Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

Molecular control of oocyte meiotic arrest and resumption

Lei Liu A , Nana Kong A , Guoliang Xia A and Meijia Zhang A B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Agro-biotechnology, College of Biological Science, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, P. R. China.

B Corresponding author. Email: zmeijia@cau.edu.cn

Reproduction, Fertility and Development 25(3) 463-471 https://doi.org/10.1071/RD12310
Submitted: 29 September 2012  Accepted: 30 October 2012   Published: 7 December 2012

Abstract

Mammalian oocytes within Graafian follicles are arrested at prophase I by factors from surrounding follicle cells, and resume meiosis after an LH surge from the pituitary. The maintenance of meiotic arrest requires high levels of cAMP, resulting from G-protein-coupled receptor (GPR) 3 and/or GPR12 activation of adenylyl cyclase within the oocyte. Recent studies indicate that natriuretic peptide precursor C (NPPC), acting via its cognate receptor NPR2, increases cGMP levels in granulosa cells; the cGMP then diffuses into oocytes and inhibits phosphodiesterase 3A activity and cAMP hydrolysis. Meiotic resumption is induced by LH via the generation of epidermal growth factor (EGF)-like growth factors in mural granulosa cells that activate EGF receptors in cumulus cells. However, the exact mechanisms underlying the actions of these growth factors on oocyte maturation are unclear. Herein we summarise the regulatory functions of NPPC and NPR2 in maintaining oocyte meiotic arrest and discuss the possibility that LH could stimulate meiotic resumption by decreasing NPPC content and NPR2 activity.

Additional keywords : meiosis, natriuretic NPR2 receptor, natriuretic peptide precursor C, signal transduction.


References

Abbey, S. E., and Potter, L. R. (2003). Lysophosphatidic acid inhibits C-type natriuretic peptide activation of guanylyl cyclase-B. Endocrinology 144, 240–246.
Lysophosphatidic acid inhibits C-type natriuretic peptide activation of guanylyl cyclase-B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFSmtA%3D%3D&md5=b25225f53f22b849c6d0d41d8f7123c3CAS | 12488350PubMed |

Abbey-Hosch, S. E., Cody, A. N., and Potter, L. R. (2004). Sphingosine-1-phosphate inhibits C-type natriuretic peptide activation of guanylyl cyclase B (GC-B/NPR-B). Hypertension 43, 1103–1109.
Sphingosine-1-phosphate inhibits C-type natriuretic peptide activation of guanylyl cyclase B (GC-B/NPR-B).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Gmt7o%3D&md5=ae4dcb3299e83fa0cad2dd3950709e83CAS | 15037564PubMed |

Abbey-Hosch, S. E., Smirnov, D., and Potter, L. R. (2005). Differential regulation of NPR-B/GC-B by protein kinase C and calcium. Biochem. Pharmacol. 70, 686–694.
Differential regulation of NPR-B/GC-B by protein kinase C and calcium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFSisrY%3D&md5=09066a1eb932beb434b5cb42140e0c5bCAS | 16005434PubMed |

Adhikari, D., Zheng, W., Shen, Y., Gorre, N., Ning, Y., Halet, G., Kaldis, P., and Liu, K. (2012). Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum. Mol. Genet. 21, 2476–2484.
Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvVygtLg%3D&md5=84ae42bd2a8e47ce2bfd19f99fd8b7f5CAS | 22367880PubMed |

Andric, N., and Ascoli, M. (2006). A delayed gonadotropin-dependent and growth factor-mediated activation of the extracellular signal-regulated kinase 1/2 cascade negatively regulates aromatase expression in granulosa cells. Mol. Endocrinol. 20, 3308–3320.
A delayed gonadotropin-dependent and growth factor-mediated activation of the extracellular signal-regulated kinase 1/2 cascade negatively regulates aromatase expression in granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWks7%2FI&md5=c46b9f2e2c0c3c2f088c887bfa710dbeCAS | 16973759PubMed |

Andric, N., Thomas, M., and Ascoli, M. (2010). Transactivation of the epidermal growth factor receptor is involved in the lutropin receptor-mediated down-regulation of ovarian aromatase expression in vivo. Mol. Endocrinol. 24, 552–560.
Transactivation of the epidermal growth factor receptor is involved in the lutropin receptor-mediated down-regulation of ovarian aromatase expression in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1ehsr0%3D&md5=c2737ebb7f81537e26de729ed4d482bcCAS | 20093417PubMed |

Blobel, C. P., Carpenter, G., and Freeman, M. (2009). The role of protease activity in ErbB biology. Exp. Cell Res. 315, 671–682.
The role of protease activity in ErbB biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1alurY%3D&md5=5a8936ce53290f6e2de770470007b2d1CAS | 19013149PubMed |

Bornslaeger, E. A., and Schultz, R. M. (1985). Regulation of mouse oocyte maturation: effect of elevating cumulus cell cAMP on oocyte cAMP levels. Biol. Reprod. 33, 698–704.
Regulation of mouse oocyte maturation: effect of elevating cumulus cell cAMP on oocyte cAMP levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlsFOqtL4%3D&md5=6763b6a121bc0848df227db37daf1bd8CAS | 2996645PubMed |

Chattopadhyay, A., Vecchi, M., Ji, Q., Mernaugh, R., and Carpenter, G. (1999). The role of individual SH2 domains in mediating association of phospholipase C-gamma1 with the activated EGF receptor. J. Biol. Chem. 274, 26 091–26 097.
The role of individual SH2 domains in mediating association of phospholipase C-gamma1 with the activated EGF receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtVKmtLw%3D&md5=99e07100a0249df949390f1963b62b21CAS |

Chen, X., Zhou, B., Yan, J., Xu, B., Tai, P., Li, J., Peng, S., Zhang, M., and Xia, G. (2008). Epidermal growth factor receptor activation by protein kinase C is necessary for FSH-induced meiotic resumption in porcine cumulus-oocyte complexes. J. Endocrinol. 197, 409–419.
Epidermal growth factor receptor activation by protein kinase C is necessary for FSH-induced meiotic resumption in porcine cumulus-oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVOltLc%3D&md5=9f2b398570c63280fbc6cc2d0c91faaeCAS | 18434371PubMed |

Conti, M., Kasson, B. G., and Hsueh, A. J. (1984). Hormonal regulation of 3′,5′-adenosine monophosphate phosphodiesterases in cultured rat granulosa cells. Endocrinology 114, 2361–2368.
Hormonal regulation of 3′,5′-adenosine monophosphate phosphodiesterases in cultured rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktFOrsb4%3D&md5=99d0c9fc2721eaea9b1e8dde8279b553CAS | 6202500PubMed |

Conti, M., Andersen, C. B., Richard, F., Mehats, C., Chun, S. Y., Horner, K., Jin, C., and Tsafriri, A. (2002). Role of cyclic nucleotide signaling in oocyte maturation. Mol. Cell. Endocrinol. 187, 153–159.
Role of cyclic nucleotide signaling in oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Sqtro%3D&md5=a43366d5a8e9619a83ded4b60688aa0eCAS | 11988323PubMed |

Conti, M., Hsieh, M., Park, J. Y., and Su, Y. Q. (2006). Role of the epidermal growth factor network in ovarian follicles. Mol. Endocrinol. 20, 715–723.
Role of the epidermal growth factor network in ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Oqu78%3D&md5=f36eac7c48afc829a0d6d51d90a3d6e2CAS | 16051667PubMed |

Conti, M., Hsieh, M., Zamah, A. M., and Oh, J. S. (2012). Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol. Cell. Endocrinol. 356, 65–73.
Novel signaling mechanisms in the ovary during oocyte maturation and ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1eitrk%3D&md5=eee7d3b2a288d632dff3a1c30ddf82eeCAS | 22101318PubMed |

Davis, J. S., Weakland, L. L., West, L. A., and Farese, R. V. (1986). Luteinizing hormone stimulates the formation of inositol trisphosphate and cyclic AMP in rat granulosa cells. Evidence for phospholipase C generated second messengers in the action of luteinizing hormone. Biochem. J. 238, 597–604.
| 1:CAS:528:DyaL28XlsVKmuro%3D&md5=49a721713d361a5b17a738c7c93eba2cCAS | 3026357PubMed |

Dekel, N., Lawrence, T. S., Gilula, N. B., and Beers, W. H. (1981). Modulation of cell-to-cell communication in the cumulus–oocyte complex and the regulation of oocyte maturation by LH. Dev. Biol. 86, 356–362.
Modulation of cell-to-cell communication in the cumulus–oocyte complex and the regulation of oocyte maturation by LH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltV2js7Y%3D&md5=6b15ca08634db2af66131c5a50865296CAS | 6793428PubMed |

Dekel, N., Aberdam, E., and Sherizly, I. (1984). Spontaneous maturation in vitro of cumulus-enclosed rat oocytes is inhibited by forskolin. Biol. Reprod. 31, 244–250.
Spontaneous maturation in vitro of cumulus-enclosed rat oocytes is inhibited by forskolin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXls1OqsLw%3D&md5=f042d1be2949f1ddb69559b4dc92e693CAS | 6089921PubMed |

Downs, S. M., Cottom, J., and Hunzicker-Dunn, M. (2001). Protein kinase C and meiotic regulation in isolated mouse oocytes. Mol. Reprod. Dev. 58, 101–115.
Protein kinase C and meiotic regulation in isolated mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVWrs78%3D&md5=5cc14eae43bd93021282548513c1df4dCAS | 11144213PubMed |

Edwards, R. G. (1965). Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 208, 349–351.
Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF287lsVagsg%3D%3D&md5=d36cfc2d831a566b12d7bd4c820dd5fcCAS | 4957259PubMed |

Eppig, J. J., and Downs, S. M. (1984). Chemical signals that regulate mammalian oocyte maturation. Biol. Reprod. 30, 1–11.
Chemical signals that regulate mammalian oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXps1yjtg%3D%3D&md5=2f4b2c94992280a64d8980de1b627605CAS | 6320914PubMed |

Eppig, J. J., Ward-Bailey, P. F., and Coleman, D. L. (1985). Hypoxanthine and adenosine in murine ovarian follicular fluid: concentrations and activity in maintaining oocyte meiotic arrest. Biol. Reprod. 33, 1041–1049.
Hypoxanthine and adenosine in murine ovarian follicular fluid: concentrations and activity in maintaining oocyte meiotic arrest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvFartQ%3D%3D&md5=9610cf53a9042223a4a2a90780bec6d5CAS | 4074802PubMed |

Eppig, J. J., Vivieros, V. M., Marin-Bivens, C., and De La Fuente, R. (2004). ‘Regulation of Mammalian Oocyte Maturation.’ (Elsevier Academic Press: Amsterdam.)

Erickson, G. F., and Sorensen, R. A. (1974). In vitro maturation of mouse oocytes isolated from late, middle, and pre-antral graafian follicles. J. Exp. Zool. 190, 123–127.
In vitro maturation of mouse oocytes isolated from late, middle, and pre-antral graafian follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M%2FmtFaluw%3D%3D&md5=07a810ac34b18cda0436b1a2c4e4ccbcCAS | 4436619PubMed |

Fan, H. Y., Liu, Z., Shimada, M., Sterneck, E., Johnson, P. F., Hedrick, S. M., and Richards, J. S. (2009). MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 324, 938–941.
MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWnu74%3D&md5=072a4f14e13ba619438b6cf9fca104e9CAS | 19443782PubMed |

Flores, J. A., Aguirre, C., Sharma, O. P., and Veldhuis, J. D. (1998). Luteinizing hormone (LH) stimulates both intracellular calcium ion ([Ca2+]i) mobilization and transmembrane cation influx in single ovarian (granulosa) cells: recruitment as a cellular mechanism of LH–[Ca2+]i dose response. Endocrinology 139, 3606–3612.
Luteinizing hormone (LH) stimulates both intracellular calcium ion ([Ca2+]i) mobilization and transmembrane cation influx in single ovarian (granulosa) cells: recruitment as a cellular mechanism of LH–[Ca2+]i dose response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVKisbc%3D&md5=68bd857662f6792187140b1a421671e4CAS | 9681514PubMed |

Gougeon, A. (1996). Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr. Rev. 17, 121–155.
| 1:CAS:528:DyaK28XislGisbc%3D&md5=a2be6096042d8230aa9605f849473205CAS | 8706629PubMed |

Grøndahl, C., Breinholt, J., Wahl, P., Murray, A., Hansen, T. H., Faerge, I., Stidsen, C. E., Raun, K., and Hegele-Hartung, C. (2003). Physiology of meiosis-activating sterol: endogenous formation and mode of action. Hum. Reprod. 18, 122–129.
Physiology of meiosis-activating sterol: endogenous formation and mode of action.Crossref | GoogleScholarGoogle Scholar | 12525452PubMed |

Hinckley, M., Vaccari, S., Horner, K., Chen, R., and Conti, M. (2005). The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes. Dev. Biol. 287, 249–261.
The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Ght7fK&md5=1f0e4cc7263970cb913b5e6a5f6efcb6CAS | 16229830PubMed |

Horner, K., Livera, G., Hinckley, M., Trinh, K., Storm, D., and Conti, M. (2003). Rodent oocytes express an active adenylyl cyclase required for meiotic arrest. Dev. Biol. 258, 385–396.
Rodent oocytes express an active adenylyl cyclase required for meiotic arrest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVyrs7c%3D&md5=01dbbfdb5846bb2f43927d73cc5ed610CAS | 12798295PubMed |

Hsieh, M., Lee, D., Panigone, S., Horner, K., Chen, R., Theologis, A., Lee, D. C., Threadgill, D. W., and Conti, M. (2007). Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol. Cell. Biol. 27, 1914–1924.
Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Wgu74%3D&md5=b5011a49f8574ed8ad0c5318f5f9e442CAS | 17194751PubMed |

Hsieh, M., Thao, K., and Conti, M. (2011). Genetic dissection of epidermal growth factor receptor signaling during luteinizing hormone-induced oocyte maturation. PLoS One 6, e21574.
Genetic dissection of epidermal growth factor receptor signaling during luteinizing hormone-induced oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos12gtbc%3D&md5=202d8f3b0329265a3a3ef9604cbd4ecbCAS | 21738714PubMed |

Hubbard, C. J., and Greenwald, G. S. (1982). Cyclic nucleotides, DNA, and steroid levels in ovarian follicles and corpora lutea of the cyclic hamster. Biol. Reprod. 26, 230–240.
Cyclic nucleotides, DNA, and steroid levels in ovarian follicles and corpora lutea of the cyclic hamster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhslCltLo%3D&md5=5bf00ee607616aa90520a95990bb8575CAS | 6279189PubMed |

Hunt, P. J., Richards, A. M., Espiner, E. A., Nicholls, M. G., and Yandle, T. G. (1994). Bioactivity and metabolism of C-type natriuretic peptide in normal man. J. Clin. Endocrinol. Metab. 78, 1428–1435.
Bioactivity and metabolism of C-type natriuretic peptide in normal man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFSks7Y%3D&md5=3ebafd96bd253a2322513e4a27fd49deCAS | 8200946PubMed |

Hunzicker-Dunn, M. M. K. (2006). ‘Gonadotropin Signaling in the Ovary.’ 3rd edn. (Elsevier/Academic Press: San Diego.)

Jaffe, L. A. N. R. (2010). ‘Initiation of the Meiotic Prophase-to-Metaphase Transition in Mammalian Oocytes.’ (John Wiley & Sons: Chichester.)

Jankowski, M., Reis, A. M., Mukaddam-Daher, S., Dam, T. V., Farookhi, R., and Gutkowska, J. (1997). C-type natriuretic peptide and the guanylyl cyclase receptors in the rat ovary are modulated by the estrous cycle. Biol. Reprod. 56, 59–66.
C-type natriuretic peptide and the guanylyl cyclase receptors in the rat ovary are modulated by the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1GksA%3D%3D&md5=9bd0607af22476530ee2fdc6ed147f02CAS | 9002633PubMed |

Joost, P., and Methner, A. (2002). Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol. 3, research0063–research0063.16.
Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands.Crossref | GoogleScholarGoogle Scholar | 12429062PubMed |

Kalinowski, R. R., Berlot, C. H., Jones, T. L., Ross, L. F., Jaffe, L. A., and Mehlmann, L. M. (2004). Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway. Dev. Biol. 267, 1–13.
Maintenance of meiotic prophase arrest in vertebrate oocytes by a Gs protein-mediated pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1yiu7s%3D&md5=fb8624466f30c41c4ce19219a38e93d2CAS | 14975713PubMed |

Kawamura, K., Cheng, Y., Kawamura, N., Takae, S., Okada, A., Kawagoe, Y., Mulders, S., Terada, Y., and Hsueh, A. J. (2011). Pre-ovulatory LH/hCG surge decreases C-type natriuretic peptide secretion by ovarian granulosa cells to promote meiotic resumption of pre-ovulatory oocytes. Hum. Reprod. 26, 3094–3101.
Pre-ovulatory LH/hCG surge decreases C-type natriuretic peptide secretion by ovarian granulosa cells to promote meiotic resumption of pre-ovulatory oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGktbrI&md5=b03e63f2dc4ef42c26546e235825e9d8CAS | 21865234PubMed |

Kedem, A., Fisch, B., Garor, R., Ben-Zaken, A., Gizunterman, T., Felz, C., Ben-Haroush, A., Kravarusic, D., and Abir, R. (2011). Growth differentiating factor 9 (GDF9) and bone morphogenetic protein 15 both activate development of human primordial follicles in vitro, with seemingly more beneficial effects of GDF9. J. Clin. Endocrinol. Metab. 96, E1246–E1254.
Growth differentiating factor 9 (GDF9) and bone morphogenetic protein 15 both activate development of human primordial follicles in vitro, with seemingly more beneficial effects of GDF9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKhsbzJ&md5=db02507bea0ffd86c9f363999fa30ff5CAS | 21632818PubMed |

Killock, D. J., and Ivetic, A. (2010). The cytoplasmic domains of TNFalpha-converting enzyme (TACE/ADAM17) and L-selectin are regulated differently by p38 MAPK and PKC to promote ectodomain shedding. Biochem. J. 428, 293–304.
The cytoplasmic domains of TNFalpha-converting enzyme (TACE/ADAM17) and L-selectin are regulated differently by p38 MAPK and PKC to promote ectodomain shedding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFegsbs%3D&md5=8bc4baf6905b1de01512dd566dc0a1c2CAS | 20331435PubMed |

Kiyosu, C., Tsuji, T., Yamada, K., Kajita, S., and Kunieda, T. (2012). NPPC/NPR2 signaling is essential for oocyte meiotic arrest and cumulus oophorus formation during follicular development in the mouse ovary. Reproduction 144, 187–193.
NPPC/NPR2 signaling is essential for oocyte meiotic arrest and cumulus oophorus formation during follicular development in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Klu7fL&md5=046743fcc3a9a6e27a4dc47a72abe11aCAS | 22696190PubMed |

Kühn, B., and Gudermann, T. (1999). The luteinizing hormone receptor activates phospholipase C via preferential coupling to Gi2. Biochemistry 38, 12 490–12 498.
The luteinizing hormone receptor activates phospholipase C via preferential coupling to Gi2.Crossref | GoogleScholarGoogle Scholar |

Ledent, C., Demeestere, I., Blum, D., Petermans, J., Hamalainen, T., Smits, G., and Vassart, G. (2005). Premature ovarian aging in mice deficient for Gpr3. Proc. Natl Acad. Sci. USA 102, 8922–8926.
Premature ovarian aging in mice deficient for Gpr3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvF2qu78%3D&md5=dd58dc4286903ccda8a3a866c5eafd6bCAS | 15956199PubMed |

Liang, C. G., Su, Y. Q., Fan, H. Y., Schatten, H., and Sun, Q. Y. (2007). Mechanisms regulating oocyte meiotic resumption: roles of mitogen-activated protein kinase. Mol. Endocrinol. 21, 2037–2055.
Mechanisms regulating oocyte meiotic resumption: roles of mitogen-activated protein kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSqtb7N&md5=dbd8efdad6277b681237d2c43a7c40b1CAS | 17536005PubMed |

Licht, P., Gallo, A. B., Aggarwal, B. B., Farmer, S. W., Castelino, J. B., and Papkoff, H. (1979). Biological and binding activities of equine pituitary gonadotrophins and pregnant mare serum gonadotrophin. J. Endocrinol. 83, 311–322.
Biological and binding activities of equine pituitary gonadotrophins and pregnant mare serum gonadotrophin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXht1aitrg%3D&md5=d59e8d25386464b8dcc0d6f44d56351dCAS | 536667PubMed |

McRae, R. S., Johnston, H. M., Mihm, M., and O’Shaughnessy, P. J. (2005). Changes in mouse granulosa cell gene expression during early luteinization. Endocrinology 146, 309–317.
Changes in mouse granulosa cell gene expression during early luteinization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFGmt7fN&md5=14c42ea27ffd70cfb2304655ecd6a95aCAS | 15459113PubMed |

Mehlmann, L. M. (2005a). Oocyte-specific expression of Gpr3 is required for the maintenance of meiotic arrest in mouse oocytes. Dev. Biol. 288, 397–404.
Oocyte-specific expression of Gpr3 is required for the maintenance of meiotic arrest in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlaitrvP&md5=8bee2282ab3b3c4acb6c45456465b126CAS | 16289135PubMed |

Mehlmann, L. M. (2005b). Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 130, 791–799.
Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12nsg%3D%3D&md5=4eeaf2176604ccf4747b8e6a50a8ea4eCAS | 16322539PubMed |

Mehlmann, L. M., Jones, T. L., and Jaffe, L. A. (2002). Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte. Science 297, 1343–1345.
Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1ejtbY%3D&md5=addc1640ef251c30a8bb837bd7d8919eCAS | 12193786PubMed |

Mehlmann, L. M., Saeki, Y., Tanaka, S., Brennan, T. J., Evsikov, A. V., Pendola, F. L., Knowles, B. B., Eppig, J. J., and Jaffe, L. A. (2004). The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science 306, 1947–1950.
The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCqtbvE&md5=c06424aafb1cf38d6cb30707e26bf185CAS | 15591206PubMed |

Motlik, J., Fulka, J., and Flechon, J. E. (1986). Changes in intercellular coupling between pig oocytes and cumulus cells during maturation in vivo and in vitro. J. Reprod. Fertil. 76, 31–37.
Changes in intercellular coupling between pig oocytes and cumulus cells during maturation in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL287hsFSqtQ%3D%3D&md5=64fde4c1af0838e8044a11cd61b3c9a0CAS | 3080593PubMed |

Norris, R. P., Freudzon, L., Freudzon, M., Hand, A. R., Mehlmann, L. M., and Jaffe, L. A. (2007). A G(s)-linked receptor maintains meiotic arrest in mouse oocytes, but luteinizing hormone does not cause meiotic resumption by terminating receptor–G(s) signaling. Dev. Biol. 310, 240–249.
A G(s)-linked receptor maintains meiotic arrest in mouse oocytes, but luteinizing hormone does not cause meiotic resumption by terminating receptor–G(s) signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSksr3O&md5=db6d91ac430f2be18bfb59ead1bb2473CAS | 17850783PubMed |

Norris, R. P., Freudzon, M., Mehlmann, L. M., Cowan, A. E., Simon, A. M., Paul, D. L., Lampe, P. D., and Jaffe, L. A. (2008). Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development 135, 3229–3238.
Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCntbvP&md5=b1194b5608ca6db744d1526a2639b61cCAS | 18776144PubMed |

Norris, R. P., Ratzan, W. J., Freudzon, M., Mehlmann, L. M., Krall, J., Movsesian, M. A., Wang, H., Ke, H., Nikolaev, V. O., and Jaffe, L. A. (2009). Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development 136, 1869–1878.
Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1aktbw%3D&md5=bc3ef5c399463a9c24d944fa4d3ab5bbCAS | 19429786PubMed |

Norris, R. P., Freudzon, M., Nikolaev, V. O., and Jaffe, L. A. (2010). Epidermal growth factor receptor kinase activity is required for gap junction closure and for part of the decrease in ovarian follicle cGMP in response to LH. Reproduction 140, 655–662.
Epidermal growth factor receptor kinase activity is required for gap junction closure and for part of the decrease in ovarian follicle cGMP in response to LH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCnsbfP&md5=882c01029e03542d8e02220887463955CAS | 20826538PubMed |

Noubani, A., Farookhi, R., and Gutkowska, J. (2000). B-Type natriuretic peptide receptor expression and activity are hormonally regulated in rat ovarian cells. Endocrinology 141, 551–559.
B-Type natriuretic peptide receptor expression and activity are hormonally regulated in rat ovarian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFCmug%3D%3D&md5=6c64426ff22c49ffa348598a5739dfdaCAS | 10650935PubMed |

Ogawa, Y., Itoh, H., Yoshitake, Y., Inoue, M., Yoshimasa, T., Serikawa, T., and Nakao, K. (1994). Molecular cloning and chromosomal assignment of the mouse C-type natriuretic peptide (CNP) gene (Nppc): comparison with the human CNP gene (NPPC). Genomics 24, 383–387.
Molecular cloning and chromosomal assignment of the mouse C-type natriuretic peptide (CNP) gene (Nppc): comparison with the human CNP gene (NPPC).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1Kqsb0%3D&md5=a60d2f32f5cc7d6af3a3b99244365d4cCAS | 7698765PubMed |

Oh, J. S., Han, S. J., and Conti, M. (2010). Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption. J. Cell Biol. 188, 199–207.
Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyjs7c%3D&md5=8a85f2b1d6ff1a479be7298ea307a1cfCAS | 20083600PubMed |

Panigone, S., Hsieh, M., Fu, M., Persani, L., and Conti, M. (2008). Luteinizing hormone signaling in preovulatory follicles involves early activation of the epidermal growth factor receptor pathway. Mol. Endocrinol. 22, 924–936.
Luteinizing hormone signaling in preovulatory follicles involves early activation of the epidermal growth factor receptor pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Cnsbs%3D&md5=20a350fd1dbc582bdd0a447d0c2b288cCAS | 18187604PubMed |

Park, J. Y., Su, Y. Q., Ariga, M., Law, E., Jin, S. L., and Conti, M. (2004). EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303, 682–684.
EGF-like growth factors as mediators of LH action in the ovulatory follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVKlsg%3D%3D&md5=3cd08e1d965fb2c5268ba622152e142dCAS | 14726596PubMed |

Patwardhan, V. V., and Lanthier, A. (1984). Cyclic GMP phosphodiesterase and guanylate cyclase activities in rabbit ovaries and the effect of in-vivo stimulation with LH. J. Endocrinol. 101, 305–310.
Cyclic GMP phosphodiesterase and guanylate cyclase activities in rabbit ovaries and the effect of in-vivo stimulation with LH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktVWiu70%3D&md5=6ec95d04fa5e0c88f71ddb74d95646feCAS | 6144719PubMed |

Peng, X. R., Hsueh, A. J., LaPolt, P. S., Bjersing, L., and Ny, T. (1991). Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology 129, 3200–3207.
Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XjsVyhtg%3D%3D&md5=89c39035964eed717176eb2134e94e37CAS | 1954899PubMed |

Pincus, G., and Enzmann, E. V. (1935). The comparative behavior of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs. J. Exp. Med. 62, 665–675.
The comparative behavior of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3crjs1agtA%3D%3D&md5=fd113bb5a01e073cecfc8abbc8525b15CAS | 19870440PubMed |

Pirino, G., Wescott, M. P., and Donovan, P. J. (2009). Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle 8, 665–670.
Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFWjtbg%3D&md5=516a55698beb869397544492b8ac2be8CAS | 19223768PubMed |

Potter, L. R. (2011). Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol. Ther. 130, 71–82.
Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1GmtrY%3D&md5=d37242161c2e3f7ecde63f97f8ba9c54CAS | 21185863PubMed |

Racowsky, C., and Baldwin, K. V. (1989). In vitro and in vivo studies reveal that hamster oocyte meiotic arrest is maintained only transiently by follicular fluid, but persistently by membrana/cumulus granulosa cell contact. Dev. Biol. 134, 297–306.
In vitro and in vivo studies reveal that hamster oocyte meiotic arrest is maintained only transiently by follicular fluid, but persistently by membrana/cumulus granulosa cell contact.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1Mzgs1WksQ%3D%3D&md5=b183195adf22dd784f960a2802d272d8CAS | 2744234PubMed |

Rajagopalan-Gupta, R. M., Lamm, M. L., Mukherjee, S., Rasenick, M. M., and Hunzicker-Dunn, M. (1998). Luteinizing hormone/choriogonadotropin receptor-mediated activation of heterotrimeric guanine nucleotide binding proteins in ovarian follicular membranes. Endocrinology 139, 4547–4555.
Luteinizing hormone/choriogonadotropin receptor-mediated activation of heterotrimeric guanine nucleotide binding proteins in ovarian follicular membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFWlt7g%3D&md5=ac468780dd3c9e613a68636cd290d111CAS | 9794464PubMed |

Richard, F. J., Tsafriri, A., and Conti, M. (2001). Role of phosphodiesterase type 3A in rat oocyte maturation. Biol. Reprod. 65, 1444–1451.
Role of phosphodiesterase type 3A in rat oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVers7w%3D&md5=a3632c9047a443dc20be5c4f00aab0f3CAS | 11673261PubMed |

Richards, J. S. (2001). New signaling pathways for hormones and cyclic adenosine 3′,5′-monophosphate action in endocrine cells. Mol. Endocrinol. 15, 209–218.
New signaling pathways for hormones and cyclic adenosine 3′,5′-monophosphate action in endocrine cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpsFOltQ%3D%3D&md5=c4c0a431e47c5563ad9adaa168556656CAS | 11158328PubMed |

Richards, J. S., Russell, D. L., Ochsner, S., and Espey, L. L. (2002). Ovulation: new dimensions and new regulators of the inflammatory-like response. Annu. Rev. Physiol. 64, 69–92.
Ovulation: new dimensions and new regulators of the inflammatory-like response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFGms7Y%3D&md5=18578d3dcb76c7e5588bc3f75997575bCAS | 11826264PubMed |

Robinson, J. W., Zhang, M., Shuhaibar, L. C., Norris, R. P., Geerts, A., Wunder, F., Eppig, J. J., Potter, L. R., and Jaffe, L. A. (2012). Luteinizing hormone reduces the activity of the NPR2 guanylyl cyclase in mouse ovarian follicles, contributing to the cyclic GMP decrease that promotes resumption of meiosis in oocytes. Dev. Biol. 366, 308–316.
Luteinizing hormone reduces the activity of the NPR2 guanylyl cyclase in mouse ovarian follicles, contributing to the cyclic GMP decrease that promotes resumption of meiosis in oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms12lu7o%3D&md5=e6b49bfb797ade7b18904c1311e9799cCAS | 22546688PubMed |

Salvador, L. M., Maizels, E., Hales, D. B., Miyamoto, E., Yamamoto, H., and Hunzicker-Dunn, M. (2002). Acute signaling by the LH receptor is independent of protein kinase C activation. Endocrinology 143, 2986–2994.
Acute signaling by the LH receptor is independent of protein kinase C activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Sgt7o%3D&md5=21373279fc5c5373afe0b1e79611a678CAS | 12130564PubMed |

Schultz, R. M., Montgomery, R. R., and Belanoff, J. R. (1983). Regulation of mouse oocyte meiotic maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis. Dev. Biol. 97, 264–273.
Regulation of mouse oocyte meiotic maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktVentLs%3D&md5=8e714d923ca4559b424a26d0c2dc7f8dCAS | 6189752PubMed |

Sela-Abramovich, S., Edry, I., Galiani, D., Nevo, N., and Dekel, N. (2006). Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation. Endocrinology 147, 2280–2286.
Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFOrurg%3D&md5=b87ce93c6e3d2384b4b3ee369a0399b4CAS | 16439460PubMed |

Shitsukawa, K., Andersen, C. B., Richard, F. J., Horner, A. K., Wiersma, A., van Duin, M., and Conti, M. (2001). Cloning and characterization of the cyclic guanosine monophosphate-inhibited phosphodiesterase PDE3A expressed in mouse oocyte. Biol. Reprod. 65, 188–196.
Cloning and characterization of the cyclic guanosine monophosphate-inhibited phosphodiesterase PDE3A expressed in mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWhtbo%3D&md5=6a166d7587c6ce318cc33578ca72464fCAS | 11420239PubMed |

Solc, P., Schultz, R. M., and Motlik, J. (2010). Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells. Mol. Hum. Reprod. 16, 654–664.
Prophase I arrest and progression to metaphase I in mouse oocytes: comparison of resumption of meiosis and recovery from G2-arrest in somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFaiu73P&md5=15f644778049dedbc729626af243144fCAS | 20453035PubMed |

Sorensen, R. A., and Wassarman, P. M. (1976). Relationship between growth and meiotic maturation of the mouse oocyte. Dev. Biol. 50, 531–536.
Relationship between growth and meiotic maturation of the mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE283htFeguw%3D%3D&md5=c5f3056ae00290a3a1bf223e1f348108CAS | 1278599PubMed |

Su, Y. Q., Xia, G. L., Byskov, A. G., Fu, G. D., and Yang, C. R. (1999). Protein kinase C and intracellular calcium are involved in follicle-stimulating hormone-mediated meiotic resumption of cumulus cell-enclosed porcine oocytes in hypoxanthine-supplemented medium. Mol. Reprod. Dev. 53, 51–58.
Protein kinase C and intracellular calcium are involved in follicle-stimulating hormone-mediated meiotic resumption of cumulus cell-enclosed porcine oocytes in hypoxanthine-supplemented medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitleju7c%3D&md5=038491a2a809470448bc0fcdc7bc6ef9CAS | 10230816PubMed |

Su, Y. Q., Denegre, J. M., Wigglesworth, K., Pendola, F. L., O’Brien, M. J., and Eppig, J. J. (2003). Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex. Dev. Biol. 263, 126–138.
Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Gksrs%3D&md5=827e1a953efa0383a011f909a07f76e6CAS | 14568551PubMed |

Su, Y. Q., Nyegaard, M., Overgaard, M. T., Qiao, J., and Giudice, L. C. (2006). Participation of mitogen-activated protein kinase in luteinizing hormone-induced differential regulation of steroidogenesis and steroidogenic gene expression in mural and cumulus granulosa cells of mouse preovulatory follicles. Biol. Reprod. 75, 859–867.
Participation of mitogen-activated protein kinase in luteinizing hormone-induced differential regulation of steroidogenesis and steroidogenic gene expression in mural and cumulus granulosa cells of mouse preovulatory follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjsbfJ&md5=06bdd7239ba19cc627377793d767cf04CAS | 16943367PubMed |

Su, Y. Q., Sugiura, K., Sun, F., Pendola, J. K., Cox, G. A., Handel, M. A., Schimenti, J. C., and Eppig, J. J. (2012). MARF1 regulates essential oogenic processes in mice. Science 335, 1496–1499.
MARF1 regulates essential oogenic processes in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFWksbg%3D&md5=b286dc1e2d9dfbabc9decf2ab2329edfCAS | 22442484PubMed |

Szybek, K. (1972). In-vitro maturation of oocytes from sexually immature mice. J. Endocrinol. 54, 527–528.
In-vitro maturation of oocytes from sexually immature mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2FgsFCjsw%3D%3D&md5=4c1c248d30423d749a2a378777722071CAS | 5071376PubMed |

Törnell, J., Billig, H., and Hillensjo, T. (1990a). Resumption of rat oocyte meiosis is paralleled by a decrease in guanosine 3′,5′-cyclic monophosphate (cGMP) and is inhibited by microinjection of cGMP. Acta Physiol. Scand. 139, 511–517.
Resumption of rat oocyte meiosis is paralleled by a decrease in guanosine 3′,5′-cyclic monophosphate (cGMP) and is inhibited by microinjection of cGMP.Crossref | GoogleScholarGoogle Scholar | 2173353PubMed |

Törnell, J., Carlsson, B., and Billig, H. (1990b). Atrial natriuretic peptide inhibits spontaneous rat oocyte maturation. Endocrinology 126, 1504–1508.
Atrial natriuretic peptide inhibits spontaneous rat oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 2155102PubMed |

Tsafriri, A., and Pomerantz, S. H. (1986). Oocyte maturation inhibitor. Clin. Endocrinol. Metab. 15, 157–170.
Oocyte maturation inhibitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitF2iurk%3D&md5=b71187773f40f8662dea4bba4f986dcfCAS | 3514001PubMed |

Tsuji, T., Kiyosu, C., Akiyama, K., and Kunieda, T. (2012). CNP/NPR2 signaling maintains oocyte meiotic arrest in early antral follicles and is suppressed by EGFR-mediated signaling in preovulatory follicles. Mol. Reprod. Dev. , .
CNP/NPR2 signaling maintains oocyte meiotic arrest in early antral follicles and is suppressed by EGFR-mediated signaling in preovulatory follicles.Crossref | GoogleScholarGoogle Scholar | 22987720PubMed |

Vaccari, S., Horner, K., Mehlmann, L. M., and Conti, M. (2008). Generation of mouse oocytes defective in cAMP synthesis and degradation: endogenous cyclic AMP is essential for meiotic arrest. Dev. Biol. 316, 124–134.
Generation of mouse oocytes defective in cAMP synthesis and degradation: endogenous cyclic AMP is essential for meiotic arrest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVKkur4%3D&md5=a176c1fd24daa7fd54ca372a589b147bCAS | 18280465PubMed |

Vaccari, S., Weeks, J. L., Hsieh, M., Menniti, F. S., and Conti, M. (2009). Cyclic GMP signaling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes. Biol. Reprod. 81, 595–604.
Cyclic GMP signaling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7zE&md5=c3de2d7480a98a5e5cef31df0e5b432bCAS | 19474061PubMed |

Vanderhyden, B. C., and Macdonald, E. A. (1998). Mouse oocytes regulate granulosa cell steroidogenesis throughout follicular development. Biol. Reprod. 59, 1296–1301.
Mouse oocytes regulate granulosa cell steroidogenesis throughout follicular development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVKku78%3D&md5=c42873c44a439d9194b99e6a553d221fCAS | 9828170PubMed |

Vanderhyden, B. C., Cohen, J. N., and Morley, P. (1993). Mouse oocytes regulate granulosa cell steroidogenesis. Endocrinology 133, 423–426.
Mouse oocytes regulate granulosa cell steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsFagsLY%3D&md5=348983e9d7596c8fffb022f7889dc064CAS | 8319589PubMed |

Veldhuis, J. D. (1987). Mechanisms subserving hormone action in the ovary: role of calcium ions as assessed by steady state calcium exchange in cultured swine granulosa cells. Endocrinology 120, 445–449.
Mechanisms subserving hormone action in the ovary: role of calcium ions as assessed by steady state calcium exchange in cultured swine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtlagtr8%3D&md5=bd6291dc01b83cf5d3d07628e7fc6f82CAS | 2433124PubMed |

Wang, J., Chen, Q., Zhou, J., Wen, J., Bian, F., Li, G., Mu, X., Han, Y., Xia, G., and Zhang, M. (2012). Specific protein kinase C isoforms α and βI are involved in follicle-stimulating hormone-induced mouse follicle-enclosed oocytes meiotic resumption. PLoS One 7, e45043.
Specific protein kinase C isoforms α and βI are involved in follicle-stimulating hormone-induced mouse follicle-enclosed oocytes meiotic resumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWlsb%2FE&md5=06a27e55cca2d68a9819d9a0b55480e0CAS | 23028752PubMed |

Webb, R. J., Marshall, F., Swann, K., and Carroll, J. (2002). Follicle-stimulating hormone induces a gap junction-dependent dynamic change in [cAMP] and protein kinase a in mammalian oocytes. Dev. Biol. 246, 441–454.
Follicle-stimulating hormone induces a gap junction-dependent dynamic change in [cAMP] and protein kinase a in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlWqu7g%3D&md5=7444a1a47bfa0e5237b0cf0997ee09fdCAS | 12051828PubMed |

Wiersma, A., Hirsch, B., Tsafriri, A., Hanssen, R. G., Van de Kant, M., Kloosterboer, H. J., Conti, M., and Hsueh, A. J. (1998). Phosphodiesterase 3 inhibitors suppress oocyte maturation and consequent pregnancy without affecting ovulation and cyclicity in rodents. J. Clin. Invest. 102, 532–537.
Phosphodiesterase 3 inhibitors suppress oocyte maturation and consequent pregnancy without affecting ovulation and cyclicity in rodents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1egur4%3D&md5=8d968442f4289032c884f919620fd19dCAS | 9691090PubMed |

Yamashita, Y., Kawashima, I., Yanai, Y., Nishibori, M., Richards, J. S., and Shimada, M. (2007). Hormone-induced expression of tumor necrosis factor alpha-converting enzyme/A disintegrin and metalloprotease-17 impacts porcine cumulus cell oocyte complex expansion and meiotic maturation via ligand activation of the epidermal growth factor receptor. Endocrinology 148, 6164–6175.
Hormone-induced expression of tumor necrosis factor alpha-converting enzyme/A disintegrin and metalloprotease-17 impacts porcine cumulus cell oocyte complex expansion and meiotic maturation via ligand activation of the epidermal growth factor receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVers7vM&md5=8a6d349f1d0faa42636cd65a749f6e8bCAS | 17901238PubMed |

Zeleznik, A. (2004). ‘Dynamics of Primate Follicular Growth: A Physiological Perspective.’ 2 edn. (Elsevier Academic Press: Amsterdam.)

Zhang, M., and Xia, G. (2012). Hormonal control of mammalian oocyte meiosis at diplotene stage. Cell. Mol. Life Sci. 69, 1279–1288.
Hormonal control of mammalian oocyte meiosis at diplotene stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFajsLk%3D&md5=cca51ff78e1fe9734ff125b72d9aac7bCAS | 22045555PubMed |

Zhang, M., Xia, G., Zhou, B., and Wang, C. (2007). Gonadotropin-controlled mammal oocyte meiotic resumption. Front. Biosci. 12, 282–296.
Gonadotropin-controlled mammal oocyte meiotic resumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WgsL3M&md5=79a7f5c6e9c2bf9a8a61ce46f3b493e8CAS | 17127299PubMed |

Zhang, M., Ouyang, H., and Xia, G. (2009). The signal pathway of gonadotrophins-induced mammalian oocyte meiotic resumption. Mol. Hum. Reprod. 15, 399–409.
The signal pathway of gonadotrophins-induced mammalian oocyte meiotic resumption.Crossref | GoogleScholarGoogle Scholar | 19443606PubMed |

Zhang, M., Su, Y. Q., Sugiura, K., Xia, G., and Eppig, J. J. (2010). Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 330, 366–369.
Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OisL7P&md5=f866b33d87d62442a6349fed2d92ae49CAS | 20947764PubMed |

Zhang, M., Su, Y. Q., Sugiura, K., Wigglesworth, K., Xia, G., and Eppig, J. J. (2011). Estradiol promotes and maintains cumulus cell expression of natriuretic peptide receptor 2 (NPR2) and meiotic arrest in mouse oocytes in vitro. Endocrinology 152, 4377–4385.
Estradiol promotes and maintains cumulus cell expression of natriuretic peptide receptor 2 (NPR2) and meiotic arrest in mouse oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOrtb3J&md5=21918a7e4c23535eb34113b25ce8511cCAS | 21914782PubMed |

Zhang, W., and Colman, R. W. (2000). Conserved amino acids in metal-binding motifs of PDE3A are involved in substrate and inhibitor binding. Blood 95, 3380–3386.
| 1:CAS:528:DC%2BD3cXjsl2is7o%3D&md5=876b91cae1c79d72ee8ba7e3b66ea897CAS | 10828019PubMed |

Zhang, Y., Zhang, Z., Xu, X. Y., Li, X. S., Yu, M., Yu, A. M., Zong, Z. H., and Yu, B. Z. (2008). Protein kinase A modulates Cdc25B activity during meiotic resumption of mouse oocytes. Dev. Dyn. 237, 3777–3786.
Protein kinase A modulates Cdc25B activity during meiotic resumption of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFWhtQ%3D%3D&md5=2990af97813e22d5cf3a0a0f13e4e8fbCAS | 19035343PubMed |