A novel subclass of bovine β-defensins links reproduction and immunology
F. Narciandi A , A. Lloyd B , K. G. Meade C D and C. O’Farrelly AA Comparative Immunology Group, School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland.
B Department of Science & Health, Carlow Institute of Technology, Kilkenny Rd, Co. Carlow, Ireland.
C Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.
D Corresponding author. Email: kieran.meade@teagasc.ie
Reproduction, Fertility and Development 26(6) 769-777 https://doi.org/10.1071/RD13153
Submitted: 16 May 2013 Accepted: 6 June 2013 Published: 22 July 2013
Abstract
β-defensins are effector molecules of the innate immune system, found in many diverse species. Their presence in invertebrates as well as vertebrates suggests highly conserved functional roles. Most β-defensins are believed to act as antimicrobial agents at epithelial surfaces, although additional functions have also been described, including immune regulatory activity, wound repair and a role in coat-colour determination. High expression of β-defensins have been found in testis and epididymidal epithelium as well as in the seminal fluid of humans, macaque, rat, mouse and cow. Human and macaque β-defensins have recently been shown to affect sperm motility while a mutation in β-defensin 126 is associated with reduced fertility in men. Genetic variation in bovine defensin genes may explain the increased incidence of low fertility in cattle. Here, we present a summary of the known functions of β-defensins as well as their emerging role in reproduction and their potential to improve fertility in cattle.
Additional keywords: BBD126, epididymis, fertility, immune response.
References
Aloé, S., Weber, F., Behr, B., Sauter-Louis, C., and Zerbe, H. (2012). Modulatory effects of bovine seminal plasma on uterine inflammatory processes. Reproduction in domestic animals = Zuchthygiene 47, 12–9.| Modulatory effects of bovine seminal plasma on uterine inflammatory processes.Crossref | GoogleScholarGoogle Scholar | 21535239PubMed |
Ayabe, T., Satchell, D. P., Wilson, C. L., Parks, W. C., Selsted, M. E., and Ouellette, A. J. (2000). Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 1, 113–118.
| Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFOmur4%3D&md5=0fb8baa9b0b069bfe635cd75d98ed1edCAS | 11248802PubMed |
Baroni, A., Donnarumma, G., Paoletti, I., Longanesi-Cattani, I., Bifulco, K., Tufano, M. A., and Carriero, M. V. (2009). Antimicrobial human beta-defensin-2 stimulates migration, proliferation and tube formation of human umbilical vein endothelial cells. Peptides 30, 267–272.
| Antimicrobial human beta-defensin-2 stimulates migration, proliferation and tube formation of human umbilical vein endothelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVSqsA%3D%3D&md5=7ab971b5cd96f947d89b08a48ebd3b03CAS | 19041917PubMed |
Bauer, F., Schweimer, K., Kluver, E., Conejo-Garcia, J. R., Forssmann, W. G., Rosch, P., Adermann, K., and Sticht, H. (2001). Structure determination of human and murine beta-defensins reveals structural conservation in the absence of significant sequence similarity. Protein Sci. 10, 2470–2479.
| Structure determination of human and murine beta-defensins reveals structural conservation in the absence of significant sequence similarity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVyrurY%3D&md5=ce227853ee5ab45decfde8bb2beaa06eCAS | 11714914PubMed |
Beckloff, N., and Diamond, G. (2008). Computational analysis suggests beta-defensins are processed to mature peptides by signal peptidase. Protein Pept. Lett. 15, 536–540.
| Computational analysis suggests beta-defensins are processed to mature peptides by signal peptidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVWqsb8%3D&md5=aab5374861dddd18c74dda83210711ceCAS | 18537746PubMed |
Bhushan, S., Schuppe, H. C., Fijak, M., and Meinhardt, A. (2009). Testicular infection: microorganisms, clinical implications and host–pathogen interaction. J. Reprod. Immunol. 83, 164–167.
| Testicular infection: microorganisms, clinical implications and host–pathogen interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyntr%2FP&md5=5060ce9ee3685724ded14fa9102ea126CAS | 19836838PubMed |
Candille, S. I., Kaelin, C. B., Cattanach, B. M., Yu, B., Thompson, D. A., Nix, M. A., Kerns, J. A., Schmutz, S. M., Millhauser, G. L., and Barsh, G. S. (2007). A defensin mutation causes black coat colour in domestic dogs. Science 318, 1418–1423.
| A defensin mutation causes black coat colour in domestic dogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGmtLbK&md5=dfea91c8b55fd5dbd2b13a7a03b47d6eCAS | 17947548PubMed |
Chapwanya, A., Meade, K. G., Foley, C., Narciandi, F., Evans, A. C., Doherty, M. L., Callanan, J. J., and O’Farrelly, C. (2012). The postpartum endometrial inflammatory response: a normal physiological event with potential implications for bovine fertility. Reprod. Fertil. Dev. 24, 1028–1039.
| The postpartum endometrial inflammatory response: a normal physiological event with potential implications for bovine fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKrt7%2FJ&md5=cc920d5e8639b9ee44ae211f882adf8bCAS | 22948010PubMed |
Choi, M. K., Le, M. T., Nguyen, D. T., Choi, H., Kim, W., Kim, J. H., Chun, J., Hyeon, J., Seo, K., and Park, C. (2012). Genome-level identification, gene expression and comparative analysis of porcine ss-defensin genes. BMC Genet. 13, 98.
| Genome-level identification, gene expression and comparative analysis of porcine ss-defensin genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Gktrs%3D&md5=44f5c98aafc310045a2187304d096318CAS | 23150902PubMed |
Cole, A. M., and Lehrer, R. I. (2003). Mini-defensins: antimicrobial peptides with activity against HIV-1. Curr. Pharm. Des. 9, 1463–1473.
| Mini-defensins: antimicrobial peptides with activity against HIV-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFGntrw%3D&md5=e3b67d394ec977794d2ae9ba71196acfCAS | 12769726PubMed |
Com, E., Bourgeon, F., Evrard, B., Ganz, T., Colleu, D., Jegou, B., and Pineau, C. (2003a). Expression of antimicrobial defensins in the male reproductive tract of rats, mice and humans. Biol. Reprod. 68, 95–104.
| Expression of antimicrobial defensins in the male reproductive tract of rats, mice and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtV2i&md5=8af4ec2b957f8312a4b0045736217937CAS | 12493700PubMed |
Com, E., Evrard, B., Roepstorff, P., Aubry, F., and Pineau, C. (2003b). New insights into the rat spermatogonial proteome: identification of 156 additional proteins. Mol. Cell. Proteomics 2, 248–261.
| 1:CAS:528:DC%2BD3sXltFaltLo%3D&md5=934f66e16a4f0bcdfc10f4332f58078bCAS | 12754304PubMed |
Conejo-Garcia, J. R., Benencia, F., Courreges, M. C., Kang, E., Mohamed-Hadley, A., Buckanovich, R. J., Holtz, D. O., Jenkins, A., Na, H., Zhang, L., Wagner, D. S., Katsaros, D., Caroll, R., and Coukos, G. (2004). Tumour-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat. Med. 10, 950–958.
| Tumour-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFSktL4%3D&md5=1c57e95191ff468a376c8f0d78e9d3e0CAS | 15334073PubMed |
Cormican, P., Meade, K. G., Cahalane, S., Narciandi, F., Chapwanya, A., Lloyd, A. T., and O’Farrelly, C. (2008). Evolution, expression and effectiveness in a cluster of novel bovine beta-defensins. Immunogenetics 60, 147–156.
| Evolution, expression and effectiveness in a cluster of novel bovine beta-defensins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVOku7o%3D&md5=88b5d22155f101f05e07770f374b6169CAS | 18369613PubMed |
Cortés, P. P., Orihuela, P. A., Zúñiga, L. M., Velásquez, L. A., and Croxatto, H. B. (2004). Sperm binding to oviductal epithelial cells in the rat: role of sialic acid residues on the epithelial surface and sialic acid-binding sites on the sperm surface. Biol. Reprod. 71, 1262–1269.
| Sperm binding to oviductal epithelial cells in the rat: role of sialic acid residues on the epithelial surface and sialic acid-binding sites on the sperm surface.Crossref | GoogleScholarGoogle Scholar | 15201197PubMed |
Cunliffe, R. N. (2003). Alpha-defensins in the gastrointestinal tract. Mol. Immunol. 40, 463–467.
| Alpha-defensins in the gastrointestinal tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvF2qsb8%3D&md5=55bafe8fb1d014223b3e828ffb3a82adCAS | 14568393PubMed |
Davies, D., Meade, K. G., Herath, S., Eckersall, P. D., Gonzalez, D., White, J. O., Conlan, R. S., O’Farrelly, C., and Sheldon, I. M. (2008). Toll-like receptor and antimicrobial peptide expression in the bovine endometrium. Reprod. Biol. Endocrinol. 6, 53.
| Toll-like receptor and antimicrobial peptide expression in the bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 19017375PubMed |
Dreger, D. L., and Schmutz, S. M. (2010). The variant red coat colour phenotype of Holstein cattle maps to BTA27. Anim. Genet. 41, 109–112.
| The variant red coat colour phenotype of Holstein cattle maps to BTA27.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFGhsr0%3D&md5=e867ec809f45b7cf872d36a70c74a13aCAS | 19793268PubMed |
Dürr, M., and Peschel, A. (2002). Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defence. Infect. Immun. 70, 6515–6517.
| Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defence.Crossref | GoogleScholarGoogle Scholar | 12438319PubMed |
Eisenhauer, P. B., and Lehrer, R. I. (1992). Mouse neutrophils lack defensins. Infect. Immun. 60, 3446–3447.
| 1:CAS:528:DyaK38Xls12gur0%3D&md5=c9d714b030ceb08bac1cc07c6615f39aCAS | 1639513PubMed |
Foley, C., Chapwanya, A., Creevey, C., Narciandi, F., Morris, D., Kenny, E., Cormican, P., Callanan, J. J., O’Farrelly, C., and Meade, K. G. (2012). Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows. BMC Genomics 13, 489.
| Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsVamtL8%3D&md5=d7cb696fe206adfc664c0a2f8b4b5350CAS | 22985206PubMed |
Ganz, T. (1987). Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect. Immun. 55, 568–571.
| 1:CAS:528:DyaL2sXhtlKrt70%3D&md5=53cdf5dedb3c1ab611dbf1ffbbc6fcf3CAS | 3643886PubMed |
Ganz, T. (2003). Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720.
| Defensins: antimicrobial peptides of innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVWmtLc%3D&md5=93226a6080cc236744d0d61c731d2ff3CAS | 12949495PubMed |
Ganz, T., and Lehrer, R. I. (1995). Defensins. Pharmacol. Ther. 66, 191–205.
| Defensins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFSgtLk%3D&md5=dd7d3bbb56e3c1054f6a24f983f6eceaCAS | 7667395PubMed |
Ganz, T., Selsted, M. E., Szklarek, D., Harwig, S. S., Daher, K., Bainton, D. F., and Lehrer, R. I. (1985). Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76, 1427–1435.
| Defensins. Natural peptide antibiotics of human neutrophils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlvFCrtro%3D&md5=b3612c8f1956ba4b5fa9bc6ef800b837CAS | 2997278PubMed |
Garcia, J. R., Krause, A., Schulz, S., Rodriguez-Jimenez, F. J., Kluver, E., Adermann, K., Forssmann, U., Frimpong-Boateng, A., Bals, R., and Forssmann, W. G. (2001). Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 15, 1819–1821.
| 1:STN:280:DC%2BD3MvjtlKjsw%3D%3D&md5=a325b8b73c5a1009ca01c558c6273001CAS |
Gilbert, R. O. (2012). The effects of endometritis on the establishment of pregnancy in cattle. Reprod. Fertil. Dev. 24, 252–257.
| The effects of endometritis on the establishment of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar |
Girling, J. E., and Hedger, M. P. (2007). Toll-like receptors in the gonads and reproductive tract: emerging roles in reproductive physiology and pathology. Immunol. Cell Biol. 85, 481–489.
| Toll-like receptors in the gonads and reproductive tract: emerging roles in reproductive physiology and pathology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFWgtbw%3D&md5=47138240a6dcc089e74fb4b1b23a47c1CAS | 17592495PubMed |
Gnainsky, Y., Granot, I., Aldo, P. B., Barash, A., Or, Y., Schechtman, E., Mor, G., and Dekel, N. (2010). Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil. Steril. 94, 2030–2036.
| Local injury of the endometrium induces an inflammatory response that promotes successful implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlent7rM&md5=f06c92c94e0a6ee452a929185044cbc6CAS | 20338560PubMed |
Hall, S. H., Hamil, K. G., and French, F. S. (2002). Host defence proteins of the male reproductive tract. J. Androl. 23, 585–597.
| 1:CAS:528:DC%2BD38Xns1Glt7s%3D&md5=a32f1f7ae97fbea7866b383c328e4f02CAS | 12185087PubMed |
Harder, J., Bartels, J., Christophers, E., and Schroder, J. M. (2001). Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276, 5707–5713.
| Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1Kmtrg%3D&md5=de4da8c6ecc92ff0d5bd4ad839fa8517CAS | 11085990PubMed |
Hardwick, R. J., Machado, L. R., Zuccherato, L. W., Antolinos, S., Xue, Y., Shawa, N., Gilman, R. H., Cabrera, L., Berg, D. E., Tyler-Smith, C., Kelly, P., Tarazona-Santos, E., and Hollox, E. J. (2011). A worldwide analysis of beta-defensin copy-number variation suggests recent selection of a high-expressing bBD103 gene copy in East Asia. Hum. Mutat. 32, 743–750.
| A worldwide analysis of beta-defensin copy-number variation suggests recent selection of a high-expressing bBD103 gene copy in East Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVehur0%3D&md5=ee5de0f41314ee8395980d15f07ca60bCAS | 21387465PubMed |
Hardwick, R. J., Amogne, W., Mugusi, S., Yimer, G., Ngaimisi, E., Habtewold, A., Minzi, O., Makonnen, E., Janabi, M., Machado, L. R., Viskaduraki, M., Mugusi, F., Aderaye, G., Lindquist, L., Hollox, E. J., and Aklillu, E. (2012). Beta-defensin genomic copy number is associated with HIV load and immune reconstitution in sub-Saharan Africans. J. Infect. Dis. 206, 1012–1019.
| Beta-defensin genomic copy number is associated with HIV load and immune reconstitution in sub-Saharan Africans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlCru7fJ&md5=d4c4a79269ff1ee9d7176b0fe12f7d68CAS | 22837491PubMed |
Higgs, R., Lynn, D. J., Gaines, S., McMahon, J., Tierney, J., James, T., Lloyd, A. T., Mulcahy, G., and O’Farrelly, C. (2005). The synthetic form of a novel chicken beta-defensin identified in silico is predominantly active against intestinal pathogens. Immunogenetics 57, 90–98.
| The synthetic form of a novel chicken beta-defensin identified in silico is predominantly active against intestinal pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlartbo%3D&md5=194e55abaf072c6cd9366a75105254e2CAS | 15744537PubMed |
Hollox, E. J. (2008). Copy-number variation of beta-defensins and relevance to disease. Cytogenet. Genome Res. 123, 148–155.
| Copy-number variation of beta-defensins and relevance to disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3gvFejtQ%3D%3D&md5=dba0db2a9b7beb074b9f134739e25e09CAS | 19287149PubMed |
Hollox, E. J., and Armour, J. A. (2008). Directional and balancing selection in human beta-defensins. BMC Evol. Biol. 8, 113.
| Directional and balancing selection in human beta-defensins.Crossref | GoogleScholarGoogle Scholar | 18416833PubMed |
Hollox, E. J., Armour, J. A., and Barber, J. C. (2003). Extensive normal copy-number variation of a beta-defensin antimicrobial-gene cluster. Am. J. Hum. Genet. 73, 591–600.
| Extensive normal copy-number variation of a beta-defensin antimicrobial-gene cluster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Wqs74%3D&md5=046ffd11b6a31c9dcc97d66240b4e934CAS | 12916016PubMed |
Hollox, E. J., Huffmeier, U., Zeeuwen, P. L., Palla, R., Lascorz, J., Rodijk-Olthuis, D., van de Kerkhof, P. C., Traupe, H., de Jongh, G., den Heijer, M., Reis, A., Armour, J. A., and Schalkwijk, J. (2008). Psoriasis is associated with increased beta-defensin genomic copy number. Nat. Genet. 40, 23–25.
| Psoriasis is associated with increased beta-defensin genomic copy number.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyrtg%3D%3D&md5=078de03c424b5940e2a024c91b235268CAS | 18059266PubMed |
Jabbour, H. N., Sales, K. J., Catalano, R. D., and Norman, J. E. (2009). Inflammatory pathways in female reproductive health and disease. Reproduction 138, 903–919.
| Inflammatory pathways in female reproductive health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKlur%2FO&md5=76b6156702f6ced895bb5476fc73c236CAS | 19793840PubMed |
Jelinsky, S. A., Turner, T. T., Bang, H. J., Finger, J. N., Solarz, M. K., Wilson, E., Brown, E. L., Kopf, G. S., and Johnston, D. S. (2007). The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides. Biol. Reprod. 76, 561–570.
| The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFCnurc%3D&md5=ef55a5fd432225b993ff11760c5eb069CAS | 17167166PubMed |
Jenssen, H., Hamill, P., and Hancock, R. E. (2006). Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511.
| Peptide antimicrobial agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVaqsrk%3D&md5=366b65879c9f2095356b0aa0946433f0CAS | 16847082PubMed |
Katila, T. (2012). Post-mating inflammatory responses of the uterus. Reproduction in domestic animals = Zuchthygiene 47, 31–41.
| Post-mating inflammatory responses of the uterus.Crossref | GoogleScholarGoogle Scholar | 22913558PubMed |
King, A. E., Fleming, D. C., Critchley, H. O., and Kelly, R. W. (2003). Differential expression of the natural antimicrobials, beta-defensins 3 and 4, in human endometrium. J. Reprod. Immunol. 59, 1–16.
| Differential expression of the natural antimicrobials, beta-defensins 3 and 4, in human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVSltLg%3D&md5=1e081536dc4116060598717055400a36CAS | 12892899PubMed |
King, A. E., Paltoo, A., Kelly, R. W., Sallenave, J. M., Bocking, A. D., and Challis, J. R. (2007). Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 28, 161–169.
| Expression of natural antimicrobials by human placenta and fetal membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsl2qsw%3D%3D&md5=dad6a786a6f1b589647bc71a33e9add6CAS | 16513165PubMed |
Lai, Y., and Gallo, R. L. (2009). AMPed up immunity: how antimicrobial peptides have multiple roles in immune defence. Trends Immunol. 30, 131–141.
| AMPed up immunity: how antimicrobial peptides have multiple roles in immune defence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVertr8%3D&md5=b5f551c239ba0dfedf48eb12750dc5fbCAS | 19217824PubMed |
Lefebvre, R., and Suarez, S. S. (1996). Effect of capacitation on bull sperm binding to homologous oviductal epithelium. Biol. Reprod. 54, 575–582.
| Effect of capacitation on bull sperm binding to homologous oviductal epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFCjt7s%3D&md5=a20d7f0117248f17e1fb085c07988607CAS | 8835378PubMed |
Lefebvre, R., Chenoweth, P. J., Drost, M., LeClear, C. T., MacCubbin, M., Dutton, J. T., and Suarez, S. S. (1995). Characterization of the oviductal sperm reservoir in cattle. Biol. Reprod. 53, 1066–1074.
| Characterization of the oviductal sperm reservoir in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslynur8%3D&md5=9a9e75870b49701497c913721923c1b6CAS | 8527509PubMed |
Lefebvre, R., Lo, M. C., and Suarez, S. S. (1997). Bovine sperm binding to oviductal epithelium involves fucose recognition. Biol. Reprod. 56, 1198–1204.
| Bovine sperm binding to oviductal epithelium involves fucose recognition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisl2qtLk%3D&md5=4c6eeb1190f4be1c08a070360f29796aCAS | 9160719PubMed |
Lehrer, R. I., Lichtenstein, A. K., and Ganz, T. (1993). Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11, 105–128.
| Defensins: antimicrobial and cytotoxic peptides of mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVKmu7w%3D&md5=ce19c9433a54f206e163bf15690ab6e7CAS | 8476558PubMed |
Linzmeier, R. M., and Ganz, T. (2005). Human defensin gene copy-number polymorphisms: comprehensive analysis of independent variation in α- and β-defensin regions at 8p22–p23. Genomics 86, 423–430.
| Human defensin gene copy-number polymorphisms: comprehensive analysis of independent variation in α- and β-defensin regions at 8p22–p23.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFyqsbw%3D&md5=d6e07beddd47209669928eb2733ffb21CAS | 16039093PubMed |
Liu, X., Ju, Z., Wang, L., Zhang, Y., Huang, J., Li, Q., Li, J., Zhong, J., An, L., and Wang, C. (2011). Six novel single-nucleotide polymorphisms in SPAG11 gene and their association with sperm quality traits in Chinese Holstein bulls. Anim. Reprod. Sci. 129, 14–21.
| Six novel single-nucleotide polymorphisms in SPAG11 gene and their association with sperm quality traits in Chinese Holstein bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOgu7%2FO&md5=c0a0bb55105a6e57468e69954aed9ecaCAS | 22030336PubMed |
Lynn, D. J., and Bradley, D. G. (2007). Discovery of α-defensins in basal mammals. Dev. Comp. Immunol. 31, 963–967.
| Discovery of α-defensins in basal mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1yhu7c%3D&md5=f61035be8f0bf31c0c7462580c3d481dCAS | 17367857PubMed |
Lynn, D. J., Lloyd, A. T., Fares, M. A., and O’Farrelly, C. (2004). Evidence of positively selected sites in mammalian alpha-defensins. Mol. Biol. Evol. 21, 819–827.
| Evidence of positively selected sites in mammalian alpha-defensins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFyqsr0%3D&md5=c43e53dca5a057ff49f296ce01fe1025CAS | 14963090PubMed |
Maybin, J. A., Critchley, H. O., and Jabbour, H. N. (2011). Inflammatory pathways in endometrial disorders. Mol. Cell. Endocrinol. 335, 42–51.
| Inflammatory pathways in endometrial disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Ggsr8%3D&md5=13517e1b3b85c4b33d82ebad6169e026CAS | 20723578PubMed |
Meade, K. G., Cahalane, S., Narciandi, F., Cormican, P., Lloyd, A. T., and O’Farrelly, C. (2008). Directed alteration of a novel bovine beta-defensin to improve antimicrobial efficacy against methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents 32, 392–397.
| Directed alteration of a novel bovine beta-defensin to improve antimicrobial efficacy against methicillin-resistant Staphylococcus aureus (MRSA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ensLzF&md5=ca1313779c8549e714c573f4036090d8CAS | 18775651PubMed |
Meade, K. G., Higgs, R., Lloyd, A. T., Giles, S., and O’Farrelly, C. (2009). Differential antimicrobial peptide gene expression patterns during early chicken embryological development. Dev. Comp. Immunol. 33, 516–524.
| Differential antimicrobial peptide gene expression patterns during early chicken embryological development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOlurc%3D&md5=6b2b6295eec137f8ac73281aebae3101CAS | 19007808PubMed |
Meyerholz, D. K., Kawashima, K., Gallup, J. M., Grubor, B., and Ackermann, M. R. (2006). Expression of select immune genes (surfactant proteins A and D, sheep beta defensin 1 and toll-like receptor 4) by respiratory epithelia is developmentally regulated in the pre-term neonatal lamb. Dev. Comp. Immunol. 30, 1060–1069.
| Expression of select immune genes (surfactant proteins A and D, sheep beta defensin 1 and toll-like receptor 4) by respiratory epithelia is developmentally regulated in the pre-term neonatal lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns12gurk%3D&md5=9e7c6da9ac9ef8aecfe340ab8bd1a5e0CAS | 16510184PubMed |
Morrison, G., Kilanowski, F., Davidson, D., and Dorin, J. (2002). Characterization of the mouse beta defensin 1, mBD1, mutant mouse model. Infect. Immun. 70, 3053–3060.
| Characterization of the mouse beta defensin 1, mBD1, mutant mouse model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFGiuro%3D&md5=7759a00de1aa59f3f5e8e48cd5f1e718CAS | 12010997PubMed |
Narciandi, F., Lloyd, A. T., Chapwanya, A., O’Farrelly, C., and Meade, K. G. (2011). Reproductive tissue-specific expression profiling and genetic variation across a 19 gene bovine beta-defensin cluster. Immunogenetics 63, 641–651.
| Reproductive tissue-specific expression profiling and genetic variation across a 19 gene bovine beta-defensin cluster.Crossref | GoogleScholarGoogle Scholar | 21713586PubMed |
Navid, F., Boniotto, M., Walker, C., Ahrens, K., Proksch, E., Sparwasser, T., Muller, W., Schwarz, T., and Schwarz, A. (2012). Induction of regulatory T cells by a murine beta-defensin. J. Immunol. 188, 735–743.
| Induction of regulatory T cells by a murine beta-defensin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVCitQ%3D%3D&md5=d36894b4b58d5608306a8f7bd7a2041fCAS | 22174455PubMed |
Niyonsaba, F., Ushio, H., Nagaoka, I., Okumura, K., and Ogawa, H. (2005). The human beta-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J. Immunol. 175, 1776–1784.
| 1:CAS:528:DC%2BD2MXmtlWjur0%3D&md5=94c02fc22f335528b23c8819c1d7e18cCAS | 16034119PubMed |
Patil, A. A., Cai, Y., Sang, Y., Blecha, F., and Zhang, G. (2005). Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol. Genomics 23, 5–17.
| Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Wmsr3O&md5=c7a9799f74cf7b7a9eab176b34f407adCAS | 16033865PubMed |
Paulesu, L., Bhattacharjee, J., Bechi, N., Romagnoli, R., Jantra, S., and Ietta, F. (2010). Pro-inflammatory cytokines in animal and human gestation. Curr. Pharm. Des. 16, 3601–3615.
| Pro-inflammatory cytokines in animal and human gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1CitA%3D%3D&md5=751545328d73ddedcc5acfab298a7de1CAS | 20977424PubMed |
Pérez-Cañadillas, J. M., Zaballos, A., Gutiérrez, J., Varona, R., Roncal, F., Albar, J. P., Márquez, G., and Bruix, M. (2001). NMR solution structure of murine CCL20/MIP-3alpha, a chemokine that specifically chemoattracts immature dendritic cells and lymphocytes through its highly specific interaction with the beta-chemokine receptor CCR6. J. Biol. Chem. 276, 28 372–28 379.
| NMR solution structure of murine CCL20/MIP-3alpha, a chemokine that specifically chemoattracts immature dendritic cells and lymphocytes through its highly specific interaction with the beta-chemokine receptor CCR6.Crossref | GoogleScholarGoogle Scholar |
Röhrl, J., Yang, D., Oppenheim, J. J., and Hehlgans, T. (2010). Human beta-defensin 2 and 3 and their mouse orthologues induce chemotaxis through interaction with CCR2. J. Immunol. 184, 6688–6694.
| Human beta-defensin 2 and 3 and their mouse orthologues induce chemotaxis through interaction with CCR2.Crossref | GoogleScholarGoogle Scholar | 20483750PubMed |
Salvatore, M., Garcia-Sastre, A., Ruchala, P., Lehrer, R. I., Chang, T., and Klotman, M. E. (2007). Alpha-defensin inhibits influenza virus replication by cell-mediated mechanism(s). J. Infect. Dis. 196, 835–843.
| Alpha-defensin inhibits influenza virus replication by cell-mediated mechanism(s).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFanu7rJ&md5=391e229086d41435c0e856311a2d10f2CAS | 17703413PubMed |
Schuberth, H. J., Taylor, U., Zerbe, H., Waberski, D., Hunter, R., and Rath, D. (2008). Immunological responses to semen in the female genital tract. Theriogenology 70, 1174–1181.
| Immunological responses to semen in the female genital tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKqsL7N&md5=b1bc6ddc494a10d2cce8243e35817985CAS | 18757083PubMed |
Selsted, M. E., and Ouellette, A. J. (2005). Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551–557.
| Mammalian defensins in the antimicrobial immune response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlWit70%3D&md5=18ac7859a9b1ebce1f1c13ae94d84b14CAS | 15908936PubMed |
Semple, F., and Dorin, J. R. (2012). Beta-defensins: multifunctional modulators of infection, inflammation and more? J. Innate Immun. 4, 337–348.
| Beta-defensins: multifunctional modulators of infection, inflammation and more?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFajtb8%3D&md5=c0b49e1b6715b36b26b250bbf2a8a18fCAS | 22441423PubMed |
Semple, F., Webb, S., Li, H. N., Patel, H. B., Perretti, M., Jackson, I. J., Gray, M., Davidson, D. J., and Dorin, J. R. (2010). Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur. J. Immunol. 40, 1073–1078.
| Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFChtrk%3D&md5=e1b3c981ec70c07a0a1babb5067a4759CAS | 20104491PubMed |
Semple, F., MacPherson, H., Webb, S., Cox, S. L., Mallin, L. J., Tyrrell, C., Grimes, G. R., Semple, C. A., Nix, M. A., Millhauser, G. L., and Dorin, J. R. (2011). Human beta-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF. Eur. J. Immunol. 41, 3291–3300.
| Human beta-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGktb%2FE&md5=359cc8585750486ffae0cdfbb964b7ccCAS | 21809339PubMed |
Shi, J., Zhang, G., Wu, H., Ross, C., Blecha, F., and Ganz, T. (1999). Porcine epithelial beta-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. Infect. Immun. 67, 3121–3127.
| 1:CAS:528:DyaK1MXjsFSnsb8%3D&md5=60457107b92ae3292db3f93cffbbff81CAS | 10338529PubMed |
Shi, J., Aono, S., Lu, W., Ouellette, A. J., Hu, X., Ji, Y., Wang, L., Lenz, S., van Ginkel, F. W., Liles, M., Dykstra, C., Morrison, E. E., and Elson, C. O. (2007). A novel role for defensins in intestinal homeostasis: regulation of IL-1beta secretion. J. Immunol. 179, 1245–1253.
| 1:CAS:528:DC%2BD2sXnt1Wnt7g%3D&md5=1d8aa027fabd3f4c209bdece7e13a89dCAS | 17617617PubMed |
Shimizu, M., Watanabe, Y., Isobe, N., and Yoshimura, Y. (2008). Expression of avian beta-defensin 3, an antimicrobial peptide, by sperm in the male reproductive organs and oviduct in chickens: an immunohistochemical study. Poult. Sci. 87, 2653–2659.
| Expression of avian beta-defensin 3, an antimicrobial peptide, by sperm in the male reproductive organs and oviduct in chickens: an immunohistochemical study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVelsw%3D%3D&md5=ac87b40d482444d597eada2f1725f403CAS | 19038823PubMed |
Subedi, K., Isobe, N., Nishibori, M., and Yoshimura, Y. (2007). Changes in the expression of gallinacins, antimicrobial peptides, in ovarian follicles during follicular growth and in response to lipopolysaccharide in laying hens (Gallus domesticus). Reproduction 133, 127–133.
| Changes in the expression of gallinacins, antimicrobial peptides, in ovarian follicles during follicular growth and in response to lipopolysaccharide in laying hens (Gallus domesticus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1aju7s%3D&md5=764249487b2621de5a0d5e75a668b2a0CAS | 17244739PubMed |
Tollner, T. L., Yudin, A. I., Treece, C. A., Overstreet, J. W., and Cherr, G. N. (2004). Macaque sperm release ESP13.2 and PSP94 during capacitation: the absence of ESP13.2 is linked to sperm–zona recognition and binding. Mol. Reprod. Dev. 69, 325–337.
| Macaque sperm release ESP13.2 and PSP94 during capacitation: the absence of ESP13.2 is linked to sperm–zona recognition and binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslyqtLo%3D&md5=214ef87c86c530413595df0be7f195b2CAS | 15349845PubMed |
Tollner, T. L., Yudin, A. I., Tarantal, A. F., Treece, C. A., Overstreet, J. W., and Cherr, G. N. (2008a). Beta-defensin 126 on the surface of macaque sperm mediates attachment of sperm to oviductal epithelia. Biol. Reprod. 78, 400–412.
| Beta-defensin 126 on the surface of macaque sperm mediates attachment of sperm to oviductal epithelia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSltb0%3D&md5=ff8dc69b047fd3529f490136e4513994CAS | 18003946PubMed |
Tollner, T. L., Yudin, A. I., Treece, C. A., Overstreet, J. W., and Cherr, G. N. (2008b). Macaque sperm coating protein hBD126 facilitates sperm penetration of cervical mucus. Hum. Reprod. 23, 2523–2534.
| Macaque sperm coating protein hBD126 facilitates sperm penetration of cervical mucus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ois73E&md5=004f075e32e09bb013592345ef766a34CAS | 18658160PubMed |
Tollner, T. L., Venners, S. A., Hollox, E. J., Yudin, A. I., Liu, X., Tang, G., Xing, H., Kays, R. J., Lau, T., Overstreet, J. W., Xu, X., Bevins, C. L., and Cherr, G. N. (2011). A common mutation in the defensin hBD126 causes impaired sperm function and subfertility. Sci. Transl. Med. 3, 92ra65.
| A common mutation in the defensin hBD126 causes impaired sperm function and subfertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOisL%2FE&md5=a347d813708f4f911347886e71cc1075CAS | 21775668PubMed |
Tollner, T. L., Bevins, C. L., and Cherr, G. N. (2012). Multifunctional glycoprotein hBD126 – a curious story of defensin-clad spermatozoa. Nat. Rev. Urol. 9, 365–375.
| Multifunctional glycoprotein hBD126 – a curious story of defensin-clad spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSqtrbL&md5=77d113952e597b8cf4aef430a977c847CAS | 22710670PubMed |
Valore, E. V., Park, C. H., Quayle, A. J., Wiles, K. R., McCray, P. B., and Ganz, T. (1998). Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest. 101, 1633–1642.
| Human beta-defensin-1: an antimicrobial peptide of urogenital tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisV2qsrg%3D&md5=d1b26e8e5b67366427fceaccec2a9bb3CAS | 9541493PubMed |
Verberckmoes, S., Van Soom, A., Dewulf, J., De Pauw, I., and de Kruif, A. (2004). Storage of fresh bovine semen in a diluent based on the ionic composition of cauda epididymal plasma. Reproduction in domestic animals = Zuchthygiene 39, 410–416.
| Storage of fresh bovine semen in a diluent based on the ionic composition of cauda epididymal plasma.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2cnisVCisw%3D%3D&md5=a3e7ae764ed052ae22ee68a98381908dCAS | 15598230PubMed |
Whelehan, C. J., Meade, K. G., Eckersall, P. D., Young, F. J., and O’Farrelly, C. (2011). Experimental Staphylococcus aureus infection of the mammary gland induces region-specific changes in innate immune gene expression. Vet. Immunol. Immunopathol. 140, 181–189.
| Experimental Staphylococcus aureus infection of the mammary gland induces region-specific changes in innate immune gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1WltL4%3D&md5=074f105530d356ce4ebc92b97bf4ca5fCAS | 21292330PubMed |
Yang, D., Chertov, O., Bykovskaia, S. N., Chen, Q., Buffo, M. J., Shogan, J., Anderson, M., Schroder, J. M., Wang, J. M., Howard, O. M., and Oppenheim, J. J. (1999). Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528.
| Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVOhurc%3D&md5=69c03deb77c200b242afa38fd0ce3e5eCAS | 10521347PubMed |
Yang, D., Chertov, O., and Oppenheim, J. J. (2001). Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol. 69, 691–697.
| 1:CAS:528:DC%2BD3MXjvFamsbg%3D&md5=9f690b42b4f98f5ff1d7c810c1aa96fcCAS | 11358975PubMed |
Yudin, A. I., Tollner, T. L., Li, M. W., Treece, C. A., Overstreet, J. W., and Cherr, G. N. (2003). ESP13.2, a member of the beta-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process. Biol. Reprod. 69, 1118–1128.
| ESP13.2, a member of the beta-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsrw%3D&md5=9d76fdc94c14f4553d019b93a8b2e363CAS | 12773404PubMed |
Yudin, A. I., Generao, S. E., Tollner, T. L., Treece, C. A., Overstreet, J. W., and Cherr, G. N. (2005a). Beta-defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies. Biol. Reprod. 73, 1243–1252.
| Beta-defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1KqsLvN&md5=ca6f8c8ffa62ce55822ef5eac585ded2CAS | 16079310PubMed |
Yudin, A. I., Treece, C. A., Tollner, T. L., Overstreet, J. W., and Cherr, G. N. (2005b). The carbohydrate structure of hBD126, the major component of the cynomolgus Macaque sperm plasma membrane glycocalyx. J. Membr. Biol. 207, 119–129.
| The carbohydrate structure of hBD126, the major component of the cynomolgus Macaque sperm plasma membrane glycocalyx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislWksbg%3D&md5=74fd5184b2040f7ed6f1b25a0aa6ea66CAS | 16550483PubMed |
Yudin, A. I., Tollner, T. L., Treece, C. A., Kays, R., Cherr, G. N., Overstreet, J. W., and Bevins, C. L. (2008). Beta-defensin 22 is a major component of the mouse sperm glycocalyx. Reproduction 136, 753–765.
| Beta-defensin 22 is a major component of the mouse sperm glycocalyx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Crsw%3D%3D&md5=43a39b8d391e56ea0649e637b05e0883CAS | 18787081PubMed |
Zhang, L., Yu, W., He, T., Yu, J., Caffrey, R. E., Dalmasso, E. A., Fu, S., Pham, T., Mei, J., Ho, J. J., Zhang, W., Lopez, P., and Ho, D. D. (2002). Contribution of human alpha-defensin 1, 2 and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298, 995–1000.
| Contribution of human alpha-defensin 1, 2 and 3 to the anti-HIV-1 activity of CD8 antiviral factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot12rsrw%3D&md5=147721d2a2c95481235989e07e68ee60CAS | 12351674PubMed |
Zhao, Y., Diao, H., Ni, Z., Hu, S., Yu, H., and Zhang, Y. (2011). The epididymis-specific antimicrobial peptide beta-defensin 15 is required for sperm motility and male fertility in the rat (Rattus norvegicus). Cell. Mol. Life Sci. 68, 697–708.
| The epididymis-specific antimicrobial peptide beta-defensin 15 is required for sperm motility and male fertility in the rat (Rattus norvegicus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKrsrc%3D&md5=500c905bd17da6ae42cd6c16d9ce64a1CAS | 20694738PubMed |
Zhou, C. X., Zhang, Y. L., Xiao, L., Zheng, M., Leung, K. M., Chan, M. Y., Lo, P. S., Tsang, L. L., Wong, H. Y., Ho, L. S., Chung, Y. W., and Chan, H. C. (2004). An epididymis-specific beta-defensin is important for the initiation of sperm maturation. Nat. Cell Biol. 6, 458–464.
| An epididymis-specific beta-defensin is important for the initiation of sperm maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFSlt7s%3D&md5=79018a225d5e0aa72f4faed519682792CAS | 15122269PubMed |