Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Nutrition affects Sertoli cell function but not Sertoli cell numbers in sexually mature male sheep

Yongjuan Guan A , Guanxiang Liang B , Penny A. R. Hawken A , Sarah J. Meachem C , Irek A. Malecki A D , Seungmin Ham C E , Tom Stewart A , Le Luo Guan B and Graeme B. Martin A F G
+ Author Affiliations
- Author Affiliations

A UWA Institute of Agriculture M082 and UWA School of Animal Biology M085, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G2P5, Canada.

C MIMR-PHI Institute of Medical Research, Clayton, Vic. 3168, Australia.

D Department of Animal Sciences, University of Stellenbosch, Matieland 7600, South Africa.

E Department of Obstetrics and Gynaecology, Monash University, Vic., Australia.

F Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, UK.

G Corresponding author. Email: graeme.martin@uwa.edu.au

Reproduction, Fertility and Development 28(8) 1152-1163 https://doi.org/10.1071/RD14368
Submitted: 30 September 2014  Accepted: 24 November 2014   Published: 17 December 2014

Abstract

We tested whether the reversible effects of nutrition on spermatogenesis in sexually mature sheep were mediated by Sertoli cells. Rams were fed with diets designed to achieve a 10% increase (High), no change (Maintenance) or a 10% decrease (Low) in body mass after 65 days. At the end of treatment, testes were lighter in the Low than the High group (P < 0.01). The Maintenance group had intermediate values that were not significantly different from those of the other two groups. Spermatogenesis (Johnsen score) was impaired in the Low group, but normal in both other groups. There was no effect of treatment on Sertoli cell numbers, although 1% of Sertoli cells appeared to retain their ability to proliferate. By contrast, Sertoli cell function was affected by dietary treatment, as evidenced by differences between the High and Low groups (P < 0.05) in the expression of seven Sertoli cell-specific genes. Under-nutrition appeared to reverse cellular differentiation leading to disruption of tight-junction morphology. In conclusion, in sexually mature sheep, reversible reductions in testis mass and spermatogenesis caused by under-nutrition were associated with impairment of basic aspects of Sertoli cell function but not with changes in the number of Sertoli cells.

Additional keywords: Sertoli cell activity, Sertoli cell differentiation, Sertoli cell proliferation, spermatogenesis, testis morphometry, tight junction.


References

Abel, M. H., Baker, P. J., Charlton, H. M., Monteiro, A., Verhoeven, G., De Gendt, K., Guillou, F., and O’Shaughnessy, P. J. (2008). Spermatogenesis and Sertoli cell activity in mice lacking Sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology 149, 3279–3285.
Spermatogenesis and Sertoli cell activity in mice lacking Sertoli cell receptors for follicle-stimulating hormone and androgen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1amuro%3D&md5=83bee817a630ff4ad844f20221b143eeCAS | 18403489PubMed |

Al-Attar, L., Noel, K., Dutertre, M., Belville, C., Forest, M. G., Burgoyne, P. S., Josso, N., and Rey, R. (1997). Hormonal and cellular regulation of Sertoli cell anti-Müllerian hormone production in the postnatal mouse. J. Clin. Invest. 100, 1335–1343.
Hormonal and cellular regulation of Sertoli cell anti-Müllerian hormone production in the postnatal mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1Cqs7g%3D&md5=c68d0bd46aa48f8c6558138d8db7af91CAS | 9294098PubMed |

Allan, C. M., Garcia, A., Spaliviero, J., Jimenez, M., and Handelsman, D. J. (2006). Maintenance of spermatogenesis by the activated human (Asp567Gly) FSH receptor during testicular regression due to hormonal withdrawal. Biol. Reprod. 74, 938–944.
Maintenance of spermatogenesis by the activated human (Asp567Gly) FSH receptor during testicular regression due to hormonal withdrawal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2jurY%3D&md5=40ad60656cc3b6de3c18af3a13cb7975CAS | 16452461PubMed |

Anttonen, M., Ketola, I., Parviainen, H., Pusa, A. K., and Heikinheimo, M. (2003). FOG-2 and GATA-4 Are co-expressed in the mouse ovary and can modulate Müllerian-inhibiting substance expression. Biol. Reprod. 68, 1333–1340.
FOG-2 and GATA-4 Are co-expressed in the mouse ovary and can modulate Müllerian-inhibiting substance expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVertbg%3D&md5=15b5d3611b5687b4d762b26f146fb923CAS | 12606418PubMed |

Beau, C., Rauch, M., Joulin, V., Jegou, B., and Guerrier, D. (2000). GATA-1 is a potential repressor of anti-Müllerian hormone expression during the establishment of puberty in the mouse. Mol. Reprod. Dev. 56, 124–138.
GATA-1 is a potential repressor of anti-Müllerian hormone expression during the establishment of puberty in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFyrtLs%3D&md5=e9646fd15a9dfce566440b7cbf28c7eaCAS | 10813843PubMed |

Blais, M. E., Brochu, S., Giroux, M., Belanger, M. P., Dulude, G., Sekaly, R. P., and Perreault, C. (2008). Why T cells of thymic versus extrathymic origin are functionally different. J. Immunol. 180, 2299–2312.
Why T cells of thymic versus extrathymic origin are functionally different.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVShuro%3D&md5=3de7e4ef18849b7dcfd4b25bbbfdf9a3CAS | 18250439PubMed |

Boukhliq, R., Martin, G. B., White, C. L., Blackberry, M. A., and Murray, P. J. (1997). Role of glucose, fatty acids and protein in regulation of testicular growth and secretion of gonadotrophin, prolactin, somatotrophin and insulin in the mature ram. Reprod. Fertil. Dev. 9, 515–524.
Role of glucose, fatty acids and protein in regulation of testicular growth and secretion of gonadotrophin, prolactin, somatotrophin and insulin in the mature ram.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotV2mtbo%3D&md5=b0789e08ace7e0fae73f991cdd91ce7bCAS | 9418981PubMed |

Byers, S., Graham, R., Dai, H. N., and Hoxter, B. (1991). Development of Sertoli cell junctional specialisations and the distribution of the tight-junction-associated protein ZO-1 in the mouse testis. Am. J. Anat. 191, 35–47.
Development of Sertoli cell junctional specialisations and the distribution of the tight-junction-associated protein ZO-1 in the mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3ovF2rsA%3D%3D&md5=584992d557f810cac7908fb48d20ca17CAS | 2063808PubMed |

Calamita, G., Mazzone, A., Bizzoca, A., and Svelto, M. (2001). Possible involvement of aquaporin-7 and -8 in rat testis development and spermatogenesis. Biochem. Biophys. Res. Commun. 288, 619–625.
Possible involvement of aquaporin-7 and -8 in rat testis development and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslCku7g%3D&md5=278196753da25d17c3501f5856d69e15CAS | 11676488PubMed |

Cheng, C. Y., and Mruk, D. D. (2012). The blood–testis barrier and its implications for male contraception. Pharmacol. Rev. 64, 16–64.
The blood–testis barrier and its implications for male contraception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslKksL0%3D&md5=27dfe234b0c4c9cc28f11b2073f61125CAS | 22039149PubMed |

Chihara, M., Otsuka, S., Ichii, O., Hashimoto, Y., and Kon, Y. (2010). Molecular dynamics of the blood–testis barrier components during murine spermatogenesis. Mol. Reprod. Dev. 77, 630–639.
Molecular dynamics of the blood–testis barrier components during murine spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVahsLY%3D&md5=f190955302994322443c67e3814b3991CAS | 20578065PubMed |

Colas, G., Guerin, Y., Lemaire, Y., Montassier, Y., and Despierres, J. (1986). Seasonal variation in the testis diameter and sperm morphology in the Vendean ram and Texel ram. Reprod. Nutr. Dev. 26, 863–875.
Seasonal variation in the testis diameter and sperm morphology in the Vendean ram and Texel ram.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28zhsFSqsQ%3D%3D&md5=63ced11e2aece2a7cc0d98b3a4d250ccCAS | 3749603PubMed |

Collins, L. L., Lee, H. J., Chen, Y. T., Chang, M., Hsu, H. Y., Yeh, S., and Chang, C. (2003). The androgen receptor in spermatogenesis. Cytogenet. Genome Res. 103, 299–301.
The androgen receptor in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisl2ntbo%3D&md5=cab0899a4af8204ed64fbdd232bebc1bCAS | 15051951PubMed |

Fink, C., Weigel, R., Fink, L., Wilhelm, J., Kliesch, S., Zeiler, M., Bergmann, M., and Brehm, R. (2009). Claudin-11 is over-expressed and dislocated from the blood–testis barrier in Sertoli cells associated with testicular intraepithelial neoplasia in men. Histochem. Cell Biol. 131, 755–764.
Claudin-11 is over-expressed and dislocated from the blood–testis barrier in Sertoli cells associated with testicular intraepithelial neoplasia in men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtF2ltL8%3D&md5=137145af6950eab90742d28bc6cebb3aCAS | 19241088PubMed |

Florin, A., Maire, M., Bozec, A., Hellani, A., Chater, S., Bars, R., Chuzel, F., and Benahmed, M. (2005). Androgens and postmeiotic germ cells regulate claudin-11 expression in rat Sertoli cells. Endocrinology 146, 1532–1540.
Androgens and postmeiotic germ cells regulate claudin-11 expression in rat Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlehur4%3D&md5=81ec8afd623536eb9700556531e302c8CAS | 15591150PubMed |

Francavilla, S., D’Abrizio, P., Rucci, N., Silvano, G., Properzi, G., Straface, E., Cordeschi, G., Necozione, S., Gnessi, L., Arizzi, M., and Ulisse, S. (2000). Fas and Fas ligand expression in fetal and adult human testis with normal or deranged spermatogenesis. J. Clin. Endocrinol. Metab. 85, 2692–2700.
Fas and Fas ligand expression in fetal and adult human testis with normal or deranged spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslaiu7s%3D&md5=14faef40222c85fe6f8bbc706b25f31dCAS | 10946867PubMed |

Guan, Y., Malecki, I. A., Hawken, P. A., Linden, M. D., and Martin, G. B. (2014). Under-nutrition reduces spermatogenic efficiency and sperm velocity and increases sperm DNA damage in sexually mature male sheep. Anim. Reprod. Sci. 149, 163–172.
Under-nutrition reduces spermatogenic efficiency and sperm velocity and increases sperm DNA damage in sexually mature male sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWkur7E&md5=f65fd47a582f50e0766a4ca2e5437e36CAS | 25086661PubMed |

Haverfield, J. T., Meachem, S. J., O’Bryan, M. K., McLachlan, R. I., and Stanton, P. G. (2013). Claudin-11 and connexin-43 display altered spatial patterns of organisation in men with primary seminiferous tubule failure compared with controls. Fertil. Steril. 100, 658–666.
Claudin-11 and connexin-43 display altered spatial patterns of organisation in men with primary seminiferous tubule failure compared with controls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovVCgsL8%3D&md5=86d9788b0a9857fac0854e4f8116bd98CAS | 23706332PubMed |

Hellani, A., Ji, J., Mauduit, C., Deschildre, C., Tabone, E., and Benahmed, M. (2000). Developmental and hormonal regulation of the expression of oligodendrocyte-specific protein/claudin 11 in mouse testis. Endocrinology 141, 3012–3019.
| 1:CAS:528:DC%2BD3cXnt1Cmtrw%3D&md5=c14330d3c8e7b9298d58439fdadae7ffCAS | 10919290PubMed |

Hess, R. A., Cooke, P. S., Bunick, D., and Kirby, J. D. (1993). Adult testicular enlargement induced by neonatal hypothyroidism is accompanied by increased Sertoli and germ-cell numbers. Endocrinology 132, 2607–2613.
| 1:STN:280:DyaK3s3nvFanuw%3D%3D&md5=e02c66493467297778b3d6f070ebf6deCAS | 8504761PubMed |

Hochereau-de Reviers, M. T., Monet-Kuntz, C., and Courot, M. (1987). Spermatogenesis and Sertoli cell numbers and function in rams and bulls. J. Reprod. Fertil. Suppl. 34, 101–114.
| 1:STN:280:DyaL2szhtFCjug%3D%3D&md5=ec3b818fcb3efb68071c1ad649863f78CAS | 3305912PubMed |

Hötzel, M. J., Markey, C. M., Walkden-Brown, S. W., Blackberry, M. A., and Martin, G. B. (1998). Morphometric and endocrine analyses of the effects of nutrition on the testis of mature Merino rams. J. Reprod. Fertil. 113, 217–230.
Morphometric and endocrine analyses of the effects of nutrition on the testis of mature Merino rams.Crossref | GoogleScholarGoogle Scholar | 9861162PubMed |

Hötzel, M. J., Walkden-Brown, S. W., Fisher, J. S., and Martin, G. B. (2003). Determinants of the annual pattern of reproduction in mature male Merino and Suffolk sheep: responses to a nutritional stimulus in the breeding and non-breeding seasons. Reprod. Fertil. Dev. 15, 1–9.
Determinants of the annual pattern of reproduction in mature male Merino and Suffolk sheep: responses to a nutritional stimulus in the breeding and non-breeding seasons.Crossref | GoogleScholarGoogle Scholar | 12729498PubMed |

Johnsen, S. G. (1970). Testicular biopsy score count – a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1, 2–25.
Testicular biopsy score count – a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s7kslKitw%3D%3D&md5=0f297b2728a1554bc6b814bb31143119CAS | 5527187PubMed |

Johnson, L., and Nguyen, H. B. (1986). Annual cycle of the Sertoli cell population in adult stallions. J. Reprod. Fertil. 76, 311–316.
Annual cycle of the Sertoli cell population in adult stallions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL287hsFSqug%3D%3D&md5=5fcb2d5a0b547035de1ac639e90432d5CAS | 3944800PubMed |

Johnston, H., Baker, P. J., Abel, M., Charlton, H. M., Jackson, G., Fleming, L., Kumar, T. R., and O’Shaughnessy, P. J. (2004). Regulation of Sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology 145, 318–329.
Regulation of Sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWgt7fO&md5=cd6ae7c9124041949271606eb60e96f2CAS | 14551232PubMed |

Ketola, I., Pentikainen, V., Vaskivuo, T., Ilvesmaki, V., Herva, R., Dunkel, L., Tapanainen, J. S., Toppari, J., and Heikinheimo, M. (2000). Expression of transcription factor GATA-4 during human testicular development and disease. J. Clin. Endocrinol. Metab. 85, 3925–3931.
| 1:CAS:528:DC%2BD3cXnsFOnsro%3D&md5=991d73f8493c0776f8ccbd04101947b2CAS | 11061558PubMed |

Kissel, H., Timokhina, I., Hardy, M. P., Rothschild, G., Tajima, Y., Soares, V., Angeles, M., Whitlow, S. R., Manova, K., and Besmer, P. (2000). Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signalling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J. 19, 1312–1326.
Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signalling in spermatogenesis and oogenesis without affecting other kit responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1GmsLY%3D&md5=a3236a93b92f1ba0cdae2475ae87f367CAS | 10716931PubMed |

Kliesch, S., Behre, H. M., Hertle, L., and Bergmann, M. (1998). Alteration of Sertoli cell differentiation in the presence of carcinoma in situ in human testes. J. Urol. 160, 1894–1898.
Alteration of Sertoli cell differentiation in the presence of carcinoma in situ in human testes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1cvlsFejsA%3D%3D&md5=cd97162f30d0b09a4d0a695a0547079cCAS | 9783981PubMed |

Kluin, P. M., Kramer, M. F., and de Rooij, D. G. (1983). Testicular development in Macaca irus after birth. Int. J. Androl. 6, 25–43.
Testicular development in Macaca irus after birth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s7osVyisg%3D%3D&md5=c857a6e6a147e917fc4aadbb5e060a13CAS | 6840878PubMed |

Kluin, P. M., Kramer, M. F., and de Rooij, D. G. (1984). Proliferation of spermatogonia and Sertoli cells in maturing mice. Anat. Embryol. (Berl.) 169, 73–78.
Proliferation of spermatogonia and Sertoli cells in maturing mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3gtFSmsA%3D%3D&md5=e22aff2728efe3f9af859c9111f68e5eCAS | 6721222PubMed |

Lardenois, A., Chalmel, F., Barrionuevo, F., Demougin, P., Scherer, G., and Primig, M. (2010). Profiling spermatogenic failure in adult testes bearing Sox9-deficient Sertoli cells identifies genes involved in feminisation, inflammation and stress. Reprod. Biol. Endocrinol. 8, 154.
Profiling spermatogenic failure in adult testes bearing Sox9-deficient Sertoli cells identifies genes involved in feminisation, inflammation and stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KksLw%3D&md5=a1688429606c8fd1b9d00b78433b7710CAS | 21182756PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=224f15b9dfd00d92fda868e1cb065922CAS | 11846609PubMed |

Lui, W. Y., Lee, W. M., and Cheng, C. Y. (2003). Sertoli–germ cell adherens junction dynamics in the testis are regulated by RhoB GTPase via the ROCK/LIMK signalling pathway. Biol. Reprod. 68, 2189–2206.
Sertoli–germ cell adherens junction dynamics in the testis are regulated by RhoB GTPase via the ROCK/LIMK signalling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Ggsbg%3D&md5=dfa9962ad064ba77121fe5bb337dcba4CAS | 12606349PubMed |

Martin, G. B., Hotzel, M. J., Blache, D., Walkden-Brown, S. W., Blackberry, M. A., Boukhliq, R. C., Fisher, J. S., and Miller, D. W. (2002). Determinants of the annual pattern of reproduction in mature male Merino and Suffolk sheep: modification of responses to photoperiod by an annual cycle in food supply. Reprod. Fertil. Dev. 14, 165–175.
Determinants of the annual pattern of reproduction in mature male Merino and Suffolk sheep: modification of responses to photoperiod by an annual cycle in food supply.Crossref | GoogleScholarGoogle Scholar | 12219938PubMed |

McCabe, M. J., Tarulli, G. A., Meachem, S. J., Robertson, D. M., Smooker, P. M., and Stanton, P. G. (2010). Gonadotrophins regulate rat testicular tight junctions in vivo. Endocrinology 151, 2911–2922.
Gonadotrophins regulate rat testicular tight junctions in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyqtbc%3D&md5=0bc0038f6c297f7cccf11e352294b781CAS | 20357222PubMed |

McCoard, S. A., Lunstra, D. D., Wise, T. H., and Ford, J. J. (2001). Specific staining of Sertoli cell nuclei and evaluation of Sertoli cell number and proliferative activity in Meishan and White Composite boars during the neonatal period. Biol. Reprod. 64, 689–695.
Specific staining of Sertoli cell nuclei and evaluation of Sertoli cell number and proliferative activity in Meishan and White Composite boars during the neonatal period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVOguw%3D%3D&md5=9578427e1442505a615c958d90495688CAS | 11159374PubMed |

McCoard, S. A., Wise, T. H., Lunstra, D. D., and Ford, J. J. (2003). Stereological evaluation of Sertoli cell ontogeny during fetal and neonatal life in two diverse breeds of swine. J. Endocrinol. 178, 395–403.
Stereological evaluation of Sertoli cell ontogeny during fetal and neonatal life in two diverse breeds of swine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFOhsbs%3D&md5=82c78acabacf1bef326d9bf26f36fb72CAS | 12967332PubMed |

Meachem, S. J., McLachlan, R. I., de Kretser, D. M., Robertson, D. M., and Wreford, N. G. (1996). Neonatal exposure of rats to recombinant follicle stimulating hormone increases adult Sertoli and spermatogenic cell numbers. Biol. Reprod. 54, 36–44.
Neonatal exposure of rats to recombinant follicle stimulating hormone increases adult Sertoli and spermatogenic cell numbers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSisLrP&md5=eaadd85e70a359c62d9c06a37209f2ffCAS | 8837998PubMed |

Monet-Kuntz, C., Hochereau-de Reviers, M. T., and Terqui, M. (1984). Variations in testicular androgen receptors and histology of the lamb testis from birth to puberty. J. Reprod. Fertil. 70, 203–210.
Variations in testicular androgen receptors and histology of the lamb testis from birth to puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmt1SqtQ%3D%3D&md5=e299e6c1da00308a88fcb0715d34b78cCAS | 6694138PubMed |

Morita, K., Sasaki, H., Fujimoto, K., Furuse, M., and Tsukita, S. (1999). Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J. Cell Biol. 145, 579–588.
Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFKntrs%3D&md5=5a1c902da7b25a030df59f34791a2a4bCAS | 10225958PubMed |

Nah, W. H., Lee, J. E., Park, H. J., Park, N. C., and Gye, M. C. (2011). Claudin-11 expression increased in spermatogenic defect in human testes. Fertil. Steril. 95, 385–388.
Claudin-11 expression increased in spermatogenic defect in human testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFymsr7M&md5=b4c708a5a812986db920433c17629062CAS | 20850723PubMed |

Oldham, C. M., Adams, N. R., Gherardi, P. B., Lindsay, D. R., and Mackintosh, J. B. (1978). The influence of level of feed intake on sperm-producing capacity of testicular tissue in the ram. Aust. J. Agric. Res. 29, 173–179.
The influence of level of feed intake on sperm-producing capacity of testicular tissue in the ram.Crossref | GoogleScholarGoogle Scholar |

O’Shaughnessy, P. J., Hu, L., and Baker, P. J. (2008). Effect of germ-cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells. Reproduction 135, 839–850.
Effect of germ-cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVOks74%3D&md5=8efffaeef58369ee89baf10504e1d0a4CAS | 18390686PubMed |

Packer, A. I., Besmer, P., and Bachvarova, R. F. (1995). Kit ligand mediates survival of type A spermatogonia and dividing spermatocytes in postnatal mouse testes. Mol. Reprod. Dev. 42, 303–310.
Kit ligand mediates survival of type A spermatogonia and dividing spermatocytes in postnatal mouse testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptFykuro%3D&md5=0b6d6d7274d1e6b228ceba101efa01dfCAS | 8579844PubMed |

Rey, R. (1998). Endocrine, paracrine and cellular regulation of postnatal anti-Müllerian hormone secretion by Sertoli cells. Trends Endocrinol. Metab. 9, 271–276.
Endocrine, paracrine and cellular regulation of postnatal anti-Müllerian hormone secretion by Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVelu7o%3D&md5=1d2c9d5d905c07f7f80b77c9c27a3ddbCAS | 18406283PubMed |

Salonen, J., Rajpert-De Meyts, E., Mannisto, S., Nielsen, J. E., Graem, N., Toppari, J., and Heikinheimo, M. (2010). Differential developmental expression of transcription factors GATA-4 and GATA-6, their cofactor FOG-2 and downstream target genes in testicular carcinoma in situ and germ-cell tumours. Eur. J. Endocrinol. 162, 625–631.
Differential developmental expression of transcription factors GATA-4 and GATA-6, their cofactor FOG-2 and downstream target genes in testicular carcinoma in situ and germ-cell tumours.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFahsbw%3D&md5=fbc0962de9ded98958b10616cf6d0bc5CAS | 19969558PubMed |

Saunders, P. T., Maguire, S. M., Macpherson, S., Fenelon, M. C., Sakakibara, S., and Okano, H. (2002). RNA-binding protein Musashi1 is expressed in Sertoli cells in the rat testis from fetal life to adulthood. Biol. Reprod. 66, 500–507.
RNA-binding protein Musashi1 is expressed in Sertoli cells in the rat testis from fetal life to adulthood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVSrsQ%3D%3D&md5=769d1e604538bdebcdd1d45c0153f522CAS | 11804968PubMed |

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.
NIH Image to ImageJ: 25 years of image analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKntb7P&md5=999a6fce17546e7c9140f3491dd2c2c9CAS | 22930834PubMed |

Sekido, R., Bar, I., Narvaez, V., Penny, G., and Lovell-Badge, R. (2004). SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev. Biol. 274, 271–279.
SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVyru7o%3D&md5=83d606375a39fe96900804169e29fc27CAS | 15385158PubMed |

Sharpe, R. M., McKinnell, C., Kivlin, C., and Fisher, J. S. (2003). Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769–784.
Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFelt7c%3D&md5=261df6fa7d11292455ec66e8d427445cCAS | 12773099PubMed |

Singh, A. P., Harada, S., and Mishina, Y. (2009). Downstream genes of Sox8 that would affect adult male fertility. Sex Dev. 3, 16–25.
Downstream genes of Sox8 that would affect adult male fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVKitLY%3D&md5=96363dc6e093da2e1bbdc8530a5df409CAS | 19339814PubMed |

Steger, K., Rey, R., Louis, F., Kliesch, S., Behre, H. M., Nieschlag, E., Hoepffner, W., Bailey, D., Marks, A., and Bergmann, M. (1999). Reversion of the differentiated phenotype and maturation block in Sertoli cells in pathological human testis. Hum. Reprod. 14, 136–143.
Reversion of the differentiated phenotype and maturation block in Sertoli cells in pathological human testis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1Mzgt1ensg%3D%3D&md5=bf7a4b874da295ab733df23cdad20176CAS | 10374110PubMed |

Sutherland, J. M., Fraser, B. A., Sobinoff, A. P., Pye, V. J., Davidson, T. L., Siddall, N. A., Koopman, P., Hime, G. R., and McLaughlin, E. A. (2014). Developmental expression of musashi-1 and musashi-2 RNA-binding proteins during spermatogenesis: analysis of the deleterious effects of dysregulated expression. Biol. Reprod. 90, 92–109.
Developmental expression of musashi-1 and musashi-2 RNA-binding proteins during spermatogenesis: analysis of the deleterious effects of dysregulated expression.Crossref | GoogleScholarGoogle Scholar | 24671879PubMed |

Tarulli, G. A., Stanton, P. G., Lerchl, A., and Meachem, S. J. (2006). Adult Sertoli cells are not terminally differentiated in the Djungarian hamster: effect of FSH on proliferation and junction protein organisation. Biol. Reprod. 74, 798–806.
Adult Sertoli cells are not terminally differentiated in the Djungarian hamster: effect of FSH on proliferation and junction protein organisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2jtb8%3D&md5=40c2af1d0cc6a030e9d23c0e0fe4d90eCAS | 16407497PubMed |

Tarulli, G. A., Meachem, S. J., Schlatt, S., and Stanton, P. G. (2008). Regulation of testicular tight junctions by gonadotrophins in the adult Djungarian hamster in vivo. Reproduction 135, 867–877.
Regulation of testicular tight junctions by gonadotrophins in the adult Djungarian hamster in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVOks70%3D&md5=5432d7c882be7953021c997a920e5898CAS | 18502899PubMed |

Tarulli, G. A., Stanton, P. G., and Meachem, S. J. (2012). Is the adult Sertoli cell terminally differentiated? Biol. Reprod. 87, 1–11.
Is the adult Sertoli cell terminally differentiated?Crossref | GoogleScholarGoogle Scholar |

Tarulli, G. A., Stanton, P. G., Loveland, K. L., Meyts, E. R., McLachlan, R. I., and Meachem, S. J. (2013). A survey of Sertoli cell differentiation in men after gonadotrophin suppression and in testicular cancer. Spermatogenesis 3, e24014.
A survey of Sertoli cell differentiation in men after gonadotrophin suppression and in testicular cancer.Crossref | GoogleScholarGoogle Scholar | 23687617PubMed |

Wreford, N. G. (1995). Theory and practice of stereological techniques applied to the estimation of cell number and nuclear volume in the testis. Microsc. Res. Tech. 32, 423–436.
Theory and practice of stereological techniques applied to the estimation of cell number and nuclear volume in the testis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287lslyktA%3D%3D&md5=51afc62f99921df6d50d40bab070fefbCAS | 8563041PubMed |

Yu, Y., Zhang, Y., Song, X., Jin, M., Guan, Q., Zhang, Q., Li, S., Wei, C., Lu, G., Zhang, J., Ren, H., Sheng, X., Wang, C., and Du, L. (2010). Alternative splicing and tissue expression of CIB4 gene in sheep testis. Anim. Reprod. Sci. 120, 1–9.
Alternative splicing and tissue expression of CIB4 gene in sheep testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFWrsbk%3D&md5=8dca552ee0931bbe2279df0c291ca6fdCAS | 20236775PubMed |