc.ru

Reproduction, Fertility and Development 29(3) 565-574 https://doi.org/10.1071/RD15173
Submitted: 28 January 2014  Accepted: 29 August 2015   Published: 5 October 2015

Abstract

The modification of pre- and postnatal development conferred by immunogenic stimulation of mothers provides a population-level adaptation mechanism for non-genetic transfer of maternal experiences to progeny. However little is known about the transmission of paternal immune experiences to offspring. Here, we show that immune priming of males 3–9 days before mating affects the growth and humoral environment of developing embryos of outbred (ICR) and inbred (C57BL and BALB/c) mice. Antigenic stimulation of fathers caused a significant increase in embryonic bodyweight as measured on Day 16 of pregnancy and altered other gestation parameters, such as feto–placental ratio. Pregnant females mated with immunised males were also characterised by changes in humoral conditions as shown by measurements of blood and amniotic progesterone, testosterone and granulocyte–macrophage colony-stimulating factor (GM-CSF) cytokine concentrations. These results emphasise the role of paternal effects of immune priming on the in utero environment and fetal growth.

Additional keywords: amniotic fluid, GM-CSF, KLH, paternal effect, pregnancy, progesterone.


References

Anway, M. D., and Skinner, M. K. (2008). Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed. Online 16, 23–25.
Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease.Crossref | GoogleScholarGoogle Scholar | 18252044PubMed |

Barraud-Lange, V., Pont, J. C., Ziyyat, A., Pocate, K., Sifer, C., Cedrin-Durnerin, I., Fechtali, B., Ducot, B., and Wolf, J. P. (2011). Seminal leukocytes are good Samaritans for spermatozoa. Fertil. Steril. 96, 1315–1319.
Seminal leukocytes are good Samaritans for spermatozoa.Crossref | GoogleScholarGoogle Scholar | 22047665PubMed |

Bromfield, J. J., Schjenken, J. E., Chin, P. Y., Care, A. S., Jasper, M. J., and Robertson, S. A. (2014). Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl. Acad. Sci. USA 111, 2200–2205.
Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFOqtLc%3D&md5=3da9e7ca9953ead82f857bdcf9f0691eCAS | 24469827PubMed |

Carrell, D. T. (2012). Epigenetics of the male gamete. Fertil. Steril. 97, 267–274.
Epigenetics of the male gamete.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVerurY%3D&md5=6f26842b9db714f03874fef8297ba25fCAS | 22289286PubMed |

Chinnathambi, V., Balakrishnan, M., Ramadoss, J., Yallampalli, C., and Sathishkumar, K. (2013). Testosterone alters maternal vascular adaptations: role of the endothelial nitric oxide system. Hypertension 61, 647–654.
Testosterone alters maternal vascular adaptations: role of the endothelial nitric oxide system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOjs78%3D&md5=f1be04d3fc4fdb2ea8eab9a9f3879085CAS | 23339170PubMed |

Chong, S., Vickaryous, N., Ashe, A., Zamudio, N., Youngson, N., Hemley, S., Stopka, T., Skoultchi, A., Matthews, J., Scott, H. S., de Kretser, D., O’Bryan, M., Blewitt, M., and Whitelaw, E. (2007). Modifiers of epigenetic reprogramming show paternal effects in the mouse. Nat. Genet. 39, 614–622.
Modifiers of epigenetic reprogramming show paternal effects in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFersbg%3D&md5=6ef77aa63375b0be37424f4a766fbd9cCAS | 17450140PubMed |

Csapo, A. I., and Wiest, W. G. (1969). An examination of the quantitative relationship between progesterone and the maintenance of pregnancy. Endocrinology 85, 735–746.
An examination of the quantitative relationship between progesterone and the maintenance of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXlt1SisL0%3D&md5=d29fbb51a985baa4790dcdc1291056bbCAS | 5803131PubMed |

Curley, J. P., Mashoodh, R., and Champagne, F. A. (2011). Epigenetics and the origins of paternal effects. Horm. Behav. 59, 306–314.
Epigenetics and the origins of paternal effects.Crossref | GoogleScholarGoogle Scholar | 20620140PubMed |

Curno, O., Reader, T., McElligott, A. G., Behnke, J. M., and Barnard, C. J. (2011). Infection before pregnancy affects immunity and response to social challenge in the next generation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3364–3374.
Infection before pregnancy affects immunity and response to social challenge in the next generation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1WgsbbM&md5=9ca87978daa68c36f102e9367f5a5285CAS | 22042914PubMed |

Debierre-Grockiego, F., Molitor, N., Schwarz, R. T., and Lüder, C. G. (2009). Toxoplasma gondii glycosylphosphatidylinositols upregulate major histocompatibility complex (MHC) molecule expression on primary murine macrophages. Innate Immun. 15, 25–32.
Toxoplasma gondii glycosylphosphatidylinositols upregulate major histocompatibility complex (MHC) molecule expression on primary murine macrophages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVSktr0%3D&md5=5437b3cbff0cc6c361ecb5d27fad6946CAS | 19201822PubMed |

Drake, A., Fraser, D., and Weary, D. M. (2008). Parent–offspring resource allocation in domestic pigs. Behav. Ecol. Sociobiol. 62, 309–319.
Parent–offspring resource allocation in domestic pigs.Crossref | GoogleScholarGoogle Scholar |

Eveleigh, J. R., Jasdrow, H. H., and Gunner, M. (1983). The breeding performance of CD1 stud male mice with some comparative data from BALB/c, PSD and PSDI strains. Lab. Anim. 17, 230–234.
The breeding performance of CD1 stud male mice with some comparative data from BALB/c, PSD and PSDI strains.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3mvV2jsA%3D%3D&md5=bcb4ecadf3e9a6c739a909759866b82aCAS | 6678347PubMed |

Fowden, A. L., Sferruzzi-Perri, A. N., Coan, P. M., Constancia, M., and Burton, G. J. (2009). Placental efficiency and adaptation: endocrine regulation. J. Physiol. 587, 3459–3472.
Placental efficiency and adaptation: endocrine regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Wrs7s%3D&md5=e2414ef627e4eb811ae056e4fab9bf95CAS | 19451204PubMed |

Gangnuss, S., Sutton-McDowall, M. L., Robertson, S. A., and Armstrong, D. T. (2004). Seminal plasma regulates corpora lutea macrophage populations during early pregnancy in mice. Biol. Reprod. 71, 1135–1141.
Seminal plasma regulates corpora lutea macrophage populations during early pregnancy in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqt7k%3D&md5=5e849f92ec110712e4bb518bd7b02a6bCAS | 15175232PubMed |

Gerlinskaya, L. A., and Evsikov, V. I. (2001). Influence of genetic dissimilarity of mother and fetus on progesterone concentrations in pregnant mice and adaptive features of offspring. Reproduction 121, 409–417.
Influence of genetic dissimilarity of mother and fetus on progesterone concentrations in pregnant mice and adaptive features of offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFSqu7c%3D&md5=e4d2992fed1fe895b4e3cb258058dfc7CAS | 11226067PubMed |

Gerlinskaya, L., Moshkin, M., and Evsikov, V. (2000). Allogenic stimulation in early pregnancy improves pre- and postnatal ontogenesis in BALB/cLac mice. J. Reprod. Dev. 46, 387–396.
Allogenic stimulation in early pregnancy improves pre- and postnatal ontogenesis in BALB/cLac mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFKksb8%3D&md5=68f0cf6e5b4e06d9cdf882b04da6e61cCAS |

Gerlinskaya, L. A., Maslennikova, S. O., Zavj’alov, E. L., Kontsevaya, G. V., and Moshkin, M. P. (2012a). Reproductive success of males of the ICR outbred line during propagation against the background of antigenic stimulation. Ontogenez. 43, 357–365.

Gerlinskaya, L. A., Shnayder, E. P., Dotsenko, A. S., Maslennikova, S. O., Zavjalov, E. L., and Moshkin, M. P. (2012b). Antigen-induced changes in odour attractiveness and reproductive output in male mice. Brain Behav. Immun. 26, 451–458.
Antigen-induced changes in odour attractiveness and reproductive output in male mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFOrtLc%3D&md5=78b9006ffb1875fb4624fcab5cd23d49CAS | 22178900PubMed |

Gilchrist, R. B., Rowe, D. B., Ritter, L. J., Robertson, S. A., Norman, R. J., and Armstrong, D. T. (2000). Effect of granulocyte–macrophage colony-stimulating factor deficiency on ovarian follicular cell function. J. Reprod. Fertil. 120, 283–292.
| 1:CAS:528:DC%2BD3cXovVajurs%3D&md5=b2b5ccde4fe6a940805cdeba6943af0fCAS | 11058444PubMed |

Gopichandran, N., Ekbote, U. V., Walker, J. J., Brooke, D., and Orsi, N. M. (2006). Multiplex determination of murine seminal fluid cytokine profiles. Reproduction 131, 613–621.
Multiplex determination of murine seminal fluid cytokine profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs12jsb0%3D&md5=578f5d984ce8c65dc043acfdfe02f9aaCAS | 16514204PubMed |

Hales, B. F., and Robaire, B. (2001). Paternal exposure to drugs and environmental chemicals: effects on progeny outcome. J. Androl. 22, 927–936.
| 1:CAS:528:DC%2BD3MXotlygu70%3D&md5=5323722c4437c892bba9d8fa5ec63a33CAS | 11700855PubMed |

Hales, B. F., Smith, S., and Robaire, B. (1986). Cyclophosphamide in the seminal fluid of treated males: transmission to females by mating and effects on progeny outcome. Toxicol. Appl. Pharmacol. 84, 423–430.
Cyclophosphamide in the seminal fluid of treated males: transmission to females by mating and effects on progeny outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xlt1Kqs7o%3D&md5=c8291dcf0b4329932d8dc2ac7e1d5a3cCAS | 3726867PubMed |

Hess, R. A., and de Franca, L. (2008). Spermatogenesis and cycle of the seminiferous epithelium. In ‘Molecular Mechanisms in Spermatogenesis. Volume 636’. (Ed. C. Y. Cheng.) pp. 1–15. (Springer-Verlag: New York.)

Jasper, M. J., Robertson, S. A., Van der Hoek, K. H., Bonello, N., Brännström, M., and Norman, R. J. (2000). Characterisation of ovarian function in granulocyte–macrophage colony-stimulating factor-deficient mice. Biol. Reprod. 62, 704–713.
Characterisation of ovarian function in granulocyte–macrophage colony-stimulating factor-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVOrs7c%3D&md5=1a74507f90214dbab108cb6c7c20ee87CAS | 10684813PubMed |

Knight, J. W., Bazer, F. W., and Wallace, H. D. (1974). Effect of progesterone-induced increase in uterine secretory activity of development of the porcine conceptus. J. Anim. Sci. 39, 743–746.
| 1:STN:280:DyaE2M%2FgvFeksA%3D%3D&md5=1bf87f728130d684b1921e4cc59d0d9aCAS | 4413083PubMed |

Kobayashi, K., Miwa, H., and Yasui, M. (2011). Progesterone maintains amniotic tight junctions during mid-pregnancy in mice. Mol. Cell. Endocrinol. 337, 36–42.
Progesterone maintains amniotic tight junctions during mid-pregnancy in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFaktLs%3D&md5=d0c3c46188a1bad79dad7a126bea3ce0CAS | 21291956PubMed |

Lagaye, S., Derrien, M., Menu, E., Coïto, C., Tresoldi, E., Mauclère, P., Scarlatti, G., Barré-Sinoussi, F., and Bomsel, M. (2001). Cell-to-cell contact results in a selective translocation of maternal human immunodeficiency virus Type 1 quasispecies across a trophoblastic barrier by both transcytosis and infection. J. Virol. 75, 4780–4791.
Cell-to-cell contact results in a selective translocation of maternal human immunodeficiency virus Type 1 quasispecies across a trophoblastic barrier by both transcytosis and infection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3it1egsQ%3D%3D&md5=2635b5316d0a3588f8879e5a25ab5548CAS | 11312350PubMed |

Matsumoto, A., Hatta, T., Ono, A., Hashimoto, R., and Otani, H. (2011). Stage-specific changes in the levels of granulocyte–macrophage colony-stimulating factor and its receptor in the biological fluid and organs of mouse fetuses. Congenit. Anom. (Kyoto) 51, 183–186.
Stage-specific changes in the levels of granulocyte–macrophage colony-stimulating factor and its receptor in the biological fluid and organs of mouse fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFCksb4%3D&md5=c68d43db808a680253b29f0500d11280CAS | 22103458PubMed |

Moshkin, M., Gerlinskaya, L., and Evsikov, V. (2000). The role of the immune system in behaviour strategies of reproduction. J. Reprod. Dev. 46, 341–365.
The role of the immune system in behaviour strategies of reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFKksLk%3D&md5=ce5280d70cd0cded88e4456d67aff566CAS |

Moshkin, M., Kolosova, I., Novikov, E., Litvinova, E., Mershieva, L., Mak, V., and Petrovskii, D. (2001). Co-modulation of the immune functions and reproductive chemosignals. Asian-australas. J. Anim. Sci. 14, 43–51.

Moshkin, M., Gerlinskaya, L., Morozova, O., Bakhvalova, V., and Evsikov, V. I. (2002). Behaviour, chemosignals and endocrine functions in male mice infected with tick-borne encephalitis virus. Psychoneuroendocrinology 27, 603–608.
Behaviour, chemosignals and endocrine functions in male mice infected with tick-borne encephalitis virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVSnsbs%3D&md5=70f245abf344e4b19c1ced1ad81e4f77CAS | 11965358PubMed |

Moshkin, M. P., Kondratyuk, E. V., Litvinova, E. A., and Gerlinskaya, L. A. (2010). The activation of specific immunity in male mice stimulates fertility in their breeding partners: the phenomenon of Lot’s daughters. Zh. Obshch. Biol. 71, 425–435.
The activation of specific immunity in male mice stimulates fertility in their breeding partners: the phenomenon of Lot’s daughters.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cbmtVWnsw%3D%3D&md5=5c3e583c5edebd7a1b4dd60131fc490fCAS | 21061641PubMed |

Robertson, S. A. (2007). GM-CSF regulation of embryo development and pregnancy. Cytokine Growth Factor Rev. 18, 287–298.
GM-CSF regulation of embryo development and pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFCms74%3D&md5=f4a3d4d0b5da55222b525922beafa50fCAS | 17512774PubMed |

Rülicke, T., Chapuisat, M., Homberger, F. R., Macas, E., and Wedekind, C. (1998). MHC genotype of progeny influenced by parental infection. Proc. Biol. Sci. 265, 711–716.
MHC genotype of progeny influenced by parental infection.Crossref | GoogleScholarGoogle Scholar | 9608731PubMed |

Sarkar, P., Bergman, K., Fisk, N. M., O’Connor, T. K., and Glover, V. (2007). Amniotic fluid testosterone: relationship with cortisol and gestational age. Clin. Endocrinol. (Oxf.) 67, 743–747.
Amniotic fluid testosterone: relationship with cortisol and gestational age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOhs7rP&md5=2b2503e32f6e7a684e73fe76dcbbf8b8CAS | 17634075PubMed |

Sathishkumar, K., Elkins, R., Chinnathambi, V., Gao, Y., Hankins, G. D. V., and Yallampalli, C. (2011). Prenatal testosterone-induced fetal growth restriction is associated with downregulation of rat placental amino-acid transport. Reprod. Biol. Endocrinol. 9, 110.
Prenatal testosterone-induced fetal growth restriction is associated with downregulation of rat placental amino-acid transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGktrzL&md5=fcc48ceb802d5d92644d158837fa2cb1CAS | 21812961PubMed |

Seshadri, S., Flanagan, B., Vince, G., and Lewis Jones, D. I. (2012). Leucocyte subpopulation in the seminal plasma and their effects on fertilisation rates in an IVF cycle. Andrologia 44, 396–400.
Leucocyte subpopulation in the seminal plasma and their effects on fertilisation rates in an IVF cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOhsL7K&md5=01f1fadecda7f62f6f63f6fc19cd2720CAS | 22537602PubMed |

Sjöblom, C., Roberts, C. T., Wikland, M., and Robertson, S. A. (2005). Granulocyte–macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis. Endocrinology 146, 2142–2153.
Granulocyte–macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis.Crossref | GoogleScholarGoogle Scholar | 15705781PubMed |

Ventura, T., Gomes, M. C., Pita, A., Neto, M. T., and Taylor, A. (2013). Digit ratio (2D:4D) in newborns: influences of prenatal testosterone and maternal environment. Early Hum. Dev. 89, 107–112.
Digit ratio (2D:4D) in newborns: influences of prenatal testosterone and maternal environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSltbrL&md5=f05ac0feb4779f352e743d5202c36495CAS | 23017880PubMed |

Wedekind, C., Chapuisat, M., Macas, E., and Rülicke, T. (1996). Non-random fertilisation in mice correlates with the MHC and something else. Heredity 77, 400–409.
Non-random fertilisation in mice correlates with the MHC and something else.Crossref | GoogleScholarGoogle Scholar | 8885381PubMed |

Zala, S. M., Potts, W. K., and Penn, D. J. (2004). Scent-marking displays provide honest signals of health and infection. Behav. Ecol. 15, 338–344.
Scent-marking displays provide honest signals of health and infection.Crossref | GoogleScholarGoogle Scholar |

Zhu, B. K., and Setchell, B. P. (2004). Effects of paternal heat stress on the in vivo development of preimplantation embryos in the mouse. Reprod. Nutr. Dev. 44, 617–629.
Effects of paternal heat stress on the in vivo development of preimplantation embryos in the mouse.Crossref | GoogleScholarGoogle Scholar | 15762306PubMed |