Identification of cortical germ cells in adult ovaries from three phyllostomid bats: Artibeus jamaicensis, Glossophaga soricina and Sturnira lilium
Nivia Rocio Antonio-Rubio A , Tania Janeth Porras-Gómez A and Norma Moreno-Mendoza A BA Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México.
B Corresponding author. Email: angelica@biomedicas.unam.mx
Reproduction, Fertility and Development 25(5) 825-836 https://doi.org/10.1071/RD12126
Submitted: 19 April 2012 Accepted: 12 July 2012 Published: 4 September 2012
Abstract
It is generally considered that, in mammals, the ovary is endowed with a finite number of oocytes at the time of birth. However, studies concerning rodents, lemurs and humans suggest the existence of stem cells from the germline that may be involved in germ-cell renewal, maintaining postnatal follicle development. This type of work on wild species is scarce; therefore the objective of this study was to determine ovarian morphology and the presence of progenitor cells from the germline of three species of phyllostomid bats (Artibeus jamaicensis, Glossophaga soricina and Sturnira lilium). The morphological characteristics of the ovaries and the expression of specific markers of germline cells, stem cells and proliferation cells were analysed. The morphology of the ovaries of the three bat species was similar. A polarised ovary with follicles at different stages of development and groups of cortical cells similar to primordial germ cells were observed. Immunofluorescent analysis showed that these cortical cells express germline, stem-cell and proliferative markers, indicating the identification of germ cells that could maintain pluripotency, as well as being mitotically active. This suggests that in the adult ovary of phyllostomid bats there may be a mechanism for the self-renewal of the germline.
Additional keywords: cell proliferation, follicle, immunofluorescence, neo-oogenesis.
References
Adams, I. R., and McLaren, A. (2002). Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129, 1155–1164.| 1:CAS:528:DC%2BD38XisVWrur0%3D&md5=27632b3b82f925e3fbb2086db52e048bCAS | 11874911PubMed |
Arita, H. T., and Ceballos, G. (1997). The mammals of Mexico: distribution and conservation status. Revista Mexicana de Mastozoología. 2, 33–71.
Bleier, W. J., and Ehteshami, M. (1981). Ovulation following unilateral ovariectomy in the California leaf-nosed bat (Macrotus californicus). J. Reprod. Fertil. 63, 181–183.
| Ovulation following unilateral ovariectomy in the California leaf-nosed bat (Macrotus californicus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL38%2FhtVCjug%3D%3D&md5=87a7ca69bd7cac6b299f978f39cbbdceCAS | 7277318PubMed |
Bortvin, A., Goodheart, M., Liao, M., and Page, D. C. (2004). Dppa3/Pgc7/stella is a maternal factor and is not required for germ-cell specification in mice. BMC Dev. Biol. 4, 2.
| Dppa3/Pgc7/stella is a maternal factor and is not required for germ-cell specification in mice.Crossref | GoogleScholarGoogle Scholar | 15018652PubMed |
Bowles, J., Knight, D., Smith, C., Wilhelm, D., Richman, J., Mamiya, S., Yashiro, K., Chawengsaksophak, K., Wilson, M. J., Rossant, J., Hamada, H., and Koopman, P. (2006). Retinoid signalling determines germ-cell fate in mice. Science 312, 596–600.
| Retinoid signalling determines germ-cell fate in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVGktbY%3D&md5=a549f3e71000eeb871316ccae97aeafbCAS | 16574820PubMed |
Buehr, M. (1997). The primordial germ cells of mammals: some current perspectives. Exp. Cell Res. 232, 194–207.
| The primordial germ cells of mammals: some current perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFeju78%3D&md5=f11eda3278d0c77a27c1e64031acd68dCAS | 9168794PubMed |
Buehr, M., McLaren, A., Bartley, A., and Darling, S. (1993). Proliferation and migration of primordial germ cells in We/We mouse embryos. Dev. Dyn. 198, 182–189.
| Proliferation and migration of primordial germ cells in We/We mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7osVSisQ%3D%3D&md5=6c92507eeacfb53f812186ed51a62ac4CAS | 8136523PubMed |
Bukovsky, A., Keenan, J. A., Caudle, M. R., Wimalasena, J., Upadhyaya, N. B., and Van Meter, S. E. (1995). Immunohistochemical studies of the adult human ovary: possible contribution of immune and epithelial factors to folliculogenesis. Am. J. Reprod. Immunol. 33, 323–340.
| 1:STN:280:DyaK28%2FjslOrsA%3D%3D&md5=a7750bd38be472e7786e2eb65b8d3f5fCAS | 7546251PubMed |
Bukovsky, A., Michael, R. C., Svetlikova, M., and Upadhyaya, N. B. (2004). Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod. Biol. Endocrinol. 2, 1–30.
| Origin of germ cells and formation of new primary follicles in adult human ovaries.Crossref | GoogleScholarGoogle Scholar |
Bukovsky, A., Caudle, M. R., Gupta, S. K., Svetlikova, M., Selleck-White, R., Ayala, A. M., and Dominguez, R. (2008). Mammalian neo-oogenesis and expression of meiosis-specific protein SCP3 in adult human and monkey ovaries. Cell Cycle 7, 683–686.
| Mammalian neo-oogenesis and expression of meiosis-specific protein SCP3 in adult human and monkey ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFensbk%3D&md5=c9cd80720ae6acb641cd21cb4d8b3302CAS | 18256545PubMed |
Castrillon, D. H., Quade, B. J., Wang, T. H., Quigley, C., and Crum, C. P. (2000). The human VASA gene is specifically expressed in the germ-cell lineage. Proc. Natl. Acad. Sci. USA 97, 9585–9590.
| The human VASA gene is specifically expressed in the germ-cell lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVensbc%3D&md5=655e5c152c80e0c2ab6c24de4fa34cbfCAS | 10920202PubMed |
Childs, A. J., Cowan, G., Kinnell, H. L., Anderson, R. A., and Saunders, P. T. K. (2011). Retinoic acid signalling and the control of meiotic entry in the human fetal gonad. PLoS ONE 6, e20249.
| Retinoic acid signalling and the control of meiotic entry in the human fetal gonad.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntl2iurc%3D&md5=7bd9f5940b6f361aff466b0b31a4f420CAS | 21674038PubMed |
David, G. F., Anand, K. T. C., and Baker, T. G. (1974). Uptake of tritiated thymidine by primordial germinal cells in the ovaries of the adult slender loris. J. Reprod. Fertil. 41, 447–451.
| Uptake of tritiated thymidine by primordial germinal cells in the ovaries of the adult slender loris.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M7hs1KjtA%3D%3D&md5=40cb45d3bb379084542c4b1141ab9a9eCAS | 4476797PubMed |
Duke, K. L. (1967). Ovogenetic activity of the fetal-type in the ovary of the adult slow loris, Nycticebus cougang. Folia Primatol. (Basel) 7, 150–154.
| Ovogenetic activity of the fetal-type in the ovary of the adult slow loris, Nycticebus cougang.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1c%2FhsF2qsA%3D%3D&md5=fad00a42ba51be70ca193813814d152bCAS |
Geyer, C. B., Saba, R., Kato, Y., Anderson, A. J., Chappell, V. K., Saga, Y., and Eddy, E. M. (2011). Rhox13 is translated in pre-meiotic germ cells in male and female mice and is regulated by NANOS2 in the male. Biol. Reprod. , .
| Rhox13 is translated in pre-meiotic germ cells in male and female mice and is regulated by NANOS2 in the male.Crossref | GoogleScholarGoogle Scholar |
Høyer, P. E., Byskov, A. G., and Møllgård, K. (2005). Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol. Cell. Endocrinol. 234, 1–10.
| Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries.Crossref | GoogleScholarGoogle Scholar | 15836947PubMed |
IUCN (2011). 2011 database: IUCN Red List of Threatened Species [internet]. Version 2011.2 Downloaded on 23 March 2012. Available at http://www.iucnredlist.org [Verified 1 August 2012].
Johnson, J., Canning, J., Kaneko, T., Pru, J. K., and Tilly, J. L. (2004). Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145–150.
| Germline stem cells and follicular renewal in the postnatal mammalian ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFClsro%3D&md5=144622011e8ae99464879150c2290901CAS | 15014492PubMed |
Kehler, J., Tolkunova, E., Koschorz, B., Pesce, M., Gentile, L., Boiani, M., Lomelí, H., Nagy, A., McLaughlin, K. J., Schöler, H. R., and Tomilin, A. (2004). Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 1078–1083.
| Oct4 is required for primordial germ cell survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFems7w%3D&md5=69721ff5cadfc5666133ff3ada079a7aCAS | 15486564PubMed |
Kerr, C. L., Hill, C. M., Blumenthal, P. D., and Gearhart, J. D. (2007). Expression of pluripotent stem-cell markers in the human fetal ovary. Hum. Reprod. , .
| Expression of pluripotent stem-cell markers in the human fetal ovary.Crossref | GoogleScholarGoogle Scholar |
Komar, C. M., Zacharachis-Jutz, F., Cretekos, C. J., Behringer, R. R., and Rasweiler, J. J. I. V. (2007). Polarized ovaries of the long-tongued bat, Glossophaga soricina: a novel model for studying ovarian development, folliculogenesis and ovulation. Anat. Rec. 290, 1439–1448.
| Polarized ovaries of the long-tongued bat, Glossophaga soricina: a novel model for studying ovarian development, folliculogenesis and ovulation.Crossref | GoogleScholarGoogle Scholar |
Lee, J., Iwai, T., Yokota, T., and Yamashita, M. (2003). Temporally- and spatially-selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J. Cell Sci. 116, 2781–2790.
| Temporally- and spatially-selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFamtbY%3D&md5=af8b398e0d1ce87168af8f7bc0db0da0CAS | 12759374PubMed |
Liu, Y., Wu, C., Lyu, Q., Yang, D., Albertini, D. F., Keefe, D. L., and Liu, L. (2007). Germline stem cells and neo-oogenesis in the adult human ovary. Dev. Biol. 306, 112–120.
| Germline stem cells and neo-oogenesis in the adult human ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvF2nsLk%3D&md5=30e7b153b22cc0eccb7d6cffdf262891CAS | 17428461PubMed |
Liu, Y. J., Nakamura, T., and Nakano, T. (2012). Essential role of DPPA3 for chromatin condensation in mouse oocytogenesis. Biol. Reprod. 86, 40.
| Essential role of DPPA3 for chromatin condensation in mouse oocytogenesis.Crossref | GoogleScholarGoogle Scholar | 22034526PubMed |
MacGregor, G. R., Zambrowicz, B. P., and Soriano, P. (1995). Tissue non-specific alkaline phosphatase is expressed in both embryonic and extraembryonic lineages during mouse embryogenesis but is not required for migration of primordial germ cells. Development 121, 1487–1496.
| 1:CAS:528:DyaK2MXls1ajsL8%3D&md5=55061cf9c8530e1bfa46ed76f8a99e6fCAS | 7789278PubMed |
Manova, K., Nocka, K., Besmer, P., and Bachvarova, R. F. (1990). Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110, 1057–1069.
| 1:CAS:528:DyaK3MXhs1Wntb4%3D&md5=6d605074236303a11397f365bcfbf581CAS | 1712701PubMed |
McClellan, K. A., Gosden, R., and Taketo, T. (2003). Continuous loss of oocytes throughout meiotic prophase in the normal mouse ovary. Dev. Biol. 258, 334–348.
| Continuous loss of oocytes throughout meiotic prophase in the normal mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVyrs7g%3D&md5=6d54fc7e474655d24401cbc842a66460CAS | 12798292PubMed |
McLaren, A. (2003). Primordial germ cells in the mouse. Dev. Biol. 262, 1–15.
| Primordial germ cells in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVWktb8%3D&md5=d6a9ee6acafd921de546207870126daeCAS | 14512014PubMed |
McLaren, A., and Southee, D. (1997). Entry of mouse embryonic germ cells into meiosis. Dev. Biol. 187, 107–113.
| Entry of mouse embryonic germ cells into meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksF2rsLc%3D&md5=5cf6aa6e06864d8a2c5d478d546248afCAS | 9224678PubMed |
Molyneaux, K., and Wylie, C. (2004). Primordial germ cell migration. Int. J. Dev. Biol. 48, 537–543.
| Primordial germ cell migration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVentLfF&md5=2da11a5c9b8286f2c5b7a46510acbf3bCAS | 15349828PubMed |
Morelli, M. A., and Cohen, P. E. (2005). Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis. Reproduction 130, 761–781.
| Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12gug%3D%3D&md5=a7ce2195c2d845307adf1d1a639c420cCAS | 16322537PubMed |
Myers, M., Britt, K. L., Wreford, N. G. M., Ebling, F. J. P., and Kerr, J. B. (2004). Methods for quantifying follicular numbers within the mouse ovary. Reproduction 127, 569–580.
| Methods for quantifying follicular numbers within the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFOqu78%3D&md5=8b84e964555662a2754cd6969f00f654CAS | 15129012PubMed |
National Research Council (1996). ‘Guide for the Care and Use of Laboratory Animals.’ (Institute for Laboratory Animal Research (ILAR) of the National Academy of Science: Bethesda, MD.)
Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the pou transcription factor oct4. Cell 95, 379–391.
| Formation of pluripotent stem cells in the mammalian embryo depends on the pou transcription factor oct4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlCqt74%3D&md5=37ebfdd33c464a38cfff72e6db1a428bCAS | 9814708PubMed |
Oulad-Abdelghani, M., Bouillet, P., Décimo, D., Gansmuller, A., Heyberger, S., Dollé, P., Bronner, S., Lutz, Y., and Chambon, P. (1996). Characterization of a pre-meiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J. Cell Biol. 135, 469–477.
| Characterization of a pre-meiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVSntLk%3D&md5=db9ff1c8603a0670ade2e6cf016fad77CAS | 8896602PubMed |
Parte, S., Bhartiya, D., Telang, J., Daithankar, V., Salvi, V., Zaveri, K., and Hinduja, I. (2011). Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 20, 1451–1464.
| Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsl2murw%3D&md5=53d3d7f57a86b16c0c59954040b7d1e1CAS | 21291304PubMed |
Payer, B., Saitou, M., Barton, S. C., Thresher, R., Dixon, J. P. C., Zahn, D., Colledge, W. H., Carlton, M. B. L., Nakano, T., and Surani, M. A. (2003). Stella is a maternal-effect gene required for normal early development in mice. Curr. Biol. 13, 2110–2117.
| Stella is a maternal-effect gene required for normal early development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1Oqsb4%3D&md5=a2bb9d0b8f890a245ceaa0a10c79a110CAS | 14654002PubMed |
Pepling, M. E., and Spradling, A. C. (2001). Mouse ovarian germ-cell cysts undergo programmed breakdown to form primordial follicles. Dev. Biol. 234, 339–351.
| Mouse ovarian germ-cell cysts undergo programmed breakdown to form primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFKjur8%3D&md5=5c5eb9ba746ca002b9a796a1ef3daa7eCAS | 11397004PubMed |
Pesce, M., Farrace, M. G., Piacentini, M., Dolci, S., and De Felici, M. (1993). Stem cell factor and leukaemia inhibitory factor promote primordial germ-cell survival by suppressing programmed cell death (apoptosis). Development 118, 1089–1094.
| 1:CAS:528:DyaK2cXhtlSmt7Y%3D&md5=4bc2e1d62dd3d6a0df4817709830878eCAS | 7505738PubMed |
Pesce, M., Wang, X., Wolgemuth, D. J., and Schöler, H. (1998). Differential expression of the Oct-4 transcription factor during mouse germ-cell differentiation. Mech. Dev. 71, 89–98.
| Differential expression of the Oct-4 transcription factor during mouse germ-cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1Ggtrg%3D&md5=78b437fdc35f1020a96525c2f5313b82CAS | 9507072PubMed |
Rasweiler, J. J. (1972). Reproduction in the long-tongued bat, Glossophaga soricina. I. Preimplantation development and histology of the oviduct. J. Reprod. Fertil. 31, 249–262.
| Reproduction in the long-tongued bat, Glossophaga soricina. I. Preimplantation development and histology of the oviduct.Crossref | GoogleScholarGoogle Scholar | 4118051PubMed |
Rasweiler, J. J., IV, and Badwaik, N. K. (2000). Anatomy and physiology of the female tract. In ‘Reproductive Biology of Bats’. (Eds E. G. Crichton and P. H. Krutzsch.) pp. 157–219. (Academic Press: London.)
Raz, E. (2000). The function and regulation of vasa-like genes in germ-cell development. Genome Biol. 1, reviews1017.1–1017.6.
| The function and regulation of vasa-like genes in germ-cell development.Crossref | GoogleScholarGoogle Scholar |
Saitou, M., Barton, S. C., and Surani, A. (2002). A molecular programme for the specification of germ-cell fate in mice. Nature 418, 293–300.
| A molecular programme for the specification of germ-cell fate in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGmsLk%3D&md5=4aa99fe25a99a8eb384968456aeea3e9CAS | 12124616PubMed |
Sato, M., Kimura, T., Kurokawa, K., Fujita, Y., Abe, K., Masuhara, M., Yasunaga, T., Ryo, A., Yamamoto, M., and Nakano, T. (2002). Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech. Dev. 113, 91–94.
| Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFejurY%3D&md5=408f0bfeeed554602fe625c4cb99aaa6CAS | 11900980PubMed |
Schöler, H. R., Hatzopoulos, A. K., Balling, R., Suzuki, N., and Gruss, P. (1989). A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J. 8, 2543–2550.
| 2573523PubMed |
Tanaka, S. S., Toyooka, Y., Akasu, R., Katoh-Fukui, Y., Nakahara, Y., Suzuki, R., Yokoyama, M., and Noce, T. (2000). The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev. 14, 841–853.
| 1:CAS:528:DC%2BD3cXivFyjsrg%3D&md5=20f37ce6190e5dd4efc45eeb09d46fa6CAS | 10766740PubMed |
Toyooka, Y., Tsunekawa, N., Takahashi, Y., Matsui, Y., Satoh, M., and Noce, T. (2000). Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev. 93, 139–149.
| Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislarurc%3D&md5=c69b4dae40658087bab67caed8c6bf8bCAS | 10781947PubMed |
White, Y. A. R., Woods, D. C., Takai, Y., Ishihara, O., Seki, H., and Tilly, J. L. (2012). Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat. Med. 18, 413–421.
| Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xislygu7g%3D&md5=a9e6239768a6d3630a63f02ae265b3fcCAS |
Wylie, C. (1999). Germ Cells. Cell 96, 165–174.
| Germ Cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotlyrtg%3D%3D&md5=3791ab3f17925e923c9c3e4e14a4ff60CAS | 9988212PubMed |
Zamboni, L., and Merchant, H. (1973). The fine morphology of mouse primordial germ cells in extragonadal locations. Am. J. Anat. 137, 299–335.
| The fine morphology of mouse primordial germ cells in extragonadal locations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s3htFygtg%3D%3D&md5=bafc33a502f54ca224b9094f214eda5cCAS | 4716356PubMed |
Zhang, P., Lv, L. X., and Xing, W. J. (2010). Early meiotic-specific protein expression in postnatal rat ovaries. Reprod. Domest. Anim. , .
| Early meiotic-specific protein expression in postnatal rat ovaries.Crossref | GoogleScholarGoogle Scholar | 20345585PubMed |
Zuccotti, M., Merico, V., Sacchi, L., Bellone, M., Brink, T. C., Stefanelli, M., Redi, C. A., Bellazzi, R., Adjaye, J., and Garagna, S. (2009). Oct-4 regulates the expression of Stella and Foxj2 at the Nanog locus: implications for the developmental competence of mouse oocytes. Hum. Reprod. 24, 2225–2237.
| Oct-4 regulates the expression of Stella and Foxj2 at the Nanog locus: implications for the developmental competence of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtValsbjJ&md5=248a276cdc5ec21aa11402fed5b69758CAS | 19477878PubMed |