WNT3A signalling pathway in buffalo (Bubalus bubalis) embryonic stem cells
Mohammad Zandi A , Musharifa Muzaffar B , Syed Mohmad Shah B , Ramakant Kaushik B , Manoj Kumar Singh B , Prabhat Palta B , Suresh Kumar Singla B , Radhey Sham Manik B and Manmohan Singh Chauhan B CA Department of Animal and Poultry Science and Fisheries, Agricultural Institute, Iranian Research Organisation for Science and Technology, Tehran 33535111, Iran.
B Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, India.
C Corresponding author. Email: chauhan_abtc@rediffmail.com
Reproduction, Fertility and Development 26(4) 551-561 https://doi.org/10.1071/RD13084
Submitted: 14 November 2012 Accepted: 19 March 2013 Published: 9 May 2013
Abstract
The aim of this study was to investigate the transcriptional profile and role of WNT3A signalling in maintaining buffalo embryonic stem (ES) cells in a pluripotent state and in the induction of their differentiation. ES cells were derived from embryos produced by in vitro fertilisation (iESC), parthenogenesis (pESC) and hand-made cloning (cESC). The expression of WNT3A, its receptors and intermediate signalling pathways were found to be conserved in ES cells derived from the three different sources. WNT3A was expressed in ES cells but not in embryoid bodies derived from iESC or in buffalo fetal fibroblast cells. It was revealed by real-time polymerase chain reaction analysis that following supplementation of culture medium with WNT3A (100, 200 or 400 ng mL–1) a significant increase (P < 0.05) was observed in the expression level of β-CATENIN, which indicated the activation of the canonical WNT pathway. WNT3A, in combination with exogenous fibroblast growth factor-2 and leukaemia inhibitory factor, induced proliferation of undifferentiated ES cells. Differentiation studies showed that WNT3A caused formation of scaffold-like structures and inhibition of differentiation into neuron-like cells. In conclusion, the WNT3A signalling pathway is necessary both for maintaining undifferentiated buffalo ES cells as well as for directing their differentiation.
Additional keywords: differentiation, pluripotency.
References
Anand, T., Kumar, D., Singh, M. K., Chauhan, M. S., Manik, R. S., Singla, S. K., and Palta, P. (2011). Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens. Reprod. Domest. Anim. 46, 50–58.| Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itlChuw%3D%3D&md5=5b9bc8a7cf643fb77a2de3c1450e61dcCAS | 20042025PubMed |
Anton, R., Kestler, H. A., and Kühl, M. (2007). β-catenin signalling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Lett. 581, 5247–5254.
| β-catenin signalling contributes to stemness and regulates early differentiation in murine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Krtb7F&md5=a2f54ce9080bd3429bc73227efff07d4CAS | 17950287PubMed |
Aubert, J., Dunstan, H., Chambers, I., and Smith, A. (2002). Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat. Biotechnol. 20, 1240–1245.
| Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFyjt7c%3D&md5=595fbec96fb64c3233d4a3a07c47611eCAS | 12447396PubMed |
Bafico, A., Gazit, A., Pramila, T., Finch, P. W., Yaniv, A., and Aaronson, S. A. (1999). Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signalling. J. Biol. Chem. 274, 16 180–16 187.
| Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Ons7o%3D&md5=3ac86d39867a8d0bec2d42387bcddbf4CAS |
Beildeck, M. E., Gelmann, E. P., and Byers, S. W. (2010). Cross-regulation of signalling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway. Exp. Cell Res. 316, 1763–1772.
| Cross-regulation of signalling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslCrsLs%3D&md5=f3a09f49b76b74fa3caeb6193b550c85CAS | 20138864PubMed |
Berge, D. T., Kurek, D., Blauwkamp, T., Koole, W., Maas, A., Eroglu, E., Siu, R. K., and Nusse, R. (2011). Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat. Cell Biol. 13, 1070–1075.
| Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells.Crossref | GoogleScholarGoogle Scholar |
Cai, L., Ye, Z., Zhou, B. Y., Mali, P., Zhou, C., and Cheng, L. (2007). Promoting human embryonic stem-cell renewal or differentiation by modulating Wnt signal and culture conditions. Cell Res. 17, 62–72.
| Promoting human embryonic stem-cell renewal or differentiation by modulating Wnt signal and culture conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksleqsQ%3D%3D&md5=ddbf59ed1d9cbcdf7840e8af5fbb73caCAS | 17211448PubMed |
Chauhan, M. S., Singla, S. K., Palta, P., Manik, R. S., and Madan, M. L. (1998). In vitro maturation and fertilization and subsequent development of buffalo (Bubalus bubalis) embryo: effect of oocyte quality and type of serum. Reprod. Fertil. Dev. 10, 173–177.
| In vitro maturation and fertilization and subsequent development of buffalo (Bubalus bubalis) embryo: effect of oocyte quality and type of serum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FhsFyrug%3D%3D&md5=006e21233ad42c1bea568ed89db6c18aCAS | 9801269PubMed |
Dravid, G., Ye, Z., Hammond, H., Chen, G., Pyle, A., Donovan, P., and Cheng, L. (2005). Defining the role of Wnt/β-Catenin signalling in the survival, proliferation and self-renewal of human embryonic stem cells. Stem Cells 23, 1489–1501.
| Defining the role of Wnt/β-Catenin signalling in the survival, proliferation and self-renewal of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtw%3D%3D&md5=f8bd3438736bce637ed89984370981ceCAS | 16002782PubMed |
Li, H.-X., Luo, X., Liu, R.-X., Yang, Y.-J., and Yang, G.-S. (2008). Roles of Wnt/beta-catenin signalling in adipogenic differentiation potential of adipose-derived mesenchymal stem cells. Mol. Cell. Endocrinol. 291, 116–124.
| Roles of Wnt/beta-catenin signalling in adipogenic differentiation potential of adipose-derived mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsValsbw%3D&md5=4e23ff4b208a0a959fdb8ef863a0f08fCAS | 1:CAS:528:DC%2BD1cXpsValsbw%3D&md5=4e23ff4b208a0a959fdb8ef863a0f08fCAS | 18584948PubMed |
Marson, A., Foreman, R., Chevalier, B., Bilodeau, S., Kahn, M., Young, R. A., and Jaenisch, R. (2008). Wnt signalling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 7, 132–135.
Miki, T., Yasuda, S. Y., and Kahn, M. (2011). Wnt/β-catenin signalling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem Cell Rev. 7, 836–846.
| 1:CAS:528:DC%2BC3MXhsFKlurrN&md5=871721293179dbb53bbb607bb9f8a408CAS |
| 1:CAS:528:DC%2BC3MXhsFKlurrN&md5=871721293179dbb53bbb607bb9f8a408CAS | 21603945PubMed |
Miyabayashi, T., Teo, J. L., Yamamoto, M., McMillan, M., Nguyen, C., and Kahn, M. (2007). Wnt/β-catenin/CBP signalling maintains long-term murine embryonic stem-cell pluripotency. Proc. Natl. Acad. Sci. USA 104, 5668–5673.
| Wnt/β-catenin/CBP signalling maintains long-term murine embryonic stem-cell pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Shurk%3D&md5=ae007f645c5003be648e4e7903e37aecCAS | 17372190PubMed |
Muzaffar, M., Selokar, N. L., Singh, K. P., Zandi, M., and Singh, M. K. (2012). Equivalency of buffalo (Bubalus bubalis) embryonic stem cells derived from fertilized, parthenogenetic and handmade cloned embryos. Cell. Reprogram. 14, 267–279.
| 1:CAS:528:DC%2BC38XotlCgt70%3D&md5=9a91c66cb3d344bfee4ebb134049beaeCAS | 22582863PubMed |
Reya, T., and Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature 434, 843–850.
| Wnt signalling in stem cells and cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFOmsrw%3D&md5=2ff15f4c618bc19eb1f91573e7dc5c30CAS | 15829953PubMed |
Rho, J. Y., Yu, K., Han, J. S., Chae, J. I., Koo, D. B., Yoon, H. S., Moon, S. Y., Lee, K. K., and Han, Y. M. (2006). Transcriptional profiling of the developmentally important signalling pathways in human embryonic stem cells. Hum. Reprod. 2, 405–412.
Rozen, S., and Skaletsky, H. J. (2000). Primer3 on the www for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.
| 1:CAS:528:DyaK1MXmslKqsbo%3D&md5=9a95bb5d8ad225d9b840ade2d18ceeb8CAS | 10547847PubMed |
Rossol-Allison, J., Stemmle, L. N., Swenson-Fields, K. I., Kelly, P., Fields, P. E., McCall, S. J., Casey, P. J., and Fields, T. A. (2009). Rho GTPase activity modulates Wnt3a/beta-catenin signalling. Cell. Signal. 21, 1559–1568.
| Rho GTPase activity modulates Wnt3a/beta-catenin signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKmu7jK&md5=bbdc21d6e12962ffe5dee4d48fee6846CAS | 19482078PubMed |
Sasaki, N., Okishio, K., Ui-Tei, K., Saigo, K., Toyoda, A. K., Toyoda, H., Nishimura, T., Suda, Y., Hanaoka, M., Hitoshi, S., Lkenaka, K., and Nishihara, S. (2008). Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells. J. Biol. Chem. 283, 3594–3606.
| Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyit7g%3D&md5=fa031f208315d618b2493bbabaea5a95CAS | 18024963PubMed |
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., and Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signalling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63.
| Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signalling by a pharmacological GSK-3-specific inhibitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFGm&md5=3151ad390b3afeb71277107f8d04f46bCAS | 1:CAS:528:DC%2BD2cXlsFGm&md5=3151ad390b3afeb71277107f8d04f46bCAS | 14702635PubMed |
Shah, R. A., George, A., Singh, M. K., Kumar, D., Anand, T., Chauhan, M. S., Manik, R. S., Palta, P., and Singla, S. K. (2009). Pregnancies established from handmade cloned blastocysts reconstructed using skin fibroblasts in buffalo (Bubalus bubalis). Theriogenology 71, 1215–1219.
| Pregnancies established from handmade cloned blastocysts reconstructed using skin fibroblasts in buffalo (Bubalus bubalis).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3mtVCgsQ%3D%3D&md5=28add2ffa28a3b1c66547e11ee95d99dCAS | 19168209PubMed |
Sharma, R., George, A., Kamble, N. M., Singh, K. P., Chauhan, M. S., Manik, R. S., Singla, S. K., and Palta, P. (2011). Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells. Cell. Reprogram. 13, 539–549.
| Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yktL3K&md5=8bd6ff0a2996f6da6fdc9f9fecbc79ffCAS | 1:CAS:528:DC%2BC3MXhs1yktL3K&md5=8bd6ff0a2996f6da6fdc9f9fecbc79ffCAS | 22029416PubMed |
Singla, D. K., Schneider, D. J., LeWinter, M. M., and Sobel, B. E. (2006). Wnt3a but not wnt11 supports self-renewal of embryonic stem cells. Biochem. Biophys. Res. Commun. 345, 789–795.
| Wnt3a but not wnt11 supports self-renewal of embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVertb0%3D&md5=d05a67346617bffe68ee7ef6f8b7eff8CAS | 1:CAS:528:DC%2BD28XltVertb0%3D&md5=d05a67346617bffe68ee7ef6f8b7eff8CAS | 16707109PubMed |
Takao, Y., Yokota, T., and Koide, H. (2007). β-Catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells. Biochem. Biophys. Res. Commun. 353, 699–705.
| β-Catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVahtQ%3D%3D&md5=dc91cc2f601772241500a4de4585b6d9CAS | 1:CAS:528:DC%2BD2sXmtVahtQ%3D%3D&md5=dc91cc2f601772241500a4de4585b6d9CAS | 17196549PubMed |
Tanaka, M., Jokubaitis, V., Wood, C., Wang, Y., Brouard, N., Pera, M., Hearn, P., Simmons, M., and Nakayama, N. (2009). BMP inhibition stimulates WNT-dependent generation of chondrogenic mesoderm from embryonic stem cells. Stem Cell Res. (Amst.) 3, 126–141.
| BMP inhibition stimulates WNT-dependent generation of chondrogenic mesoderm from embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGmsb%2FK&md5=e636884c6b7144c2467d3dc1ff0165eeCAS |
Vallier, L., Alexander, M., and Pedersen, R. A. (2005). Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118, 4495–4509.
| Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1WnurrP&md5=96e4660636718b3431b51f3c5be030e2CAS | 16179608PubMed |
Yamanaka, S. (2008). Pluripotency and nuclear reprogramming. Phil. Trans. R. Soc. B 363, 2079–2087.
| Pluripotency and nuclear reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVCqsr8%3D&md5=765cdf2d0d0157d9e3c51751518f5594CAS | 18375377PubMed |