Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Status of human germ cell differentiation from pluripotent stem cells

Renee A. Reijo Pera
+ Author Affiliations
- Author Affiliations

Institute for Stem Cell Biology and Regenerative Medicine, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305-5463, USA. Email: reneer@stanford.edu

Reproduction, Fertility and Development 25(2) 396-404 https://doi.org/10.1071/RD12047
Submitted: 18 February 2012  Accepted: 31 March 2012   Published: 11 May 2012

Abstract

Historically, the quality of life of infertile couples has been greatly diminished by the loss of opportunity to conceive. However, beginning with the advent of IVF in the late 1970s, novel clinical interventions have greatly changed the outlook for those with severe forms of infertility. Yet, in cases in which the quality and quantity of germ cells are most compromised, there are few options. In the present paper, the current status of germ cell development from stem cells is reviewed in light of potential utility for basic science and clinical applications.

Additional keywords: meiosis, primordial germ cell.


References

Aflatoonian, B., Ruban, L., Jones, M., Aflatoonian, R., Fazeli, A., and Moore, H. (2009). In vitro post-meiotic germ cell development from human embryonic stem cells. Hum. Reprod. 24, 3150–3159.
In vitro post-meiotic germ cell development from human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKls7rL&md5=2851fb4bb53f34b69871f114c17f1e02CAS | 19770126PubMed |

Behr, B. (1999). Blastocyst culture and transfer. Hum. Reprod. 14, 5–6.
Blastocyst culture and transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1Mzgt1eitg%3D%3D&md5=fda543a668cfbe82d83589dafadc159bCAS | 10374084PubMed |

Bucay, N., Yebra, M., Cirulli, V., Afrikanova, I., Kaido, T., Hayek, A., and Montgomery, A. (2009). A novel approach for the derivation of putative primordial germ cells and sertoli cells from human embryonic stem cells. Stem Cells 27, 68–77.
A novel approach for the derivation of putative primordial germ cells and sertoli cells from human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVeqsbk%3D&md5=12727988d493c0a75f4625a6e66730a9CAS | 18845765PubMed |

Cedars, M. (2005). ‘Infertility.’ (McGraw-Hill: New York.)

Chavez, S., Meneses, J., Nguyen, H., Kim, S., and Reijo Pera, R. A. (2008). Characterization of six new human embryonic stem cell lines (HSF-7, -8, -9, -10, -12 and -13) derived in minimal animal-component conditions. Stem Cells Dev. 17, 535–546.
Characterization of six new human embryonic stem cell lines (HSF-7, -8, -9, -10, -12 and -13) derived in minimal animal-component conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslKkt70%3D&md5=1f7e62f8110b14643b9631cd6ad6455bCAS | 18513167PubMed |

Chen, H.-F., Kuo, H.-C., Chien, C.-L., Shun, C.-T., Yao, Y.-L., Ip, P.-L., Chuang, C.-Y., Wang, C.-C., Yang, Y.-S., and Ho, H.-N. (2007). Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum. Reprod. 22, 567–577.
Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation.Crossref | GoogleScholarGoogle Scholar | 17071820PubMed |

Chuva-de-Sousa-Lopes, S., and Roelen, B. (2010). Review: mini-series on germ cell development on the formation of germ cells: the good, the bad and the ugly. Differentiation 79, 131–140.
| 20227006PubMed |

Clark, A. T., Bodnar, M. S., Fox, M. S., Rodriquez, R. T., Abeyta, M. J., Firpo, M. T., and Reijo Pera, R. A. (2004). Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum. Mol. Genet. 13, 727–739.
Spontaneous differentiation of germ cells from human embryonic stem cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVyrs74%3D&md5=c19445fc6126b771b60c902588b91d67CAS | 14962983PubMed |

Flörke-Gerloff, S., Töpfer-Petersen, E., Müller-Esterl, W., Schill, W., and Engel, W. (1983). Acrosin and the acrosome in human spermatogenesis. Hum. Genet. 65, 61–67.
Acrosin and the acrosome in human spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 6357995PubMed |

Fox, M. S., Clark, A. T., El Majdoubi, M., Vigne, J. L., Urano, J., Hostetler, C. E., Griswold, M. D., Weiner, R. I., and Reijo Pera, R. A. (2007). Intermolecular interactions of homologs of germ plasm components in mammalian germ cells. Dev. Biol. 301, 417–431.
Intermolecular interactions of homologs of germ plasm components in mammalian germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1ersw%3D%3D&md5=e9f1db5d5b2f66b69ae0d11e20521719CAS | 16996493PubMed |

Gardner, D. K., Schoolcraft, W. B., Wagley, L., Schlenker, T., Stevens, J., and Hesla, J. (1998). A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum. Reprod. 13, 3434–3440.
A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7gtFKhsw%3D%3D&md5=e7a18945d511c87fcc0f4d7d7351a494CAS | 9886530PubMed |

Geijsen, N., Horoschak, M., Kim, K., Gribnau, J., Eggan, K., and Daley, G. Q. (2004). Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427, 148–154.
Derivation of embryonic germ cells and male gametes from embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFOntA%3D%3D&md5=d275682f092fe9db3024f41014d2445bCAS | 14668819PubMed |

Han, J., Yuan, P., Yang, H., Zhang, J., Soh, B., Li, P., Lim, S., Cao, S., Tay, J., Orlov, Y., Lufkin, T., Ng, H., Tam, W., and Lim, B. (2010). Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature 463, 1096–1100.
Tbx3 improves the germ-line competency of induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Omu7Y%3D&md5=d3c529f2017b4ab015edf4a67c5f405eCAS | 20139965PubMed |

Handyside, A., Lesko, J., Tarin, J., Winston, R., and Hughes, M. (1992). Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis. N. Engl. J. Med. 327, 905–909.
Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zot1Kjuw%3D%3D&md5=9471e05bdcd0e0e1306b9c7a93812428CAS | 1381054PubMed |

Haston, K., Tung, J., and Reijo Pera, R. A. (2009). Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro. PLoS One 4, e5654.
Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 19468308PubMed |

Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., and Saitou, M. (2011). Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519–532.
Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKjsb%2FL&md5=8528314dbca843e8d7567cf397652b4fCAS | 21820164PubMed |

Hendry, A. P., Wenburg, J. K., Bentzen, P., Volk, E. C., and Quinn, T. P. (2000). Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290, 516–518.
Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFKisLs%3D&md5=03ab89f24e49ef2dd0f7594dab736713CAS | 11039932PubMed |

Hubner, K., Fuhrmann, G., Christenson, L., Kehler, J., Reinbold, R., De La Fuente, R., Wood, J., Strauss, J., Boiani, M., and Scholer, H. (2003). Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256.
Derivation of oocytes from mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 12730498PubMed |

Hunt, P. A., and Hassold, T. J. (2002). Sex matters in meiosis. Science 296, 2181–2183.
Sex matters in meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFGhsb0%3D&md5=5b35ba6b37f16e92e48bad9864bcbf02CAS | 12077403PubMed |

International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921.
Initial sequencing and analysis of the human genome.Crossref | GoogleScholarGoogle Scholar | 11237011PubMed |

International Stem Cell Consortium (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803–816.
Characterization of human embryonic stem cell lines by the International Stem Cell Initiative.Crossref | GoogleScholarGoogle Scholar | 17572666PubMed |

Jaruzelska, J., Kotecki, M., Kusz, K., Spik, A., Firpo, M., and Reijo, R. A. (2003). Conservation of a Pumilio-Nanos complex from Drosophila germ plasm to human germ cells. Dev. Genes Evol. 213, 120–126.
| 1:CAS:528:DC%2BD3sXislyqt7o%3D&md5=c906a4c36902d7cb513f52da4253218cCAS | 12690449PubMed |

Kee, K., Gonsalves, J., Clark, A., and Reijo Pera, R. A. (2006). Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev. 15, 831–837.
Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFemsQ%3D%3D&md5=269d1116b237ba997920e5f2912ff356CAS | 17253946PubMed |

Kee, K., Angeles, V., Flores, M., Nguyen, H., and Reijo Pera, R. A. (2009). Human DAZL, DAZ and BOULE genes modulate primordial germ cell and haploid gamete formation. Nature 462, 222–225.
Human DAZL, DAZ and BOULE genes modulate primordial germ cell and haploid gamete formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlaksr3L&md5=acdc221c956dfa5918f31d1154085415CAS | 19865085PubMed |

Kerr, C. L., and Cheng, L. (2010). The Dazzle in germ cell differentiation. J. Mol. Cell. Biol. 2, 26–29.
The Dazzle in germ cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVSit7s%3D&md5=28610be0e7925db240d2a1b1e6acb8e1CAS | 20008336PubMed |

Ma, K., Sharkey, A., Kirsch, S., Vogt, P., Keil, R., Hargreave, T. B., McBeath, S., and Chandley, A. C. (1992). Towards the molecular localisation of the AZF locus: mapping of microdeletions in azoospermic men within 14 subintervals of interval 6 of the human Y chromosome. Hum. Mol. Genet. 1, 29–33.
Towards the molecular localisation of the AZF locus: mapping of microdeletions in azoospermic men within 14 subintervals of interval 6 of the human Y chromosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkt1WgtLk%3D&md5=7707deae4984dd01ea586d948750a012CAS | 1301132PubMed |

Marques-Mari, A., Lacham-Kaplan, O., Medrano, J., Pellicer, A., and Simon, C. (2009). Differentiation of germ cells and gametes from stem cells. Hum. Reprod. Update 15, 379–390.
Differentiation of germ cells and gametes from stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSqtbY%3D&md5=fae6ce43fc98c9ce64ee36c7eca9c631CAS | 19179344PubMed |

Matzuk, M., and Lamb, D. (2002). Genetic dissection of mammalian fertility pathways. Nat. Cell Biol. 4S, 41–49.

Medrano, J. V., Ramathal, C., Nguyen, H. N., Simon, C., and Reijo-Pera, R. A. (2012). Divergent RNA-binding proteins, dazl and vasa, induce meiotic progression in human germ cells derived in vitro. Stem Cells 30, 441–451.
Divergent RNA-binding proteins, dazl and vasa, induce meiotic progression in human germ cells derived in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVWitL8%3D&md5=5525407758422afb49c15977335dc0a5CAS | 22162380PubMed |

Moore, F. L., Jaruzelska, J., Fox, M. S., Urano, J., Firpo, M. T., Turek, P. J., Dorfman, D. M., and Reijo Pera, R. A. (2003). Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-Like proteins. Proc. Natl Acad. Sci. USA 100, 538–543.
Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-Like proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVKnsA%3D%3D&md5=96512eb7c97e8aad6f9c3de604e15481CAS | 12511597PubMed |

Moore, F. L., Jaruzelska, J., Dorfmann, D., and Reijo Pera, R. A. (2004). Identification of a novel gene, DZIP (DAZ Interacting Protein), that encodes a protein that interacts with DAZ and DAZL (Deleted in AZoospermia and DAZ-Like) and is expressed in embryonic stem cells and germ cells. Genomics 83, 834–843.
Identification of a novel gene, DZIP (DAZ Interacting Protein), that encodes a protein that interacts with DAZ and DAZL (Deleted in AZoospermia and DAZ-Like) and is expressed in embryonic stem cells and germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFGnsr4%3D&md5=bcd21c8752aa46d6b0822b53bb52089eCAS | 15081113PubMed |

Nicholas, C., Haston, K., Grewall, A., Longacre, T., and Reijo Pera, R. A. (2009). Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility. Hum. Mol. Genet. 18, 4376–4389.
Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWhu7fF&md5=84ebd80480c38c7b8dd290c8f7ec6bf9CAS | 19696121PubMed |

Nicholas, C., Haston, K., and Reijo Pera, R. A. (2010). Intact fetal ovarian cord formation promotes mouse oocyte survival and development. BMC Dev. Biol. 10, 2.
Intact fetal ovarian cord formation promotes mouse oocyte survival and development.Crossref | GoogleScholarGoogle Scholar | 20064216PubMed |

Oakley, L., Doyle, P., and Maconochie, N. (2008). Lifetime prevalence of infertility and infertility treatment in the UK: results from a population-based survey of reproduction. Hum. Reprod. 23, 447–450.
Lifetime prevalence of infertility and infertility treatment in the UK: results from a population-based survey of reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2FksFahtQ%3D%3D&md5=5176a3c4e625a33914996f10b3daf530CAS | 18033808PubMed |

Palermo, G., Joris, H., Devroey, P., and Steirteghem, A. C. V. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17–18.
Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zgtFWrsA%3D%3D&md5=c189ed604f89b3c6170e46eec330f499CAS | 1351601PubMed |

Panula, S., Medrano, J., Kee, K., Bergstrom, R., Nguyen, H., Byers, B., Wilson, K., Wu, J., Simon, C., Hovatta, O., and Reijo Pera, R. A. (2011). Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum. Mol. Genet. 20, 752–762.
Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFyhsg%3D%3D&md5=53db4ab7871b43a600aa270688719cf3CAS | 21131292PubMed |

Park, I., Zhao, R., West, J., Yabuuchi, A., Huo, H., Ince, T., Lerou, P., Lensch, M., and Daley, G. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146.
Reprogramming of human somatic cells to pluripotency with defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVGhtQ%3D%3D&md5=07188723e4c2a468508e967806639e5dCAS | 18157115PubMed |

Park, T., Galic, Z., Conway, A., Lindgren, A., Handel, B. v., Magnusson, M., Richter, L., Teitell, M., Mikkola, H., Lowry, W., Plath, K., and Clark, A. (2009). Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells 27, 783–795.
Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1WnsLs%3D&md5=618117e5c05e5d24f83c1dd28d3a8c72CAS | 19350678PubMed |

Reijo, R., Lee, T. Y., Salo, P., Alagappan, R., Brown, L. G., Rosenberg, M., Rozen, S., Jaffe, T., Straus, D., Hovatta, O., de la Chapelle, A., Silber, S., and Page, D. C. (1995). Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat. Genet. 10, 383–393.
Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVWlu7g%3D&md5=76ace293c18f2fc5e32360c5d234b91cCAS | 7670487PubMed |

Reijo, R., Alagappan, R. K., Patrizio, P., and Page, D. C. (1996). Severe oligospermia resulting from deletions of the Azoospermia Factor gene on the Y chromosome. Lancet 347, 1290–1293.
Severe oligospermia resulting from deletions of the Azoospermia Factor gene on the Y chromosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1eksLc%3D&md5=f2a2a8d4dc291d3ffed5a920a791072fCAS | 8622504PubMed |

Reijo Pera, R. A., DeJonge, C., Bossert, N., Yao, M., Yang, J. Y. H., Asadi, N. B., Wong, W., Wong, C., and Firpo, M. T. (2009). Gene expression profiles of human inner cell mass cells and embryonic stem cells. Differentiation 78, 18–23.
Gene expression profiles of human inner cell mass cells and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 19398262PubMed |

Sabour, D., Arauzo-Bravo, M., Hubner, K., Ko, K., Greber, B., Gentile, L., Stehling, M., and Scholer, H. (2011). Identification of genes specific to mouse primordial germ cells through dynamic global gene expression. Hum. Mol. Genet. 20, 115–125.
Identification of genes specific to mouse primordial germ cells through dynamic global gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGgsbjL&md5=6278678b1ae11a40fcdb8670d5ae07b8CAS | 20940145PubMed |

Salvador, L. M., Silva, C. P., Kostetskii, I., Radice, G. L., and Strauss, J. F. (2008). The promoter of the oocyte-specific gene, Gdf9, is active in population of cultured mouse embryonic stem cells with an oocyte-like phenotype. Methods 45, 172–181.
The promoter of the oocyte-specific gene, Gdf9, is active in population of cultured mouse embryonic stem cells with an oocyte-like phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVGitbs%3D&md5=74cce5aadbaf91be9a115e29cb9c3980CAS | 18593614PubMed |

Saxena, R., Brown, L. G., Hawkins, T., Alagappan, R. K., Skaletsky, H., Reeve, M. P., Reijo, R., Rozen, S., Dinulos, M. B., Disteche, C. M., and Page, D. C. (1996). The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nat. Genet. 14, 292–299.
The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVClsbo%3D&md5=49b9396c8d2f5e224f6bb3901f473a9bCAS | 8896558PubMed |

Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P. J., Cordum, H. S., Hillier, L., Brown, L. G., Repping, S., Pyntikova, T., Ali, J., Bieri, T., Chinwalla, A., Delehaunty, A., Delehaunty, K., Du, H., Fewell, G., Fulton, L., Fulton, R., Graves, T., Hou, S. F., Latrielle, P., Leonard, S., Mardis, E., Maupin, R., McPherson, J., Miner, T., Nash, W., Nguyen, C., Ozersky, P., Pepin, K., Rock, S., Rohlfing, T., Scott, K., Schultz, B., Strong, C., Tin-Wollam, A., Yang, S. P., Waterston, R. H., Wilson, R. K., Rozen, S., and Page, D. C. (2003). The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837.
The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Kmtbk%3D&md5=6d06113d76433a93adf013ecae1a84b4CAS | 12815422PubMed |

Sommer, C., Sommer, A., Longmire, T., Christodoulou, C., Thomas, D., Gostissa, M., Alt, F., Murphy, G., Kotton, D., and Mostoslavsky, G. (2010). Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28, 64–74.
| 1:CAS:528:DC%2BC3cXis1Wqtr8%3D&md5=12a40d23d5ea0b678a9ceb3cd53e2c41CAS | 19904830PubMed |

Stephen, E., and Chandra, A. (1998). Updated projections of infertility in the United States: 1995–2025. Fertil. Steril. 70, 30–34.
Updated projections of infertility in the United States: 1995–2025.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czitFymsQ%3D%3D&md5=44e5c062b4bf88ff08148951b6a6c7efCAS | 9660416PubMed |

Steptoe, P. C., and Edwards, R. G. (1978). Birth after the reimplantation of a human embryo. Lancet 312, 366.
Birth after the reimplantation of a human embryo.Crossref | GoogleScholarGoogle Scholar |

Swanson, W. J., and Vacquier, V. D. (2002). The rapid evolution of reproductive proteins. Nat. Rev. Genet. 3, 137–144.
The rapid evolution of reproductive proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsV2ntLY%3D&md5=41af2021068013991602c2a6acf36591CAS | 11836507PubMed |

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.
Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCntbbK&md5=7320777af6da378dd8a0f5130b364404CAS | 18035408PubMed |

Teramura, T., Takehara, T., Kawata, N., Fujinami, N., Mitani, T., Takenoshita, M., Matsumoto, K., Saeki, K., Iritani, A., Sagawa, N., and Hoso, Y. (2007). Primate embryonic stem cells proceed to early gametogenesis in vitro. Cloning Stem Cells 9, 144–156.
Primate embryonic stem cells proceed to early gametogenesis in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1Wgsbc%3D&md5=a0d053e1a55ddaa20fc14276e2d60a7fCAS | 17579549PubMed |

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
Embryonic stem cell lines derived from human blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntleisLg%3D&md5=c4f74f8b4ff01c79a121f0d51f6911ffCAS | 9804556PubMed |

Tilgner, K., Atkinson, S., Yung, S., Golebiewska, A., Stojkovic, M., Moreno, R., Lako, M., and Armstrong, L. (2010). Expression of GFP under the control of the RNA helicase VASA permits fluorescence-activated cell sorting isolation of human primordial germ cells. Stem Cells 28, 84–92.
| 1:CAS:528:DC%2BC3cXis1Wqtro%3D&md5=851171838db701de00bba94e42ef0054CAS | 19937754PubMed |

Vogt, P., Chandley, A. C., Hargreave, T. B., Keil, R., Ma, K., and Sharkey, A. (1992). Microdeletions in interval 6 of the Y chromosome of males with idiopathic sterility point to disruption of AZF, a human spermatogenesis gene. Hum. Genet. 89, 491–496.
Microdeletions in interval 6 of the Y chromosome of males with idiopathic sterility point to disruption of AZF, a human spermatogenesis gene.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zktVSksQ%3D%3D&md5=f35859f8b0f7d078a3ae797af6751d8dCAS | 1634226PubMed |

Vogt, P. H., Edelmann, A., Kirsch, S., Henegariu, O., Hirschmann, P., Kiesewetter, F., Kohn, F. M., Schill, W. B., Farah, S., Ramos, C., Hartmann, M., Hartschuh, W., Meschede, D., Behre, H. M., Castel, A., Nieschlag, E., Weidner, W., Grone, H.-J., Jung, A., Engel, W., and Haidl, G. (1996). Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum. Mol. Genet. 5, 933–943.
Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1Cntrk%3D&md5=b1e1d86ecb95411637f4adaf3fba764fCAS | 8817327PubMed |

Warren, L., Manos, P., Ahfeldt, T., Loh, Y., Li, H., Lau, F., Ebina, W., Mandal, P., Smith, Z., Meissner, A., Daley, G., Brack, A., Collins, J., Cowan, C., Schlaeger, T., and Rossi, D. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630.
Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKhtbrE&md5=44b11452fdd20735d217ed88640bfcc6CAS | 20888316PubMed |

West, F., Roche-Rios, M., Abraham, S., Rao, R., Natrajan, M., Bacanamwo, M., and Stice, S. (2010). KIT ligand and bone morphogenetic protein signaling enhances human embryonic stem cell to germ-like cell differentiation. Hum. Reprod. 25, 168–178.
KIT ligand and bone morphogenetic protein signaling enhances human embryonic stem cell to germ-like cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyrsr3K&md5=26ed4e15b5ba3c126383e1a4a85ba801CAS | 19840987PubMed |

West, F., Mumaw, J., Gallegos-Cardenas, A., Young, A., and Stice, S. (2011). Human haploid cells differentiated from meiotic competent clonal germ cell lines that originated from embryonic stem cells. Stem Cells Dev. 20, 1079–1088.
Human haploid cells differentiated from meiotic competent clonal germ cell lines that originated from embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslaju7w%3D&md5=840567ebca7d599ac65867c384761be7CAS | 20929355PubMed |

Yamauchi, K., Hasegawa, K., Chuma, S., Nakatsuji, N., and Suemori, H. (2009). In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. PLoS One 4, e5338.
In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 19399191PubMed |

Yoshimizu, T., Obinata, M.,, and Matsui, Y. (2001). Stage-specific tissue and cell interactions play key roles in mouse germ cell specification. Development 128, 481–490.
| 1:CAS:528:DC%2BD3MXhvVels74%3D&md5=40739ae2333ed9da2bc74546abb8c4aeCAS | 11171332PubMed |

Young, J., Dias, V., and Loveland, K. (2010). Defining the window of germline genesis in vitro from murine embryonic stem cells. Biol. Reprod. 82, 390–401.
Defining the window of germline genesis in vitro from murine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSnsbo%3D&md5=cf8ab2aba3a89a8910b40180780ed15cCAS | 19846600PubMed |

Yu, J., Vodyanik, M., Smuga-Otto, K., Antosiewicz-Bourget, J., France, J., Tian, S., Nie, J., Jonsdottir, G., Ruotti, V., Stewart, R., Slukvin, I., and Thomson, J. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.
Induced pluripotent stem cell lines derived from human somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGjsLbN&md5=8061a561d4484193f82107918d4fe71bCAS | 18029452PubMed |

Zhou, G.-B., Meng, Q.-G., and Li, N. (2010). In vitro derivation of germ cells from embryonic stem cells in mammals. Mol. Reprod. Dev. 77, 586–594.
In vitro derivation of germ cells from embryonic stem cells in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVahsLw%3D&md5=299e7a4b030f43fc03d55e1c5b4b9a86CAS | 20575083PubMed |

Zinn, A. R., Page, D. C., and Fisher, E. M. C. (1993). Turner syndrome: the case of the missing sex chromosome. Trends Genet. 9, 90–93.
Turner syndrome: the case of the missing sex chromosome.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3lsFKgsg%3D%3D&md5=b38b821367215a321109a3d62e4da339CAS | 8488568PubMed |