Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Creation of DNA aptamers against recombinant bone morphogenetic protein 15

Jun Sheng Lin A C , Alexia Kauff B , Yong Diao A , Huiyong Yang A , Steve Lawrence B and Jennifer L. Juengel B
+ Author Affiliations
- Author Affiliations

A Molecular Medicine Research Institute, Huaqiao University, 269 Chenghua North Rd, Quanzhou, Fujian 362021, China.

B Animal Reproduction, AgResearch, Invermay Agricultural Centre, Private Bag 50034, Mosgiel 9053, New Zealand.

C Corresponding author. Email: junshenglin@hqu.edu.cn

Reproduction, Fertility and Development 28(8) 1164-1171 https://doi.org/10.1071/RD14409
Submitted: 27 October 2014  Accepted: 1 December 2014   Published: 5 January 2015

Abstract

The oocyte-derived growth factor bone morphogenetic protein (BMP) 15 plays important roles in fertility, but its mechanism of action differs between species. Generation of BMP15-binding molecules, as an essential investigation tool, would be helpful to provide valuable insight into the underlying biological features of BMP15. The BMP15-binding molecules could be antibodies or aptamers. Aptamers have many advantages over antibodies as macromolecular ligands for target proteins. DNA aptamers can be obtained by a method of Systematic Evolution of Ligands by EXponential enrichment (SELEX) beginning with a pool of random sequences. However, the success of this technique cannot be guaranteed if the initial pool lacks candidate sequences. Herein, we report on the creation of DNA aptamers by means of modified SELEX. The modification included enhanced mutation and progressive selection during an in vitro evolutionary process. As a proof-of-principle, we started from a single sequence instead of a multiple-sequence pool. Functional aptamers against the recombinant BMP15 were successfully created and identified.

Additional keywords: antibody, evolution, mutation, Systematic Evolution of Ligands by EXponential enrichment (SELEX).


References

Binning, J. M., Leung, D. W., and Amarasinghe, G. K. (2012). Aptamers in virology: recent advances and challenges. Front. Microbiol. 3, 29.
Aptamers in virology: recent advances and challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVejt70%3D&md5=47201452ef2557b588b65e49054e7a4cCAS | 22347221PubMed |

Bowser, M. T. (2005). SELEX: just another separation? Analyst 130, 128–130.
SELEX: just another separation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1emtg%3D%3D&md5=1005620b04b72b2092fc192144a1cfb2CAS | 15665964PubMed |

Brody, E. N., Gold, L., Lawn, R. M., Walker, J. J., and Zichi, D. (2010). High-content affinity-based proteomics: unlocking protein biomarker discovery. Expert Rev. Mol. Diagn. 10, 1013–1022.
High-content affinity-based proteomics: unlocking protein biomarker discovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCjsbnF&md5=f3f834a49616e1e53b37459bd21134b9CAS | 21080818PubMed |

Cadwell, R. C., and Joyce, G. F. (1992). Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2, 28–33.
Randomization of genes by PCR mutagenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1Sr&md5=ecb1ed10def3bf867527b0154f41f330CAS | 1490172PubMed |

Conrad, R. C., Bruck, F. M., Bell, S., and Ellington, A. D. (2002). In vitro selection of nucleic acid ligands. In ‘RNA–Protein Interactions: A Practical Approach’. (Ed. C. W. J. Smith.) pp. 285–323. (Oxford University Press: London.)

Ellington, A. D., and Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822.
In vitro selection of RNA molecules that bind specific ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGgsw%3D%3D&md5=a610f42b5df4bc557a4472d395a7ee85CAS | 1697402PubMed |

Förster, U., Weigand, J. E., Trojanowski, P., Suess, B., and Wachtveitl, J. (2012). Conformational dynamics of the tetracycline-binding aptamer. Nucl. Acids Res. 40, 1807–1817.
Conformational dynamics of the tetracycline-binding aptamer.Crossref | GoogleScholarGoogle Scholar | 22053085PubMed |

Galloway, S. M., McNatty, K. P., Cambridge, L. M., Laitinen, M. P. E., Juengel, J. L., Jokiranta, T. S., McLaren, R. J., Luiro, K., Dodds, K. G., Montgomery, G. W., Beattie, A. E., Davis, G. H., and Ritvos, O. (2000). Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25, 279–283.
Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFKltbs%3D&md5=c90539f9ccf7e72be31f3b32de7181abCAS | 10888873PubMed |

Galloway, S. M., Gregan, S. m., Wilson, T., McNatty, K. P., Juengel, J. L., Ritvos, O., and Davis, G. H. (2002). Bmp15 mutations and ovarian function. Mol. Cell. Endocrinol. 191, 15–18.
Bmp15 mutations and ovarian function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFKhuro%3D&md5=a9137039bda52b8a2e60537a9dcf2617CAS | 12044914PubMed |

Gold, L., Ayers, D., Bertino, J., Bock, C., Bock, A., Brody, E. N., Carter, J., Dalby, A. B., Eaton, B. E., Fitzwater, T., Flather, D., Forbes, A., Foreman, T., Fowler, C., Gawande, B., Goss, M., Gunn, M., Gupta, S., Halladay, D., Heil, J., Heilig, J., Hicke, B., Husar, G., Janjic, N., Jarvis, T., Jennings, S., Katilius, E., Keeney, T. R., Kim, N., Koch, T. H., Kraemer, S., Kroiss, L., Le, N., Levine, D., Lindsey, W., Lollo, B., Mayfield, W., Mehan, M., Mehler, R., Nelson, S. K., Nelson, M., Nieuwlandt, D., Nikrad, M., Ochsner, U., Ostroff, R. M., Otis, M., Parker, T., Pietrasiewicz, S., Resnicow, D. I., Rohloff, J., Sanders, G., Sattin, S., Schneider, D., Singer, B., Stanton, M., Sterkel, A., Stewart, A., Stratford, S., Vaught, J. D., Vrkljan, M., Walker, J. J., Watrobka, M., Waugh, S., Weiss, A., Wilcox, S. K., Wolfson, A., Wolk, S. K., Zhang, C., and Zichi, D. (2010). Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004.
Aptamer-based multiplexed proteomic technology for biomarker discovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSjtbY%3D&md5=ae50927f484cf9dd7246d865294fe31fCAS | 21165148PubMed |

Greenleaf, W. J., Frieda, K. L., Foster, D. A. N., Woodside, M. T., and Block, S. M. (2008). Direct observation of hierarchical folding in single riboswitch aptamers. Science 319, 630–633.
Direct observation of hierarchical folding in single riboswitch aptamers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Knt7k%3D&md5=fde1391e2d0561331eb628025e5312cbCAS | 18174398PubMed |

Gury, J., Zinger, L., Gielly, L., Taberlet, P., and Geremia, R. A. (2008). Exonuclease activity of proofreading DNA polymerases is at the origin of artifacts in molecular profiling studies. Electrophoresis 29, 2437–2444.
Exonuclease activity of proofreading DNA polymerases is at the origin of artifacts in molecular profiling studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFCmu70%3D&md5=67db3d74aa6495de41ce6898abfd17e5CAS | 18429330PubMed |

Holmberg, A., Blomstergren, A., Nord, O., Lukacs, M., Lundeberg, J., and Uhlén, M. (2005). The biotin–streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26, 501–510.
The biotin–streptavidin interaction can be reversibly broken using water at elevated temperatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1Knurk%3D&md5=ef72ad1166de80981299ce87f82df734CAS | 15690449PubMed |

Innis, M. A., Myambo, K. B., Gelfand, D. H., and Brow, M. A. (1988). DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc. Natl Acad. Sci. USA 85, 9436–9440.
DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXovFyqsg%3D%3D&md5=cf4cc888390ce8d030f90c8cf740f19cCAS | 3200828PubMed |

Juengel, J. L., Hudson, N. L., Heath, D. A., Smith, P., Reader, K. L., Lawrence, S. B., O’Connell, A. R., Laitinen, M. P. E., Cranfield, M., Groome, N. P., Ritvos, O., and McNatty, K. P. (2002). Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol. Reprod. 67, 1777–1789.
Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVelsLo%3D&md5=f756ae8cf552daf5324c6c31dd3c2fa1CAS | 12444053PubMed |

Juengel, J. L., Bodensteiner, K. J., Fau-Heath, D. A., Hudson, N. L., Moeller, C. L., Smith, P., Galloway, S. M., Davis, G. H., Sawyer, H. R., and McNatty, K. P. (2004). Physiology of GDF9 and BMP15 signalling molecules. Anim. Reprod. Sci. 82–83, 447–460.
Physiology of GDF9 and BMP15 signalling molecules.Crossref | GoogleScholarGoogle Scholar | 15271472PubMed |

Juengel, J. L., Davis, G. H., and McNatty, K. P. (2013). Using sheep lines with mutations in single genes to better understand ovarian function. Reproduction 146, R111–R123.
Using sheep lines with mutations in single genes to better understand ovarian function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ygtr7K&md5=149a7e0143d61b6ca91fd4a7bb0be854CAS | 23801782PubMed |

Keefe, A. D., Pai, S., and Ellington, A. (2010). Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550.
Aptamers as therapeutics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFelsLY%3D&md5=8d8360d3cec949a3e976d8349bb478e6CAS | 20592747PubMed |

Khati, M. (2010). The future of aptamers in medicine. J. Clin. Pathol. 63, 480–487.
The future of aptamers in medicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVGjsL0%3D&md5=08d8358fa761ed9445fd92b89bb74b86CAS | 20360137PubMed |

Kuipers, O. P. (1996) ‘Random Mutagenesis by Using Mixtures of dNTP and dITP in PCR.’ (Humana Press: Totowa, NJ.)

Labrou, N. E. (2010). Random mutagenesis methods for in vitro directed enzyme evolution. Curr. Protein Pept. Sci. 11, 91–100.
Random mutagenesis methods for in vitro directed enzyme evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1ersrY%3D&md5=331e296bfd41fe95937cfa5a5cc7248cCAS | 20201809PubMed |

Lamont, E. A., He, L., Warriner, K., Labuza, T. P., and Sreevatsan, S. (2011). A single DNA aptamer functions as a biosensor for ricin. Analyst 136, 3884–3895.
A single DNA aptamer functions as a biosensor for ricin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFagtLfL&md5=93eb3dc1836e00656135d643ffcd6925CAS | 21748194PubMed |

Lin, J. S., and McNatty, K. P. (2009). Aptamer-based regionally protected PCR for protein detection. Clin. Chem. 55, 1686–1693.
Aptamer-based regionally protected PCR for protein detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVynt77I&md5=39d511148ba363494984548fdc95ebcbCAS | 19589846PubMed |

Mayer, G. (2009). The chemical biology of aptamers. Angew. Chem. Int. Engl. 48, 2672–2689.
The chemical biology of aptamers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1Clsrk%3D&md5=89d5b57358c57a3329f56b807f18c623CAS |

McCullum, E. O., Williams, B. A. R., Zhang, J., and Chaput, J. C. (Eds) (2010) ‘Random Mutagenesis by Error-Prone PCR.’ 3rd edn. (Humana Press Press: Totowa, NJ.)

Mi, J., Zhang, X., Rabbani, Z. N., Liu, Y., Reddy, S. K., Su, Z., Salahuddin, F. K., Viles, K., Giangrande, P. H., Dewhirst, M. W., Sullenger, B. A., Kontos, C. D., and Clary, B. M. (2007). RNA aptamer-targeted Inhibition of NF-κB suppresses non-small cell lung cancer resistance to doxorubicin. Mol. Ther. 16, 66–73.
RNA aptamer-targeted Inhibition of NF-κB suppresses non-small cell lung cancer resistance to doxorubicin.Crossref | GoogleScholarGoogle Scholar | 17912235PubMed |

Neumann, O., Zhang, D., Tam, F., Lal, S., Wittung-Stafshede, P., and Halas, N. J. (2009). Direct optical detection of aptamer conformational changes induced by target molecules. Anal. Chem. 81, 10 002–10 006.
Direct optical detection of aptamer conformational changes induced by target molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGntr%2FI&md5=ed65044007a09655a277eb2823a03a79CAS |

Nonaka, Y., Yoshida, W., Abe, K., Ferri, S., Schulze, H., Bachmann, T. T., and Ikebukuro, K. (2013). Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system. Anal. Chem. 85, 1132–1137.
Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVersL%2FK&md5=b15dfeaa1b7babfa8c72a3d531d09ebfCAS | 23237717PubMed |

Noonan, P. S., Roberts, R. H., and Schwartz, D. K. (2013). Liquid crystal reorientation induced by aptamer conformational changes. J. Am. Chem. Soc. 135, 5183–5189.
Liquid crystal reorientation induced by aptamer conformational changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlersLs%3D&md5=73c3368605648e72ac5edb45acc24b69CAS | 23510322PubMed |

Reader, K. L., Heath, D. A., Lun, S., McIntosh, C. J., Western, A. H., Littlejohn, R. P., McNatty, K. P., and Juengel, J. L. (2011). Signalling pathways involved in the cooperative effects of ovine and murine GDF9+BMP15-stimulated thymidine uptake by rat granulosa cells. Reproduction 142, 123–131.
Signalling pathways involved in the cooperative effects of ovine and murine GDF9+BMP15-stimulated thymidine uptake by rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSqu7zJ&md5=bd84db8f647fff57442768f9e1790bd7CAS | 21474603PubMed |

Sala, M., Pezo, V., Pochet, S., and Wain-Hobson, S. (1996). Ambiguous base pairing of the purine analogue 1-(2-deoxy-beta-d-ribofuranosyl)-imidazole-4-carboxamide during PCR. Nucleic Acids Res. 24, 3302–3306.
Ambiguous base pairing of the purine analogue 1-(2-deoxy-beta-d-ribofuranosyl)-imidazole-4-carboxamide during PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVGktb0%3D&md5=0152237089c5e95166e49af293a63f4cCAS | 8811081PubMed |

Savory, N., Takahashi, Y., Tsukakoshi, K., Hasegawa, H., Takase, M., Abe, K., Yoshida, W., Ferri, S., Kumazawa, S., Sode, K., and Ikebukuro, K. (2013). Simultaneous improvement of specificity and affinity of aptamers against Streptococcus mutans by in silico maturation for biosensor development. Biotechnol. Bioeng. 111, 454–461.
Simultaneous improvement of specificity and affinity of aptamers against Streptococcus mutans by in silico maturation for biosensor development.Crossref | GoogleScholarGoogle Scholar | 24018905PubMed |

Smestad, J., and Maher, L. J. (2013). Ion-dependent conformational switching by a DNA aptamer that induces remyelination in a mouse model of multiple sclerosis. Nucleic Acids Res. 41, 1329–1342.
Ion-dependent conformational switching by a DNA aptamer that induces remyelination in a mouse model of multiple sclerosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFyjsb0%3D&md5=98393b43396b80b93a7b23a80635f759CAS | 23175609PubMed |

Spee, J. H., de Vos, W. M., and Kuipers, O. P. (1993). Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Res. 21, 777–778.
Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsVSrsbo%3D&md5=cb858d38dc126f638f09af0be53e445cCAS | 8441702PubMed |

Sugiura, K., Su, Y.-Q., Li, Q., Wigglesworth, K., Matzuk, M. M., and Eppig, J. J. (2010). Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15. Mol. Endocrinol. 24, 2303–2314.
Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVenu78%3D&md5=2517edc6413948239a005dc1bb216a2fCAS | 21047911PubMed |

Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510.
Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt1OltLY%3D&md5=0a3d5c8b4e555677fbdf73b0910ec738CAS | 2200121PubMed |

Vartanian, J. P., Henry, M., and Wain-Hobson, S. (1996). Hypermutagenic PCR involving all four transitions and a sizeable proportion of transversions. Nucleic Acids Res. 24, 2627–2631.
Hypermutagenic PCR involving all four transitions and a sizeable proportion of transversions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslWmurw%3D&md5=2e46dc264d0802d93a729a9e062bab04CAS | 8758987PubMed |

Wang, J., Rudzinski, J. F., Gong, Q., Soh, H. T., and Atzberger, P. J. (2012). Influence of target concentration and background binding on in vitro selection of affinity reagents. PLoS ONE 7, e43940.
Influence of target concentration and background binding on in vitro selection of affinity reagents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yktLnJ&md5=ad33f47dc4353de70ee0709cb2e9ff08CAS | 22952815PubMed |

Wongphatcharachai, M., Wang, P., Enomoto, S., Webby, R. J., Gramer, M. R., Amonsin, A., and Sreevatsan, S. (2013). Neutralizing DNA aptamers against swine influenza H3N2 viruses. J. Clin. Microbiol. 51, 46–54.
Neutralizing DNA aptamers against swine influenza H3N2 viruses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFyrt70%3D&md5=4fc9cad8e99659a0288e9b8498230057CAS | 23077124PubMed |

Yan, C., Wang, P., DeMayo, J., DeMayo, F. J., Elvin, J. A., Carino, C., Prasad, S. V., Skinner, S. S., Dunbar, B. S., Dube, J. L., Celeste, A. J., and Matzuk, M. M. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15, 854–866.
Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFKjs7o%3D&md5=79174391908d5b54202aa63d2bf763dfCAS | 11376106PubMed |

Zhang, Q., and Landgraf, R. (2012). Selecting molecular recognition. What can existing aptamers tell us about their inherent recognition capabilities and modes of interaction? Pharmaceuticals (Basel) 5, 493–513.
Selecting molecular recognition. What can existing aptamers tell us about their inherent recognition capabilities and modes of interaction?Crossref | GoogleScholarGoogle Scholar | 24281560PubMed |