Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Intra-uterine growth retardation affects birthweight and postnatal development in pigs, impairing muscle accretion, duodenal mucosa morphology and carcass traits

A. L. N. Alvarenga A , H. Chiarini-Garcia A , P. C. Cardeal A , L. P. Moreira A , G. R. Foxcroft B , D. O. Fontes C and F. R. C. L. Almeida A D
+ Author Affiliations
- Author Affiliations

A Laboratório de Biologia Estrutural e Reprodução, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.

B Swine Reproduction-Development Program, Swine Research and Technology Centre, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.

C Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.

D Corresponding author. Email: falmeida@icb.ufmg.br

Reproduction, Fertility and Development 25(2) 387-395 https://doi.org/10.1071/RD12021
Submitted: 18 August 2011  Accepted: 25 March 2012   Published: 16 May 2012

Abstract

The present study investigated the occurrence of intra-uterine growth retardation (IUGR) in newborn (n = 40) and 150-day-old (n = 240) pigs of different birthweight ranges (high, HW: 1.8–2.2 kg; low, LW: 0.8–1.2 kg) from higher-parity commercial sows and its impact on their subsequent development and carcass traits in a Brazilian commercial production system. HW newborn pigs had heavier organs than LW pigs (P < 0.01), and all brain : organ weight ratios were higher (P < 0.01) in LW compared with HW offspring, providing strong evidence of IUGR in the LW piglets. HW pigs had higher bodyweights and average daily gain (ADG) in all phases of production (P < 0.05), but ADG in the finisher phase was similar in both groups. Additionally, LW newborn and 150-day-old pigs showed a lower percentage of muscle fibres and a higher percentage of connective tissue in the semitendinosus muscle, greater fibre number per mm2 and a lower height of the duodenal mucosa (P < 0.05). On the other hand, HW pigs had higher hot carcass weight, meat content in the carcass and yield of ham, shoulder and belly (P < 0.01). Hence, lower-birthweight piglets may suffer from IUGR, which impairs their growth performance, muscle accretion, duodenal mucosa morphology and carcass traits.

Additional keywords: growth performance, intestinal development, muscle histomorphometry, neonatal organ weights.


References

ABCS (1973). Método Brasileiro de Classificação de Carcaças. Publicação Técnica, n.2. Associação Brasileira de Criadores De Suínos. (Estrela: Rio Grande do Sul, Brazil.)

Beaulieu, A. D., Aalhus, J. L., Williams, N. H., and Patience, J. F. (2010). Impact of piglet birth weight, birth order and litter size on subsequent growth performance, carcass quality, muscle composition and eating quality of pork. J. Anim. Sci. 88, 2767–2778.
Impact of piglet birth weight, birth order and litter size on subsequent growth performance, carcass quality, muscle composition and eating quality of pork.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVOrt7o%3D&md5=2269a5a643168cc8aa752366314209aaCAS | 20418451PubMed |

Bee, G. (2004). Effect of early gestation feeding, birth weight and gender of progeny on muscle-fibre characteristics of pigs at slaughter. J. Anim. Sci. 82, 826–836.
| 1:CAS:528:DC%2BD2cXhvVCku7g%3D&md5=16f413b4720277c62d8aee2c45b7a574CAS | 15032440PubMed |

Bérard, J., Kreuzer, M., and Bee, G. (2008). Effect of litter size and birth weight on growth, carcass and pork quality, and their relationship to postmortem proteolysis. J. Anim. Sci. 86, 2357–2368.
Effect of litter size and birth weight on growth, carcass and pork quality, and their relationship to postmortem proteolysis.Crossref | GoogleScholarGoogle Scholar | 18469061PubMed |

Bérard, J., Pardo, C. E., Béthaz, S., Kreuzer, M., and Bee, G. (2010). Intrauterine crowding decreases average birth weight and affects muscle fibre hyperplasia in piglets. J. Anim. Sci. 88, 3242–3250.
Intrauterine crowding decreases average birth weight and affects muscle fibre hyperplasia in piglets.Crossref | GoogleScholarGoogle Scholar | 20562364PubMed |

Boulot, S., Quesnel, H., and Quiniou, N. (2008). Management of high prolificacy in French herds: can we alleviate side effects on piglet survival? Advances in Pork Production 19, 213–220.

Chiarini-Garcia, H., Parreira, G. G., and Almeida, F. R. C. L. (2011). Glycol methacrylate embedding for improved morphological, morphometrical and immunohistochemical investigations under light microscopy: testes as a model. In ‘Light Microscopy: Methods and Protocols’. (Eds H. Chiarini-Garcia and R. C. N. Melo.) pp. 3–18. (Humana Press: Totowa, NJ, USA.)

D’Inca, R., Gras-Le Guen, C., Che, L., Sangild, P. T., and Le Huërou-Luron, I. (2011). Intrauterine growth restriction delays feeding-induced gut adaptation in term newborn pigs. Neonatology 99, 208–216.
Intrauterine growth restriction delays feeding-induced gut adaptation in term newborn pigs.Crossref | GoogleScholarGoogle Scholar | 20881437PubMed |

Dwyer, C. M., Fletcher, J. M., and Stickland, N. C. (1993). Muscle cellularity and postnatal growth in the pig. J. Anim. Sci. 71, 3339–3343.
| 1:STN:280:DyaK2c7isVemtA%3D%3D&md5=efd3d53a56086fefda5a47f8357e875fCAS | 8294285PubMed |

Fix, J. S., Cassady, J. P., Holl, J. W., Herring, W. O., Culbertson, M. S., and See, M. T. (2010a). Effect of piglet birth weight on body weight, growth, backfat and longissimus muscle area of commercial market swine. Livest. Sci. 127, 51–59.
Effect of piglet birth weight on body weight, growth, backfat and longissimus muscle area of commercial market swine.Crossref | GoogleScholarGoogle Scholar |

Fix, J. S., Cassady, J. P., Holl, J. W., Herring, W. O., Culbertson, M. S., and See, M. T. (2010b). Effect of piglet birth weight on survival and quality of commercial swine. Livest. Sci. 132, 98–106.
Effect of piglet birth weight on survival and quality of commercial swine.Crossref | GoogleScholarGoogle Scholar |

Foxcroft, G. R., Bee, G., Dixon, W. T., Hahn, M. M., Harding, J. C. S., Patterson, J., Putman, C. T., Sarmento, S., Smit, M., Tse, W. Y., and Town, S. C. (2007). Consequences of selection for litter size on piglet development. In ‘Paradigms of Pig Science’. (Eds J. Wiseman, M. A. Varley, S. McOrist and B. Kemp.) pp. 207–229. (Nottingham University Press: Thrumpton, Nottingham, UK.)

Foxcroft, G. R., Dixon, W. T., Dyck, M. K., Novak, S., Harding, J. C. S., and Almeida, F. R. C. L. (2009). Prenatal programming of postnatal development in the pig. In ‘Control of Pig Reproduction VIII’. (Eds H. Rodriguez-Martinez, J. L. Vallet and A. J. Zicik.) pp. 213–231. (Nottingham University Press: Thrumpton, Nottingham, UK.)

Gondret, F., Lefaucheur, L., Juin, H., Louveau, I., and Lebret, B. (2006). Low birth weight is associated with enlarged muscle fibre area and impaired meat tenderness of the longissimus muscle in pigs. J. Anim. Sci. 84, 93–103.
| 1:CAS:528:DC%2BD28XjvFynuw%3D%3D&md5=a756cda778f35637c40d1e28b08a9e39CAS | 16361495PubMed |

Guidoni, A. L. (2000). Melhoria de processos para a tipificação e valorização de carcaças suínas no Brasil. In ‘Anais da 1ª. Conferência Internacional Virtual Sobre a Qualidade de Carne Suína, Concórdia’. (Eds T. M. B. Celanti and S. Colombo.) pp. 221–234. (CNPSA Embrapa: Concórdia, Santa Catarina.)

Handel, S. E., and Stickland, N. C. (1987). Muscle cellularity and birth-weight. Anim. Prod. 44, 311–317.
Muscle cellularity and birth-weight.Crossref | GoogleScholarGoogle Scholar |

Kuhn, G., Rehfeldt, C., Hartung, M., and Ender, K. (2002). Heavy newborn piglets develop a high carcass quality. Fleischwirtschaft 82, 128–129.

Kuhn, G., Rehfeldt, C., Stabenow, B., Nurnberg, G., and Ender, K. (2003). Birth weight affects postnatal growth, body composition and meat quality in pigs. Arch. Tierz. 46, 171.

Larzul, C., Lefaucheur, L., Ecolan, P., Gogué, J., Talmant, A., Sellier, P., Le Roy, P., and Monin, G. (1997). Phenotypic and genetic parameters for longissimus muscle fibre characteristics in relation to growth, carcass and meat quality in large white pigs. J. Anim. Sci. 75, 3126–3137.
| 1:CAS:528:DyaK2sXotVWgt74%3D&md5=5dda4a581a184d54cc965a51bc3fc7ecCAS | 9419985PubMed |

Lefaucheur, L. (2010). A second look into fibre typing – relation to meat quality. Meat Sci. 84, 257–270.
A second look into fibre typing – relation to meat quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGlt7bO&md5=ae81427eea6c8521c2e41f0f64dc638dCAS | 20374784PubMed |

McMillen, I. C., and Robinson, J. S. (2005). Developmental origins of the metabolic symdrome: prediction, plasticity and programming. Physiol. Rev. 85, 571–633.
Developmental origins of the metabolic symdrome: prediction, plasticity and programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt12lsLw%3D&md5=35ee5093d6d763528e80f7bebfbb3292CAS | 15788706PubMed |

McMillen, I. C., Adams, M. B., Ross, J. T., Coulter, C. L., Simonetta, G., Owens, J. A., Robinson, J. S., and Edwards, L. J. (2001). Fetal growth restriction: adaptations and consequences. Reproduction 122, 195–204.
Fetal growth restriction: adaptations and consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFWjtL8%3D&md5=3b3fd69a4f056f81bb646df0215346e7CAS | 11467970PubMed |

Morise, A., Louveau, I., and Le Huerou-Luron, I. (2008). Growth and development of adipose tissue and gut and related endocrine status during early growth in the pig: impact of low birth weight. Animal 2, 73–83.
Growth and development of adipose tissue and gut and related endocrine status during early growth in the pig: impact of low birth weight.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vpt1agtw%3D%3D&md5=8d4dcdc924e6d4ff185f435dc24c6402CAS | 22444965PubMed |

Nissen, P. M., Danielsen, V. O., Jorgensen, P. F., and Oksbjerg, N. (2003). Increased maternal nutrition of sows has no beneficial effects on muscle fibre number or postnatal growth and has no impact on the meat quality of the offspring. J. Anim. Sci. 81, 3018–3027.
| 1:CAS:528:DC%2BD3sXpslSjsro%3D&md5=04eaf517f035774d0610f1b80898c6a9CAS | 14677857PubMed |

Nissen, P. M., Jorgensen, P. F., and Oksbjerg, N. (2004). Within-litter variation in muscle fibre characteristics, pig performance and meat quality traits. J. Anim. Sci. 82, 414–421.
| 1:CAS:528:DC%2BD2cXhtFSmtbw%3D&md5=9885c341ae7f8add4c4fb994dec5cd8aCAS | 14974538PubMed |

NRC (1998). ‘Nutrient Requirements of Swine’. (National Academy Press: Washington, DC, USA.)

Oksbjerg, N., Sorensen, M. T., and Vestergaard, M. (2002). Compensatory growth and its effect on muscularity and technological meat quality in growing pigs. Acta Agric. Scand. Anim. Sci. 52, 85–90.

Poore, K. R., and Fowden, A. L. (2004). The effects of birth weight and postnatal growth patterns on fat depth and plasma leptin concentrations in juvenile and adult pigs. J. Physiol. 558, 295–304.
The effects of birth weight and postnatal growth patterns on fat depth and plasma leptin concentrations in juvenile and adult pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWhtrk%3D&md5=d67b9fddef230f117a376f1de076482eCAS | 15121800PubMed |

Quiniou, N., Dagorn, J., and Gaudre, D. (2002). Variation of piglets’ birth weight and consequences on subsequent performance. Livest. Prod. Sci. 78, 63–70.
Variation of piglets’ birth weight and consequences on subsequent performance.Crossref | GoogleScholarGoogle Scholar |

Quiniou, N., Brossard, L., and Quesnel, H. (2007). Impact of some sow’s characteristics on birth weight variability. In ‘Proceedings of the 58th Annual Meeting of the European Association for Animal Production, Dublin’. (Ed. Y. Honing) pp. 1–7. (European Association for Animal Production: Dublin.)

Rehfeldt, C., and Kuhn, G. (2006). Consequences of birth weight for postnatal growth performances and carcass quality in pigs as related to myogenesis. J. Anim. Sci. 84, E113–E123.
| 16582082PubMed |

Rehfeldt, C., Tuchscherer, A., Hartung, M., and Kuhn, G. (2008). A second look at the influence of birth weight on carcass and meat quality in pigs. Meat Sci. 78, 170–175.
A second look at the influence of birth weight on carcass and meat quality in pigs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsVOrug%3D%3D&md5=4e714e1026ea9a8fa29f5698772475e7CAS | 22062267PubMed |

SAS Institute Inc. (2001). ‘Statistical Analysis System User’s Guide: Statistics’. SAS for Windows, Version 8.2. (SAS Institute, Inc.: Cary, NC, USA.)

Sinha Hikim, A. P., Bartke, A., and Russell, L. D. (1988). Morphometric studies on hamster testes in gonadally active and inactive states: light microscope findings. Biol. Reprod. 39, 1225–1237.
Morphometric studies on hamster testes in gonadally active and inactive states: light microscope findings.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7hvVCjtw%3D%3D&md5=1b83454b08f74e3714b6d75632ee85cfCAS | 3219392PubMed |

Smit, M. (2007). Genetic background of prenatal programming in pigs. MSc Minor Thesis, University of Wageningen, The Netherlands.

Town, S. C., Putman, C. T., Turchinsky, N. J., Dixon, W. T., and Foxcroft, G. R. (2004). Number of conceptuses in utero affects porcine fetal muscle development. Reproduction 128, 443–454.
Number of conceptuses in utero affects porcine fetal muscle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlGjsLs%3D&md5=dea5972507d6182f6bc37ac70c953fe7CAS | 15454639PubMed |

Tristán, F., Rivero, M. A., Albors, O. L., Ramis, G., Vázquez, J. M., Martinez, M., Martinez, J. S., and Gil, F. (2009). Relationship of birth weight with the size, number and proportion of fibres in the pig semitendinosus muscle. Anat. Histol. Embryol. 38, 275–278.
Relationship of birth weight with the size, number and proportion of fibres in the pig semitendinosus muscle.Crossref | GoogleScholarGoogle Scholar | 19426434PubMed |

Wang, T., Huo, Y. J., Shi, F., Xu, R. J., and Hutz, R. J. (2005). Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs. Biol. Neonate 88, 66–72.
Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs.Crossref | GoogleScholarGoogle Scholar | 15785017PubMed |

Wang, X., Wu, W., Lin, G., Li, D., Wu, G., and Wang, J. (2010). Temporal proteomic analysis reveals continuous impairment of intestinal development in neonatal piglets with intrauterine growth restriction. J. Proteome Res. 9, 924–935.
Temporal proteomic analysis reveals continuous impairment of intestinal development in neonatal piglets with intrauterine growth restriction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGnt7bI&md5=59ffd7f32793273ed598af97101beddaCAS | 19938879PubMed |