THY1 is a surface marker of porcine gonocytes
Yi Zheng A B C D , Ying He A B C D , Junhui An A B C , Jinzhou Qin A B C , Yihan Wang A B C , Yaqing Zhang A B C , Xiue Tian A B C E and Wenxian Zeng A B C EA College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
B Shaanxi Center of Stem Cells Engineering and Technology, Yangling, Shaanxi, 712100, China.
C Key Lab for Biotechnology of Agriculture Ministry of China, Yangling, Shaanxi, 712100, China.
D These two authors contributed equally to this work.
E Corresponding authors. Emails: zengwnxian@hotmail.com; txe82@yahoo.com.cn
Reproduction, Fertility and Development 26(4) 533-539 https://doi.org/10.1071/RD13075
Submitted: 23 December 2012 Accepted: 17 March 2013 Published: 20 May 2013
Abstract
Gonocytes are important for the study of spermatogenesis. Identification and isolation of gonocytes has been reported in rodents but not in pigs due to a lack of molecular markers for gonocytes. The objective of this study was to identify THY1 expression in porcine testicular tissue and subsequently utilise THY1 as a marker to isolate and enrich porcine gonocytes from testes of newborn piglets. Immunohistochemical analysis showed that THY1 was expressed in gonocytes. Double-immunofluorescent analysis of THY1 and ZBTB16 indicated that THY1 and ZBTB16 were partially co-localised in gonocytes. Double-immunofluorescent analysis of both THY1 and GATA4 suggested that THY1+ cells were not Sertoli cells. Magnetic-activated cell sorting of THY1+ cells yielded a cell population with an enrichment of UCHL1+ gonocytes 3.4-fold of that of the unsorted testicular cell population. Western blot and quantitative reverse transcription–polymerase chain reaction analyses confirmed that the selected THY1+ fraction had a higher expression of UCHL1 than the unsorted cells. In conclusion, the study demonstrated that THY1 is a surface marker of gonocytes in testes of pre-pubertal boars and could be utilised to identify and isolate porcine gonocytes. The findings will also facilitate culture and manipulation of male germline stem cells.
Additional keywords: culture, pig, spermatogonial stem cell.
References
Borjigin, U., Davey, R., Hutton, K., and Herrid, M. (2010). Expression of promyelocytic leukaemia zinc-finger in ovine testis and its application in evaluating the enrichment efficiency of differential plating. Reprod. Fertil. Dev. 22, 733–742.| Expression of promyelocytic leukaemia zinc-finger in ovine testis and its application in evaluating the enrichment efficiency of differential plating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVCqtL4%3D&md5=d7515b79a5572128669207cd548fd8eaCAS | 20450825PubMed |
Buaas, F. W., Kirsh, A. L., Sharma, M., McLean, D. J., Morris, J. L., Griswold, M. D., de Rooij, D. G., and Braun, R. E. (2004). Plzf is required in adult male germ cells for stem cell self-renewal. Nat. Genet. 36, 647–652.
| Plzf is required in adult male germ cells for stem cell self-renewal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVajt7c%3D&md5=14e0fc9fcb0fe2bef99f651a64fdf25bCAS | 15156142PubMed |
Costoya, J. A., Hobbs, R. M., Barna, M., Cattoretti, G., Manova, K., Sukhwani, M., Orwig, K. E., Wolgemuth, D. J., and Pandolfi, P. P. (2004). Essential role of Plzf in maintenance of spermatogonial stem cells. Nat. Genet. 36, 653–659.
| Essential role of Plzf in maintenance of spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVajtL4%3D&md5=32177bd04fb00c4f55dab2df7769097cCAS | 15156143PubMed |
Culty, M. (2009). Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Res. C Embryo Today 87, 1–26.
| Gonocytes, the forgotten cells of the germ cell lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVKrsrY%3D&md5=076f94d5a219337bc768d2c70e449ad0CAS | 19306346PubMed |
Gaskell, T. L., Esnal, A., Robinson, L. L., Anderson, R. A., and Saunders, P. T. (2004). Immunohistochemical profiling of germ cells within the human fetal testis: identification of three subpopulations. Biol. Reprod. 71, 2012–2021.
| Immunohistochemical profiling of germ cells within the human fetal testis: identification of three subpopulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgsrrO&md5=c8aebdb40b4ea2912156c6fbc21ef368CAS | 15317684PubMed |
Goel, S., Sugimoto, M., Minami, N., Yamada, M., Kume, S., and Imai, H. (2007). Identification, isolation and in vitro culture of porcine gonocytes. Biol. Reprod. 77, 127–137.
| Identification, isolation and in vitro culture of porcine gonocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntV2gtrk%3D&md5=080a814e02085fee82ee922377679f1bCAS | 17377141PubMed |
Goel, S., Reddy, N., Mandal, S., Fujihara, M., Kim, S. M., and Imai, H. (2010). Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia. Theriogenology 74, 1221–1232.
| Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia.Crossref | GoogleScholarGoogle Scholar | 20708247PubMed |
Heidari, B., Rahmati-Ahmadabadi, M., Akhondi, M. M., Zarnani, A. H., Jeddi-Tehrani, M., Shirazi, A., Naderi, M. M., and Behzadi, B. (2012). Isolation, identification and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. J. Assist. Reprod. Genet. 29, 1029–1038.
| Isolation, identification and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers.Crossref | GoogleScholarGoogle Scholar | 22782689PubMed |
Hermann, B. P., Sukhwani, M., Lin, C. C., Sheng, Y., Tomko, J., Rodriguez, M., Shuttleworth, J. J., McFarland, D., Hobbs, R. M., Pandolfi, P. P., Schatten, G. P., and Orwig, K. E. (2007). Characterization, cryopreservation and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cells 25, 2330–2338.
| Characterization, cryopreservation and ablation of spermatogonial stem cells in adult rhesus macaques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSisLnK&md5=ff4ec3f6d0582a7abe373eba683a27b0CAS | 17585169PubMed |
Hermann, B. P., Sukhwani, M., Simorangkir, D. R., Chu, T., Plant, T. M., and Orwig, K. E. (2009). Molecular dissection of the male germ-cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Hum. Reprod. 24, 1704–1716.
| Molecular dissection of the male germ-cell lineage identifies putative spermatogonial stem cells in rhesus macaques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslGku7Y%3D&md5=86d55614334584df73440063c5064e3fCAS | 19336441PubMed |
Jiang, F. X., and Short, R. V. (1998). Different fate of primordial germ cells and gonocytes following transplantation. APMIS 106, 58–63.
| Different fate of primordial germ cells and gonocytes following transplantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7osFamsg%3D%3D&md5=666e0c24ec943edb0eeecea012a421d5CAS | 9524562PubMed |
Kanatsu-Shinohara, M., Toyokuni, S., and Shinohara, T. (2004). CD9 is a surface marker on mouse and rat male germline stem cells. Biol. Reprod. 70, 70–75.
| CD9 is a surface marker on mouse and rat male germline stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVyn&md5=ded3acd24bd0df48bd1ed14d142f7a7cCAS | 12954725PubMed |
Kon, Y., Endoh, D., and Iwanaga, T. (1999). Expression of protein gene product 9.5, a neuronal ubiquitin C-terminal hydrolase, and its developing change in Sertoli cells of mouse testis. Mol. Reprod. Dev. 54, 333–341.
| Expression of protein gene product 9.5, a neuronal ubiquitin C-terminal hydrolase, and its developing change in Sertoli cells of mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFCltLw%3D&md5=e2cae6fb1c78c751594abf70988c9d21CAS | 10542373PubMed |
Kubota, H., Avarbock, M. R., and Brinster, R. L. (2003). Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc. Natl. Acad. Sci. USA 100, 6487–6492.
| Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlyhuro%3D&md5=db82e4c375ea091d27a8053408b0c9c9CAS | 12738887PubMed |
Kuijk, E. W., Colenbrander, B., and Roelen, B. A. (2009). The effects of growth factors on in vitro-cultured porcine testicular cells. Reproduction 138, 721–731.
| The effects of growth factors on in vitro-cultured porcine testicular cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlShurrK&md5=9add9fefae8faf0cbd8942143042df7fCAS | 19633132PubMed |
Kwon, J., Mochida, K., Wang, Y. L., Sekiguchi, S., Sankai, T., Aoki, S., Ogura, A., Yoshikawa, Y., and Wada, K. (2005). Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biol. Reprod. 73, 29–35.
| Ubiquitin C-terminal hydrolase L-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1Srtro%3D&md5=cdc938c27e01c4cc3870ce298e9ed1c5CAS | 15744022PubMed |
Luo, J., Megee, S., Rathi, R., and Dobrinski, I. (2006). Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol. Reprod. Dev. 73, 1531–1540.
| Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGhtr%2FO&md5=eeef25f837ce3ffab8b61b7294c294caCAS | 16894537PubMed |
Luo, J., Megee, S., and Dobrinski, I. (2009). Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells. J. Cell. Physiol. 220, 460–468.
| Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFags7c%3D&md5=982da295520d4efa784d405828772210CAS | 19388011PubMed |
McCoard, S. A., Lunstra, D. D., Wise, T. H., and Ford, J. J. (2001). Specific staining of Sertoli cell nuclei and evaluation of Sertoli cell number and proliferative activity in Meishan and White Composite boars during the neonatal period. Biol. Reprod. 64, 689–695.
| Specific staining of Sertoli cell nuclei and evaluation of Sertoli cell number and proliferative activity in Meishan and White Composite boars during the neonatal period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVOguw%3D%3D&md5=7eea77a84433d15fac6912ef3c47063cCAS | 11159374PubMed |
McLean, D. J. (2005). Spermatogonial stem cell transplantation and testicular function. Cell Tissue Res. 322, 21–31.
| Spermatogonial stem cell transplantation and testicular function.Crossref | GoogleScholarGoogle Scholar | 16047158PubMed |
Orwig, K. E., Ryu, B. Y., Avarbock, M. R., and Brinster, R. L. (2002). Male germ-line stem-cell potential is predicted by morphology of cells in neonatal rat testes. Proc. Natl. Acad. Sci. USA 99, 11706–11711.
| Male germ-line stem-cell potential is predicted by morphology of cells in neonatal rat testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFWqsbc%3D&md5=add9c0157d4db16db5ff5b2401f09402CAS | 12185252PubMed |
Reding, S. C., Stepnoski, A. L., Cloninger, E. W., and Oatley, J. M. (2010). THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 139, 893–903.
| THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsLc%3D&md5=405468200ab78a250dc00d7d088b0700CAS | 20154176PubMed |
Rodriguez-Sosa, J. R., Dobson, H., and Hahnel, A. (2006). Isolation and transplantation of spermatogonia in sheep. Theriogenology 66, 2091–2103.
| Isolation and transplantation of spermatogonia in sheep.Crossref | GoogleScholarGoogle Scholar | 16870245PubMed |
Ryu, B. Y., Orwig, K. E., Kubota, H., Avarbock, M. R., and Brinster, R. L. (2004). Phenotypic and functional characteristics of spermatogonial stem cells in rats. Dev. Biol. 274, 158–170.
| Phenotypic and functional characteristics of spermatogonial stem cells in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVyqu70%3D&md5=ca2d9114bf6a74c5bcb3b6d9ab8cc728CAS | 15355795PubMed |
Sadri-Ardekani, H., Mizrak, S. C., van Daalen, S. K., Korver, C. M., Roepers-Gajadien, H. L., Koruji, M., Hovingh, S., de Reijke, T. M., de la Rosette, J. J., van der Veen, F., de Rooij, D. G., Repping, S., and van Pelt, A. M. (2009). Propagation of human spermatogonial stem cells in vitro. JAMA 302, 2127–2134.
| Propagation of human spermatogonial stem cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVequrfL&md5=9a902cd2fb81854636cb8b712df7b21eCAS | 19920237PubMed |
Shinohara, T., Avarbock, M. R., and Brinster, R. L. (1999). Beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 96, 5504–5509.
| Beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFCnsbg%3D&md5=ab2f2648b68bcf3fd809c6278c843617CAS | 10318913PubMed |
Shinohara, T., Avarbock, M. R., and Brinster, R. L. (2000). Functional analysis of spermatogonial stem cells in Steel and cryptorchid infertile mouse models. Dev. Biol. 220, 401–411.
| Functional analysis of spermatogonial stem cells in Steel and cryptorchid infertile mouse models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Clur0%3D&md5=16dea7e86750d620f631ce1e890704b0CAS | 10753526PubMed |
Tegelenbosch, R. A., and de Rooij, D. G. (1993). A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290, 193–200.
| A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2FkvF2isQ%3D%3D&md5=36d90c3b1b6328ced351052817d86f22CAS | 7694110PubMed |
Tokuda, M., Kadokawa, Y., Kurahashi, H., and Marunouchi, T. (2007). CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol. Reprod. 76, 130–141.
| CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1OisA%3D%3D&md5=cf45506bf2f72ef0b3869388baf56310CAS | 17035642PubMed |
von Kopylow, K., Kirchhoff, C., Jezek, D., Schulze, W., Feig, C., Primig, M., Steinkraus, V., and Spiess, A. N. (2010). Screening for biomarkers of spermatogonia within the human testis: a whole-genome approach. Hum. Reprod. 25, 1104–1112.
| Screening for biomarkers of spermatogonia within the human testis: a whole-genome approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFOjsbo%3D&md5=71c219c0f4852bedeb9de7f8b4e0b1d2CAS | 20208059PubMed |
Wrobel, K. H. (2000). Prespermatogenesis and spermatogoniogenesis in the bovine testis. Anat. Embryol. (Berl.) 202, 209–222.
| Prespermatogenesis and spermatogoniogenesis in the bovine testis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvksVKhsg%3D%3D&md5=a0749ade941904fbd21162e03f299220CAS |
Wrobel, K. H., Bickel, D., and Kujat, R. (1996). Immunohistochemical study of seminiferous epithelium in adult bovine testis using monoclonal antibodies against Ki-67 protein and proliferating cell nuclear antigen (PCNA). Cell Tissue Res. 283, 191–201.
| Immunohistochemical study of seminiferous epithelium in adult bovine testis using monoclonal antibodies against Ki-67 protein and proliferating cell nuclear antigen (PCNA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhslygu7o%3D&md5=48d4c2fac7eb7e72b33b5fd46cbd6f15CAS | 8593648PubMed |
Zhang, Z., Hill, J., Holland, M., Kurihara, Y., and Loveland, K. L. (2008). Bovine Sertoli cells colonize and form tubules in murine hosts following transplantation and grafting procedures. J. Androl. 29, 418–430.
| Bovine Sertoli cells colonize and form tubules in murine hosts following transplantation and grafting procedures.Crossref | GoogleScholarGoogle Scholar | 18326509PubMed |
Zheng, K., Wu, X., Kaestner, K. H., and Wang, P. J. (2009). The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev. Biol. 9, 38.
| The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse.Crossref | GoogleScholarGoogle Scholar | 19563657PubMed |