Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Bovine luteal blood flow: basic mechanism and clinical relevance

Heinrich Bollwein A C , Johannes Lüttgenau A and Kathrin Herzog B
+ Author Affiliations
- Author Affiliations

A Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.

B Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany.

C Corresponding author. Email: hbollwein@vetclinics.uzh.ch

Reproduction, Fertility and Development 25(1) 71-79 https://doi.org/10.1071/RD12278
Published: 4 December 2012

Abstract

The introduction of transrectal colour Doppler sonography (CDS) has allowed the evaluation of luteal blood flow (LBF) in cows. Because appropriate angiogenesis plays a decisive role in the functioning of the corpus luteum (CL), studies on LBF may provide valuable information about the physiology and pathophysiology of the CL. Studies on cyclic cows have shown that progesterone concentrations in blood plasma can be more reliably predicted by LBF than by luteal size (LS), especially during the regression phase of the CL. In contrast with non-pregnant cows, a significant increase in LBF is seen in pregnant cows during the third week after insemination. However, because there are high interindividual variations in LBF between animals, LBF is not useful for the early diagnosis of pregnancy. Determination of LBF is more sensitive than LS for detecting the effects of acute systemic inflammation and exogenous hormones on the CL. Cows with low progesterone levels have smaller CL during the mid-luteal phase, but LBF related to LS did not differ between cows with low and high progesterone levels. In conclusion, LBF determined by CDS provides additional information about luteal function compared with LS and plasma progesterone concentrations, but its role concerning fertility in the cow is yet to be clarified.

Additional keywords : corpus luteum, cow, Doppler sonography, early pregnancy, estrous cycle, gene expression.


References

Acosta, T. J., and Miyamoto, A. (2004). Vascular control of ovarian function: ovulation, corpus luteum formation and regression. Anim. Reprod. Sci. 82-83, 127–140.
Vascular control of ovarian function: ovulation, corpus luteum formation and regression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVCit78%3D&md5=5c15e9030b8539a49b87742632352ad3CAS |

Acosta, T. J., Yoshizawa, N., Ohtani, M., and Miyamoto, A. (2002). Local changes in blood flow within the early and midcycle corpus luteum after prostaglandin F(2 alpha) injection in the cow. Biol. Reprod. 66, 651–658.
Local changes in blood flow within the early and midcycle corpus luteum after prostaglandin F(2 alpha) injection in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitb0%3D&md5=596336f9a9665c2628b87ac45d7631d7CAS |

Baber, R. J., McSweeney, M. B., Gill, R. W., Porter, R. N., Picker, R. H., Warren, P. S., Kossoff, G., and Saunders, D. M. (1988). Transvaginal pulsed Doppler ultrasound assessment of blood flow to the corpus luteum in IVF patients following embryo transfer. Br. J. Obstet. Gynaecol. 95, 1226–1230.
Transvaginal pulsed Doppler ultrasound assessment of blood flow to the corpus luteum in IVF patients following embryo transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7jsVOhuw%3D%3D&md5=2901bfbe3cf67587c11185bf9458d361CAS |

Battaglia, D. F., Bowen, J. M., Krasa, H. B., Thrun, L. A., Viguie, C., and Karsch, F. J. (1997). Endotoxin inhibits the reproductive neuroendocrine axis while stimulating adrenal steroids: a simultaneous view from hypophyseal portal and peripheral blood. Endocrinology 138, 4273–4281.
Endotoxin inhibits the reproductive neuroendocrine axis while stimulating adrenal steroids: a simultaneous view from hypophyseal portal and peripheral blood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsVWnu7c%3D&md5=0bf0d7a9335622b0eb9ebc9f3f35ec38CAS |

Beindorff, N., Honnens, A., Penno, Y., Paul, V., and Bollwein, H. (2009). Effects of human chorionic gonadotropin on luteal blood flow and progesterone secretion in cows and in vitro-microdialyzed corpora lutea. Theriogenology 72, 528–534.
Effects of human chorionic gonadotropin on luteal blood flow and progesterone secretion in cows and in vitro-microdialyzed corpora lutea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2nsrY%3D&md5=bbbd907591028ff1b63ea3f4e993a31aCAS |

Bollwein, H., Mayer, R., Weber, F., and Stolla, R. (2002). Luteal blood flow during the estrous cycle in mares. Theriogenology 57, 2043–2051.
Luteal blood flow during the estrous cycle in mares.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zisVSqsw%3D%3D&md5=452c9eb15b5d84d2404319e5de936632CAS |

Bollwein, H., Prost, D., Ulbrich, S. E., Niemann, H., and Honnens, A. (2010). Effects of a shortened preovulatory follicular phase on genital blood flow and endometrial hormone receptor concentrations in Holstein-Friesian cows. Theriogenology 73, 242–249.
Effects of a shortened preovulatory follicular phase on genital blood flow and endometrial hormone receptor concentrations in Holstein-Friesian cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrs77M&md5=4f92615b676265a3bfbde898ecb11a9dCAS |

Bourne, T. H., Hagstrom, H., Hahlin, M., Josefsson, B., Granberg, S., Hellberg, P., Hamberger, L., and Collins, W. P. (1996). Ultrasound studies of vascular and morphological changes in the human corpus luteum during the menstrual cycle. Fertil. Steril. 65, 753–758.
| 1:STN:280:DyaK283mslShtw%3D%3D&md5=2c915ec7b0f9b61a089ba485bfedfecfCAS |

Bude, R. O., Rubin, J. M., and Adler, R. S. (1994). Power versus conventional color Doppler sonography: comparison in the depiction of normal intrarenal vasculature. Radiology 192, 777–780.
| 1:STN:280:DyaK2czjs1yqsg%3D%3D&md5=f6cb7f491ba2346fb5994c75183de39bCAS |

Christenson, L. K., and Strauss, J. F. (2001). Steroidogenic acute regulatory protein: an update on its regulation and mechanism of action. Arch. Med. Res. 32, 576–586.
Steroidogenic acute regulatory protein: an update on its regulation and mechanism of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVensQ%3D%3D&md5=a9710ec8f2e29f3a3c3d0b2f6e680699CAS |

Damber, J. E., Janson, P. O., Axen, C., Selstam, G., Cederblad, A., and Ahren, K. (1981). Luteal blood flow and plasma steroids in rats with corpora lutea of different ages. Acta Endocrinol. 98, 99–105.
| 1:CAS:528:DyaL3MXltlSntLc%3D&md5=d3bb4c29f428b0ff4949f788be6309ccCAS |

Delorme, S., and Zuna, I. (1995). Quantitative Auswerteverfahren in der B-Bild- und [Farbdopplersonographie. Ultraschall. Klin. Prax. 10, 50–61.

Diskin, M. G., and Morris, D. G. (2008). Embryonic and early foetal losses in cattle and other ruminants. Reprod. Domest. Anim. 43, 260–267.
Embryonic and early foetal losses in cattle and other ruminants.Crossref | GoogleScholarGoogle Scholar |

Evtushenko, A., Iakovlev, A. I., and Shaliakin, L. A. (1985). Early postresuscitation centralization of the blood circulation. Biull. Eksp. Biol. Med. 99, 270–272.
Early postresuscitation centralization of the blood circulation.Crossref | GoogleScholarGoogle Scholar |

Ferrara, N., Gerber, H. P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat. Med. 9, 669–676.
The biology of VEGF and its receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFOnur4%3D&md5=c20dc1b32afbe799b986677f162e15d3CAS |

Folman, Y., Rosenberg, M., Herz, Z., and Davidson, M. (1973). The relationship between plasma progesterone concentration and conception in post-partum dairy cows maintained on two levels of nutrition. J. Reprod. Fertil. 34, 267–278.
The relationship between plasma progesterone concentration and conception in post-partum dairy cows maintained on two levels of nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkvFSru7w%3D&md5=97f42eb3ea8c13dd063a17189604386dCAS |

Garcia-Ispierto, I., and Lopez-Gatius, F. (2012). Effects of human chorionic gonadotropin on luteal blood flow and progesterone secretion in cows and in vitro-microdialyzed corpora lutea. Reprod. Domest. Anim. 47, 224–229.
Effects of human chorionic gonadotropin on luteal blood flow and progesterone secretion in cows and in vitro-microdialyzed corpora lutea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlOktr0%3D&md5=0fe57fee069ec054e25029c07ac84e3eCAS |

Ginther, O., and Beg, M. (2012). Dynamics of circulating progesterone concentrations before and during luteolysis: a comparison between cattle and horses. Biol. Reprod. 86, 1–12.
Dynamics of circulating progesterone concentrations before and during luteolysis: a comparison between cattle and horses.Crossref | GoogleScholarGoogle Scholar |

Ginther, O. J., and Del Campo, C. H. (1973). Vascular anatomy of the uterus and ovaries and the unilateral luteolytic effect of the uterus: areas of close apposition between the ovarian artery and vessels which contain uterine venous blood in sheep. Am. J. Vet. Res. 34, 1387–1393.
| 1:STN:280:DyaE2c%2Fit1Smtw%3D%3D&md5=ddf7b8f635874a22ea53e79f56311f61CAS |

Ginther, O. J., Silva, L. A., Araujo, R. R., and Beg, M. A. (2007). Temporal associations among pulses of 13,14-dihydro-15-keto-PGF2alpha, luteal blood flow, and luteolysis in cattle. Biol. Reprod. 76, 506–513.
Temporal associations among pulses of 13,14-dihydro-15-keto-PGF2alpha, luteal blood flow, and luteolysis in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlWhu7s%3D&md5=c7f6add1feeda9df1bc841efe62d13bcCAS |

Ginther, O. J., Araujo, R. R., Palhao, M. P., Rodrigues, B. L., and Beg, M. A. (2009). Necessity of sequential pulses of prostaglandin F2alpha for complete physiologic luteolysis in cattle. Biol. Reprod. 80, 641–648.
Necessity of sequential pulses of prostaglandin F2alpha for complete physiologic luteolysis in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVSktLg%3D&md5=4ed91ca546ad23fdfacb88f281b968c0CAS |

Glock, J. L., and Brumsted, J. R. (1995). Color flow pulsed Doppler ultrasound in diagnosing luteal phase defect. Fertil. Steril. 64, 500–504.
| 1:STN:280:DyaK2MzmvFCruw%3D%3D&md5=2a23ca21c50e9375c6dbff807a165e91CAS |

Herzog, K., Brockhan-Ludemann, M., Kaske, M., Beindorff, N., Paul, V., Niemann, H., and Bollwein, H. (2010). Luteal blood flow is a more appropriate indicator for luteal function during the bovine estrous cycle than luteal size. Theriogenology 73, 691–697.
Luteal blood flow is a more appropriate indicator for luteal function during the bovine estrous cycle than luteal size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVOhsrg%3D&md5=62a333e672d8f059de07545056478e34CAS |

Herzog, K., Voss, C., Kastelic, J., Beindorff, N., Paul, V., Niemann, H., and Bollwein, H. (2011). Luteal blood flow increases during the first three weeks of pregnancy in lactating dairy cows. Theriogenology 75, 549–554.
Luteal blood flow increases during the first three weeks of pregnancy in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M%2Fps1yqtA%3D%3D&md5=823da89142e96e34f1f8662e3e3eb32bCAS |

Herzog, K., Strueve, K., Kastelic, J., Piechotta, M., Ulbrich, S., Pfarrer, C., Shirasuna, K., Shimizu, T., Miyamoto, A., and Bollwein, H. (2012). E. coli lipopolysaccharide administration transiently suppresses luteal function and structure in dioestrous cows. Reproduction , .
E. coli lipopolysaccharide administration transiently suppresses luteal function and structure in dioestrous cows.Crossref | GoogleScholarGoogle Scholar |

Hockett, M. E., Hopkins, F. M., Lewis, M. J., Saxton, A. M., Dowlen, H. H., Oliver, S. P., and Schrick, F. N. (2000). Endocrine profiles of dairy cows following experimentally induced clinical mastitis during early lactation. Anim. Reprod. Sci. 58, 241–251.
Endocrine profiles of dairy cows following experimentally induced clinical mastitis during early lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFOitbg%3D&md5=88871453f4ea5ea41483f81b8f93dd88CAS |

Hommeida, A., Nakao, T., and Kubota, H. (2004). Luteal function and conception in lactating cows and some factors influencing luteal function after first insemination. Theriogenology 62, 217–225.
Luteal function and conception in lactating cows and some factors influencing luteal function after first insemination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Sks7k%3D&md5=0f3e6997bda0d266fe0e5233b6413f35CAS |

Humblot, P. (2001). Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality in ruminants. Theriogenology 56, 1417–1433.
Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslyqsA%3D%3D&md5=19e9eef9b618294833100cab24f65263CAS |

Janson, P. O., Damber, J. E., and Axen, C. (1981). Luteal blood flow and progesterone secretion in pseudopregnant rabbits. J. Reprod. Fertil. 63, 491–497.
Luteal blood flow and progesterone secretion in pseudopregnant rabbits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVWnu7Y%3D&md5=5b697d6a55c35a44f272e535aeca1d36CAS |

Kastelic, J. P., Curran, S., and Ginther, O. J. (1989). Accuracy of ultrasonography for pregnancy diagnosis on days 10 to 22 in heifers. Theriogenology 31, 813–820.
Accuracy of ultrasonography for pregnancy diagnosis on days 10 to 22 in heifers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFelsg%3D%3D&md5=0347b0ae43ef5b68dcbd54777b53a6a5CAS |

Kastelic, J. P., Bergfelt, D. R., and Ginther, O. J. (1990a). Relationship between ultrasonic assesment of the corpus luteum and plasma progesterone concentration in heifers. Theriogenology 33, 1269–1278.
Relationship between ultrasonic assesment of the corpus luteum and plasma progesterone concentration in heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVSrsro%3D&md5=d744c1544a42471885996f0c1505e0edCAS |

Kastelic, J. P., Pierson, R. A., and Ginther, O. J. (1990b). Ultrasonic morphology of corpora lutea and central luteal cavities during the estrous cycle and early pregnancy in heifers. Theriogenology 34, 487–498.
Ultrasonic morphology of corpora lutea and central luteal cavities during the estrous cycle and early pregnancy in heifers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFKiug%3D%3D&md5=b029e3a95b0bce23e0b15a94b5103cb9CAS |

Kawakami, S., Shida, T., Mutoh, M., Kohmoto, H., and Onhchi, T. (1995). Relation between luteal regression and so-called counter current mechanisms in the cow: verification from PGF2α concentrations in arterial, uterine venous and jugular venous blood following PGF2α loading. J. Reprod. Dev. 41, 219–223.
Relation between luteal regression and so-called counter current mechanisms in the cow: verification from PGF concentrations in arterial, uterine venous and jugular venous blood following PGF loading.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisV2nsb4%3D&md5=16c704266bd6ea3f3d7191f95828ae09CAS |

Kujjo, L. L., Bosu, W. T., and Perez, G. I. (1995). Opioid peptides involvement in endotoxin-induced suppression of LH secretion in ovariectomized Holstein heifers. Reprod. Toxicol. 9, 169–174.
Opioid peptides involvement in endotoxin-induced suppression of LH secretion in ovariectomized Holstein heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksFOhu74%3D&md5=be2deae02f15b15f74b934eacb3e000dCAS |

Lamming, G. E., Darwash, A. O., and Back, H. L. (1989). Corpus luteum function in dairy cows and embryo mortality. J. Reprod. Fertil. Suppl. 37, 245–252.
| 1:CAS:528:DyaL1MXitVGqu74%3D&md5=4f79de14a9e94d4a08edb4b6ef5e985dCAS |

Lei, Z. M., Chegini, N., and Rao, C. V. (1991). Quantitative cell composition of human and bovine corpora lutea from various reproductive states. Biol. Reprod. 44, 1148–1156.
Quantitative cell composition of human and bovine corpora lutea from various reproductive states.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3MzjvVahtw%3D%3D&md5=5fbcfcb1d11ce943d4d90a070ca0a6f0CAS |

Lopez-Gatius, F. (2003). Is fertility declining in dairy cattle? A retrospective study in northeastern Spain. Theriogenology 60, 89–99.
| 1:STN:280:DC%2BD3s7gvVyluw%3D%3D&md5=dccfa81089a304c9d38ad66ef0f1e360CAS |

Lucy, M. C. (2001). Reproductive loss in high-producing dairy cattle: where will it end? J. Dairy Sci. 84, 1277–1293.
Reproductive loss in high-producing dairy cattle: where will it end?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlKhu7Y%3D&md5=cb6b19cd06ce5cb9d19272f5a5918b6fCAS |

Lüttgenau, J., Ulbrich, S. E., Beindorff, N., Honnens, A., Herzog, K., and Bollwein, H. (2011). Low plasma progesterone concentrations are accompanied by reduced luteal blood flow and increased size of the dominant follicle in dairy cows. Anim. Reprod. Sci. 125, 20–29.

Mann, G. E., and Lamming, G. E. (2001). Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows. Reproduction 121, 175–180.
Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslaqsw%3D%3D&md5=3f0567b0c59262e5d143be51dd72c736CAS |

Mann, G. E., Lamming, G. E., Robinson, R. S., and Wathes, D. C. (1999). The regulation of interferon-tau production and uterine hormone receptors during early pregnancy. J. Reprod. Fertil. Suppl. 54, 317–328.
| 1:CAS:528:DyaK1MXnslSitrc%3D&md5=d2c1c05806f84f83d0abf86bcf180f28CAS |

Miyamoto, A., Shirasuna, K., and Sasahara, K. (2009). Local regulation of corpus luteum development and regression in the cow: Impact of angiogenic and vasoactive factors. Domest. Anim. Endocrinol. 37, 159–169.
Local regulation of corpus luteum development and regression in the cow: Impact of angiogenic and vasoactive factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKgt77O&md5=fa0f75217d655695a871ac1915fa6adaCAS |

Miyamoto, A., Shirasuna, K., Shimizu, T., Bollwein, H., and Schams, D. (2010). Regulation of corpus luteum development and maintenance: specific roles of angiogenesis and action of prostaglandin F2alpha. Soc. Reprod. Fertil. Suppl. 67, 289–304.
| 1:STN:280:DC%2BC3MnosFemsg%3D%3D&md5=5a382338489cfa8ad8074c462303efddCAS |

Miyazaki, T., Tanaka, M., Miyakoshi, K., Minegishi, K., Kasai, K., and Yoshimura, Y. (1998). Power and colour Doppler ultrasonography for the evaluation of the vasculature of the human corpus luteum. Hum. Reprod. 13, 2836–2841.
Power and colour Doppler ultrasonography for the evaluation of the vasculature of the human corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FhvFertQ%3D%3D&md5=62f776252fc8588f2e4d0cb7190b433aCAS |

Moore, D. A., Cullor, J. S., Bondurant, R. H., and Sischo, W. M. (1991). Preliminary field evidence for the association of clinical mastitis with altered interestrus intervals in dairy cattle. Theriogenology 36, 257–265.
Preliminary field evidence for the association of clinical mastitis with altered interestrus intervals in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFOlsw%3D%3D&md5=3e709ab8378b046a7643ed7e67df171aCAS |

Peter, A. T., Bosu, W. T., and DeDecker, R. J. (1989). Suppression of preovulatory luteinizing hormone surges in heifers after intrauterine infusions of Escherichia coli endotoxin. Am. J. Vet. Res. 50, 368–373.
| 1:CAS:528:DyaL1MXhsV2mtLw%3D&md5=71979aa835f1664d4398dab23ab3f190CAS |

Rekawiecki, R., Kowalik, M. K., Slonina, D., and Kotwica, J. (2008). Regulation of progesterone synthesis and action in bovine corpus luteum. J. Physiol. Pharmacol. 59, 75–89.

Reynolds, L. P., Killilea, S. D., and Redmer, D. A. (1992). Angiogenesis in the female reproductive system. FASEB J. 6, 886–892.
| 1:STN:280:DyaK387lsFCrsw%3D%3D&md5=ab136bb35a8c881821437296166f38feCAS |

Reynolds, L. P., Grazul-Bilska, A. T., and Redmer, D. A. (2000). Angiogenesis in the corpus luteum. Endocrine 12, 1–9.
Angiogenesis in the corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlKrurY%3D&md5=b21f84c704f844e799d1d0d2891ac840CAS |

Rhinehart, J. D., Starbuck-Clemmer, M. J., Flores, J. A., Milvae, R. A., Yao, J., Poole, D. H., and Inskeep, E. K. (2009). Low peripheral progesterone and late embryonic/early fetal loss in suckled beef and lactating dairy cows. Theriogenology 71, 480–490.
Low peripheral progesterone and late embryonic/early fetal loss in suckled beef and lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFChtLzI&md5=358abec865869d08724c67f203853376CAS |

Ribadu, A. Y., Ward, W. R., and Dobson, H. (1994). Comparative evaluation of ovarian structures in cattle by palpation per rectum, ultrasonography and plasma progesterone concentration. Vet. Rec. 135, 452–457.
Comparative evaluation of ovarian structures in cattle by palpation per rectum, ultrasonography and plasma progesterone concentration.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7mslOksw%3D%3D&md5=f41d3ea9a6528e7c5d5d536ad3ed6271CAS |

Richardson, B., Korkola, S., Asano, H., Challis, J., Polk, D., and Fraser, M. (1996). Regional blood flow and the endocrine response to sustained hypoxemia in the preterm ovine fetus. Pediatr. Res. 40, 337–343.
Regional blood flow and the endocrine response to sustained hypoxemia in the preterm ovine fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltVajs7g%3D&md5=61aaf1681fdd6b867b772f3cc1006534CAS |

Roberts, R. M., Farin, C. E., and Cross, J. C. (1990). Trophoblast proteins and maternal recognition of pregnancy. Oxf. Rev. Reprod. Biol. 12, 147–180.
| 1:STN:280:DyaK3M7msVSguw%3D%3D&md5=ed4a05d77e4bef0c9b421210dc2065ddCAS |

Roberts, R. M., Chen, Y., Ezashi, T., and Walker, A. M. (2008). Interferons and the maternal–conceptus dialog in mammals. Semin. Cell Dev. Biol. 19, 170–177.
Interferons and the maternal–conceptus dialog in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGrsrg%3D&md5=c37e914d94d0c4a41985e3d15c76c11bCAS |

Rosiansky-Sultan, M., Klipper, E., Spanel-Borowski, K., and Meidan, R. (2006). Inverse relationship between nitric oxide synthases and endothelin-1 synthesis in bovine corpus luteum: interactions at the level of luteal endothelial cell. Endocrinology 147, 5228–5235.
Inverse relationship between nitric oxide synthases and endothelin-1 synthesis in bovine corpus luteum: interactions at the level of luteal endothelial cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgsLrP&md5=8acce5b400b3df714d1ceb5a76ca342cCAS |

Santos, J. E., Thatcher, W. W., Chebel, R. C., Cerri, R. L., and Galvao, K. N. (2004). The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Anim. Reprod. Sci. 82-83, 513–535.
The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVCitb4%3D&md5=4bdd4512adae7200ce53d4c56eef7357CAS |

Schams, D., and Berisha, B. (2004). Regulation of corpus luteum function in cattle: an overview. Reprod. Domest. Anim. 39, 241–251.
Regulation of corpus luteum function in cattle: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVyltb8%3D&md5=6f926630a5b2947db695e78f27fbfc50CAS |

Sheldon, I. M., Price, S. B., Cronin, J., Gilbert, R. O., and Gadsby, J. E. (2009). Mechanisms of infertility associated with clinical and subclinical endometritis in high producing dairy cattle. Reprod. Domest. Anim. 44, 1–9.
Mechanisms of infertility associated with clinical and subclinical endometritis in high producing dairy cattle.Crossref | GoogleScholarGoogle Scholar |

Shelton, K., Gayerie De Abreu, M. F., Hunter, M. G., Parkinson, T. J., and Lamming, G. E. (1990). Luteal inadequacy during the early luteal phase of subfertile cows. J. Reprod. Fertil. 90, 1–10.
Luteal inadequacy during the early luteal phase of subfertile cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXjs1Wmsg%3D%3D&md5=8b09167ad231dfd533f67b2d7b0bbf9cCAS |

Shirasuna, K., Asaoka, H., Acosta, T. J., Wijayagunawardane, M. P. B., Ohtani, M., Hayashi, M., Matsui, M., and Miyamoto, A. (2004). Real-time relationships in intraluteal release among prostaglandin F2a, endothelin-1, and angiotensin II during spontaneous luteolysis in the cow. Biol. Reprod. 71, 1706–1711.
Real-time relationships in intraluteal release among prostaglandin F2a, endothelin-1, and angiotensin II during spontaneous luteolysis in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1yitrc%3D&md5=bbf1e3ae80bac042d5431cf6904a00e5CAS |

Shirasuna, K., Nitta, A., Sineenard, J., Shimizu, T., Bollwein, H., and Miyamoto, A. (2012). Vascular and immune regulation of corpus luteum development, maintenance, and regression in the cow. Domest. Anim. Endocrinol. 43, 198–211.
Vascular and immune regulation of corpus luteum development, maintenance, and regression in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVGktb8%3D&md5=df7ef1ba864c1908438690041ed2d6fcCAS |

Shrestha, H. K., Pugliesi, G., Beg, M. A., and Ginther, O. J. (2011). Role of luteinizing hormone in changes in concentrations of progesterone and luteal blood flow during the hours of a simulated pulse of 13,14-dihydro-15-keto-prostaglandin F(2alpha) (PGFM) in heifers. Biol. Reprod. 85, 482–489.
Role of luteinizing hormone in changes in concentrations of progesterone and luteal blood flow during the hours of a simulated pulse of 13,14-dihydro-15-keto-prostaglandin F(2alpha) (PGFM) in heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gtLrK&md5=c34da82d3f011862afa5238b0c6e984dCAS |

Stocco, C., Telleria, C., and Gibori, G. (2007). The molecular control of corpus luteum formation, function, and regression. Endocr. Rev. 28, 117–149.
The molecular control of corpus luteum formation, function, and regression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFCgsrc%3D&md5=8e1a123bdd1c6e80e7ec5a5b70f7fcd9CAS |

Takeuchi, Y., Kikusui, T., Kizumi, O., Ohnishi, H., and Mori, Y. (1997). Pathophysiological changes evoked by lipopolysaccharide administration in goats. J. Vet. Med. Sci. 59, 125–127.
Pathophysiological changes evoked by lipopolysaccharide administration in goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit12ltr0%3D&md5=d45ae21238cc69b52f89ea7fb21a0ea9CAS |

Tamura, H., Takasaki, A., Taniguchi, K., Matsuoka, A., Shimamura, K., and Sugino, N. (2008). Changes in blood-flow impedance of the human corpus luteum throughout the luteal phase and during early pregnancy. Fertil. Steril. 90, 2334–2339.
Changes in blood-flow impedance of the human corpus luteum throughout the luteal phase and during early pregnancy.Crossref | GoogleScholarGoogle Scholar |

Thatcher, W. W., Guzeloglu, A., Mattos, R., Binelli, M., Hansen, T. R., and Pru, J. K. (2001). Uterine–conceptus interactions and reproductive failure in cattle. Theriogenology 56, 1435–1450.
Uterine–conceptus interactions and reproductive failure in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslyqsQ%3D%3D&md5=e5f50c8f5f7e33978abe860465ab0878CAS |

Tinkanen, H. (1994). The role of vascularisation of the corpus luteum in the short luteal phase studied by Doppler ultrasound. Acta Obstet. Gynecol. Scand. 73, 321–323.
The role of vascularisation of the corpus luteum in the short luteal phase studied by Doppler ultrasound.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3ht1Ontw%3D%3D&md5=ed02747ed2b09d359a2e19b5ec002e6eCAS |

Tom, J. W., Pierson, R. A., and Adams, G. P. (1998). Quantitative echotexture analysis of bovine corpora lutea. Theriogenology 49, 1345–1352.
Quantitative echotexture analysis of bovine corpora lutea.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ps1Khsg%3D%3D&md5=21827e72650a0e9372309f2334beb671CAS |

Utt, M. D., Johnson, G. L., and Beal, W. E. (2009). The evaluation of corpus luteum blood flow using color-flow Doppler ultrasound for early pregnancy diagnosis in bovine embryo recipients. Theriogenology 71, 707–715.
The evaluation of corpus luteum blood flow using color-flow Doppler ultrasound for early pregnancy diagnosis in bovine embryo recipients.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2Fpt1yrsg%3D%3D&md5=6189de9f2fa56d092cc951537d67d94cCAS |

Van Cleeff, J., Drost, M., and Thatcher, W. W. (1991). Effects of postinsemination progesterone supplementation on fertility and subsequent estrous responses of dairy heifers. Theriogenology 36, 795–807.
Effects of postinsemination progesterone supplementation on fertility and subsequent estrous responses of dairy heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XjsVOntw%3D%3D&md5=c64a20512944545042a077f4922372d2CAS |

Vasconcelos, J. L., Sartori, R., Oliveira, H. N., Guenther, J. G., and Wiltbank, M. C. (2001). Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate. Theriogenology 56, 307–314.
Reduction in size of the ovulatory follicle reduces subsequent luteal size and pregnancy rate.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mvjt1ymtA%3D%3D&md5=761216004a5ea34bd80eeb7bfdad288dCAS |

Vonnahme, K. A., Redmer, D. A., Borowczyk, E., Bilski, J. J., Luther, J. S., Johnson, M. L., Reynolds, L. P., and Grazul-Bilska, A. T. (2006). Vascular composition, apoptosis, and expression of angiogenic factors in the corpus luteum during prostaglandin F2alpha-induced regression in sheep. Reproduction 131, 1115–1126.
Vascular composition, apoptosis, and expression of angiogenic factors in the corpus luteum during prostaglandin F2alpha-induced regression in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1ehurY%3D&md5=93fdf31fc71d57418e27d20f1bb85783CAS |

Wiedlocha, A., and Sorensen, V. (2004). Signaling, internalization, and intracellular activity of fibroblast growth factor. Curr. Top. Microbiol. Immunol. 286, 45–79.
| 1:CAS:528:DC%2BD2cXnslKmtrs%3D&md5=fdc1978526d96775303d1283dfc48751CAS |

Williams, E. J., Fischer, D. P., Noakes, D. E., England, G. C., Rycroft, A., Dobson, H., and Sheldon, I. M. (2007). The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology 68, 549–559.
The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlWqu7w%3D&md5=e3b13d5a2e6774c703a7ffda673286afCAS |

Wolf, E., Arnold, G. J., Bauersachs, S., Beier, H. M., Blum, H., Einspanier, R., Frohlich, T., Herrler, A., Hiendleder, S., Kolle, S., Prelle, K., Reichenbach, H. D., Stojkovic, M., Wenigerkind, H., and Sinowatz, F. (2003). Embryo–maternal communication in bovine: strategies for deciphering a complex cross-talk. Reprod. Domest. Anim. 38, 276–289.
Embryo–maternal communication in bovine: strategies for deciphering a complex cross-talk.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svis1Srtg%3D%3D&md5=ebbb508a32d28432f92e7a24d62fbb17CAS |

Yamashita, H., Kamada, D., Shirasuna, K., Matsui, M., Shimizu, T., Kida, K., Berisha, B., Schams, D., and Miyamoto, A. (2008). Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Mol. Reprod. Dev. 75, 1449–1456.
Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVGjsb4%3D&md5=3858004646614f6a625e410eab3eaea1CAS |