Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Betamethasone, progesterone and RU-486 (mifepristone) exert similar effects on connexin expression in trophoblast-derived HTR-8/SVneo cells

F. Cervellati A , B. Pavan A , L. Lunghi A , E. Manni A , E. Fabbri B , C. Mascoli C , C. Biondi A D , A. Patella C and F. Vesce C
+ Author Affiliations
- Author Affiliations

A Department of Biology and Evolution, Section of General Physiology, University of Ferrara, Ferrara, Italy.

B Inter-departmental Centre for Environmental Science Research, University of Bologna, Ravenna, Italy.

C Department of Biomedical Sciences and Advanced Therapy, Section of Obstetrics and Gynaecology, University of Ferrara, Ferrara, Italy.

D Corresponding author. Email: carla.biondi@unife.it

Reproduction, Fertility and Development 23(2) 319-328 https://doi.org/10.1071/RD10077
Submitted: 13 April 2010  Accepted: 13 July 2010   Published: 4 January 2011

Abstract

Connexins (Cx) are membrane proteins able to influence cell trophoblast responses, such as proliferation, differentiation, migration and invasiveness. Likewise, glucocorticoids are also known to modulate many factors involved in implantation, including trophoblast gap-junction intercellular communication, although their influence on pregnancy is controversial. In order to investigate the effects of betamethasone, a synthetic glucocorticoid, on Cx and glucocorticoid receptor (GR) expression and localisation, as well as on cell proliferation, the extravillous trophoblast-derived HTR-8/SVneo cell line was used as a model. The results, confirmed by means of immunofluorescence, demonstrate that betamethasone selectively modifies GR and Cx expression, enhancing the GRα isoform without affecting GRβ, and inhibiting Cx40 expression whilst increasing that of Cx43 and Cx45. Furthermore, betamethasone was shown to exert an inhibitory action on cell proliferation. In this model the abortion drug RU-486 (mifepristone), reported to be a GR antagonist, did not counteract this effect of betamethasone. On the contrary, it induced responses similar to those of the hormone. Knowing that RU-486 is also a potent progesterone-receptor antagonist, the effect of progesterone alone and in combination with the drug on Cx expression and cell proliferation was then tested. Progesterone showed the same effect as betamethasone on Cx expression, but it did not affect proliferation. Based on these results, neither the abortion effects of RU-486 nor the protective action of betamethasone and progesterone are exerted by modulation of Cx. RU-486 did not antagonise the progesterone effect, suggesting that its abortive action does not involve alteration of trophoblast Cx expression.

Additional keywords: early pregnancy, extravillous trophoblast, gap-junctions, glucocorticoids.


References

Al-Lamki, R. S., Skepper, J. N., and Burton, G. J. (1999). Are human placental bed giant cells merely aggregates of small mononuclear trophoblast cells? An ultrastructural and immunocytochemical study. Hum. Reprod. 14, 496–504.
Are human placental bed giant cells merely aggregates of small mononuclear trophoblast cells? An ultrastructural and immunocytochemical study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7pvFOktg%3D%3D&md5=8098447fe9e64ebcc3a02bdead7dea98CAS | 10100001PubMed |

Bojić-Trbojević, Z., Božić, M., and Vićovac, L. (2008). Steroid hormone modulate galectin-1 in the trophoblast HTR-8/SVneo cell line. Arch. Biol. Sci. 60, 11–23.
Steroid hormone modulate galectin-1 in the trophoblast HTR-8/SVneo cell line.Crossref | GoogleScholarGoogle Scholar |

Boomsma, C. M., Keay, S. D., and Macklon, N. S. (2007). Peri-implantation glucocorticoid administration for assisted reproductive technology cycles. Cochrane Database Syst. Rev. 24, CD005996.

Cervellati, F., Franceschetti, G., Lunghi, L., Franzellitti, S., Valbonesi, P., Fabbri, E., Biondi, C., and Vesce, F. (2009). Effect of high-frequency electromagnetic fields on trophoblastic connexins. Reprod. Toxicol. 28, 59–65.
Effect of high-frequency electromagnetic fields on trophoblastic connexins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Kmtb8%3D&md5=070e514257860884ff0a359a57dba2ceCAS | 19490996PubMed |

Cronier, L., Alsat, E., Harvè, J. C., Déléze, J., and Malassinè, A. (1998). Dexamethasone stimulates gap-junctional communication, peptide hormone production and differentiation in human term trophoblast. Placenta 19, 35–49.
Dexamethasone stimulates gap-junctional communication, peptide hormone production and differentiation in human term trophoblast.Crossref | GoogleScholarGoogle Scholar | 9481783PubMed |

Cronier, L., Bastide, B., Defamie, N., Niger, C., Pointis, G., Gasc, J. M., and Malassiné, A. (2001). Involvement of gap-junctional communication and connexin expression in trophoblast differentiation of the human placenta. Histol. Histopathol. 16, 285–295..
| 1:STN:280:DC%2BD3M7ks1Ckug%3D%3D&md5=f5035acc413b0cc6fa4e156bc5251f28CAS | 11193204PubMed |

Cronier, L., Defamie, N., Dupays, L., Theveniau-Ruissy, M., Goffin, F., Pointis, G., and Malassiné, A. (2002). Connexin expression and gap-junctional intercellular communication in human first-trimester trophoblast. Mol. Hum. Reprod. 8, 1005–1013.
Connexin expression and gap-junctional intercellular communication in human first-trimester trophoblast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFyjsrw%3D&md5=720f3c53e3f6c3994ef4cdf76a69b21dCAS | 12397213PubMed |

Cronier, L., Frendo, J. L., Defamie, N., Pidoux, G., Bertin, G., Guibourdenche, J., Pointis, G., and Malassiné, A. (2003). Requirement of gap-junctional intercellular communication for human villous trophoblast differentiation. Biol. Reprod. 69, 1472–1480.
Requirement of gap-junctional intercellular communication for human villous trophoblast differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosV2kurw%3D&md5=8a0f1850ec946099f356bb6af3f7b4bcCAS | 12826585PubMed |

Dbouk, H. A., Mroue, R. M., El-Sabban, M. E., and Talhouk, R. S. (2009). Connexins: a myriad of functions extending beyond assembly of gap-junction channels. Cell. Commun. Signal. 7, 1–17..
| 19187548PubMed |

Graham, C. H., Hawley, T. S., Hawley, R. C., MacDougall, J. R., Kerbel, R. S., and Khoo, N. (1993). Establishment and characterization of first-trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 206, 204–211.
Establishment and characterization of first-trimester human trophoblast cells with extended lifespan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1OisL0%3D&md5=ecc4f79cadbd7e95240c1bde88fa2460CAS | 7684692PubMed |

Heikinheimo, O. (1997). Clinical pharmacokinetics of mifepristone. Clin. Pharmacokinet. 33, 7–17.
Clinical pharmacokinetics of mifepristone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltlShsb0%3D&md5=5f2dfb069370d0d335ede257255ce4caCAS | 9250420PubMed |

Keay, S. D., Harlow, C. R., Wood, P. J., Jenkins, J. M., and Cahill, D. J. (2002). Higher cortisol:cortisone ratios in the preovulatory follicle of completely unstimulated IVF cycles indicate oocytes with increased pregnancy potential. Hum. Reprod. 17, 2410–2414.
Higher cortisol:cortisone ratios in the preovulatory follicle of completely unstimulated IVF cycles indicate oocytes with increased pregnancy potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Kmtb0%3D&md5=0e0834a300361349396db36671079c5fCAS | 12202432PubMed |

Kibschull, M., Gellhaus, A., and Winterhager, E. (2008). Analogous and unique functions of connexins in mouse and human placental development. Placenta 29, 848–854.
Analogous and unique functions of connexins in mouse and human placental development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFamtrnJ&md5=901a9b652d3fce679704e0a8154929c7CAS | 18783825PubMed |

Kino, T., Manoli, I., Kelkar, S., Wangc, Y., Su, Y. A., and Chrousos, G. P. (2009). Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity. Biochem. Biophys. Res. Commun. 381, 671–675.
Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVOqs7o%3D&md5=e8a6041ea1c7aa0ed9be6a26a65f8793CAS | 19248771PubMed |

Lewis-Tuffin, L. J., and Cidlowski, J. A. (2006). The physiology of human glucocorticoid receptor β (hGRβ) and glucocorticoid resistance. Ann. N. Y. Acad. Sci. 1069, 1–9.
The physiology of human glucocorticoid receptor β (hGRβ) and glucocorticoid resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovF2gsr8%3D&md5=ef0e63d8d3c2ba1c9e6cd8d93a19f53bCAS | 16855130PubMed |

Lewis-Tuffin, L. J., Jewell, C. M., Bienstock, R. J., Collins, J. B., and Cidlowski, J. A. (2007). Human glucocorticoid receptor β binds RU-486 and is transcriptionally active. Mol. Cell. Biol. 27, 2266–2282.
Human glucocorticoid receptor β binds RU-486 and is transcriptionally active.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVSrtrs%3D&md5=99124d0501ff5b4f410d7273e004d64cCAS | 17242213PubMed |

Liu, J., Matsuo, H., Laoag-Fernandez, J. B., Xu, Q., and Maruo, T. (2007). The effects of progesterone on apoptosis in the human trophoblast-derived HTR-8/SV neo cells. Mol. Hum. Reprod. 13, 869–874.
The effects of progesterone on apoptosis in the human trophoblast-derived HTR-8/SV neo cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivF2jt7c%3D&md5=b2d3ac7b0668375d29025f6aad7156a8CAS | 17962376PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)). Methods 4, 402–408..

Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275..
| 1:CAS:528:DyaG38XhsVyrsw%3D%3D&md5=bf889e650a79a3301ea8a7ff813d6a54CAS | 14907713PubMed |

Malassiné, A., and Cronier, L. (2005). Involvement of gap junctions in placental functions and development. Biochim. Biophys. Acta 1719, 117–124.
Involvement of gap junctions in placental functions and development.Crossref | GoogleScholarGoogle Scholar | 16271349PubMed |

Mandl, M., Ghaffari-Tabrizi, N., Haas, H., Nohammer, G., and Desoye, G. (2006). Differential glucocorticoid effects on proliferation and invasion of human trophoblast cell lines. Reproduction 132, 159–167.
Differential glucocorticoid effects on proliferation and invasion of human trophoblast cell lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Ogt78%3D&md5=d55e709132ad21474963a7b0b38becfbCAS | 16816341PubMed |

Michael, A. E., and Papageorghiou, A. T. (2008). Potential significance of physiological and pharmacological glucocorticoids in early pregnancy. Hum. Reprod. Update 14, 497–517.
Potential significance of physiological and pharmacological glucocorticoids in early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrfE&md5=89430674c86704fcdcb813dc23fba8b6CAS | 18552168PubMed |

Nardo, L. G., and Sallam, H. N. (2006). Progesterone supplementation to prevent recurrent miscarriage and to reduce implantation failure in assisted reproduction cycles. Reprod. Biomed. Online 13, 47–57.
Progesterone supplementation to prevent recurrent miscarriage and to reduce implantation failure in assisted reproduction cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslSnu70%3D&md5=abe6ff7f25eae98c8fdba9daf4ed7938CAS | 16820108PubMed |

Nishimura, T., Dunk, C., Lu, Y., Feng, X., Gellhaus, A., Winterhager, E., Rossant, J., and Lye, S. J. (2004). Gap junctions are required for trophoblast proliferation in early human placental development. Placenta 25, 595–607.
Gap junctions are required for trophoblast proliferation in early human placental development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVegtb8%3D&md5=384de85eb8c7781083e8ebcf30e9b5a9CAS | 15193866PubMed |

Oates-Whitehead, R. M., Haas, D. M., and Carrier, J. A. (2003). Progestogen for preventing miscarriage. Cochrane Database Syst. Rev. 4, CD003511..
| 14583982PubMed |

Ogasawara, M. S., Aoki, K., Aoyama, T., Katano, K., Iinuma, Y., Ozaki, Y., and Suzumori, K. (2000). Elevation of transforming growth factor-beta1 is associated with recurrent miscarriage. J. Clin. Immunol. 20, 453–457.
Elevation of transforming growth factor-beta1 is associated with recurrent miscarriage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVeru7c%3D&md5=f90bf0beaebfcd5101a3f26ec4805cd7CAS | 11202235PubMed |

Olk, S., Zoidl, G., and Dermietzel, R. (2009). Connexin, cell motility and cytoskeleton. Cell Motil. Cytoskeleton 66, 1000–1016.
Connexin, cell motility and cytoskeleton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOls7%2FM&md5=a13da15829a807910e3a78038e0942aaCAS | 19544403PubMed |

Oyamada, M., Oyamada, Y., and Takamatsu, T. (2005). Regulation of connexin expression. Biochim. Biophys. Acta 1719, 6–23.
Regulation of connexin expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlaisLvL&md5=363b8540fce7296b87f6b47b58258f17CAS | 16359940PubMed |

Pattyn, F., Robbrecht, P., De Paepe, A., Speleman, F., and Vandesompele, J. (2006). RTPrimerDB: the real-time PCR primer and probe database, major update 2006. Nucleic Acids Res. 34, D684–D688.
RTPrimerDB: the real-time PCR primer and probe database, major update 2006.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFylug%3D%3D&md5=862871346bf7ed7862728d6cf65ce01dCAS | 16381959PubMed |

Petersen, A., Carlsson, T., Karlsson, J.-O., Jonhede, S., and Zetterberg, M. (2008). Effects of dexamethasone on human lens epithelial cells in culture. Mol. Vis. 14, 1344–1352..
| 1:CAS:528:DC%2BD1cXhtVChu7fK&md5=a08e7864eac31c9e22d7f143f4c921e6CAS | 18648526PubMed |

Quenby, S., Farquharson, R., Young, M., and Vince, G. (2003). Successful pregnancy outcome following 19 consecutive miscarriages: case report. Hum. Reprod. 18, 2562–2564.
Successful pregnancy outcome following 19 consecutive miscarriages: case report.Crossref | GoogleScholarGoogle Scholar | 14645171PubMed |

Quenby, S., Nik, H., Innes, B., Lash, G., Turner, M., Drury, J., and Bulmer, J. (2009). Uterine natural killer cells and angiogenesis in recurrent reproductive failure. Hum. Reprod. 24, 45–54.
Uterine natural killer cells and angiogenesis in recurrent reproductive failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtbfL&md5=075df9511074c084bf982393b4b9d830CAS | 18835875PubMed |

Schmidt, T. J., and Meyer, A. S. (1994). Autoregulation of corticosteroid receptors. How, when, where and why? Receptor 4, 229–257..
| 1:CAS:528:DyaK2MXjsVWru70%3D&md5=a6d37590abef83bb9d6e6ac4ba72c29dCAS | 7894339PubMed |

Spitz, I. M. (2003). Progesterone antagonists and progesterone receptor modulators: an overview. Steroids 68, 981–993.
Progesterone antagonists and progesterone receptor modulators: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1Olu7s%3D&md5=56a84aa6a9435ef20b6f0d1ac1b345f3CAS | 14667991PubMed |

Wardell, S. E., Narayanan, R., Weigel, N. L., and Edwards, D. P. (2010). Partial agonist activity of the progesterone receptor antagonist RU-486 mediated by an amino-terminal domain coactivator and phosphorylation of serine400. Mol. Endocrinol. 24, 335–345.
Partial agonist activity of the progesterone receptor antagonist RU-486 mediated by an amino-terminal domain coactivator and phosphorylation of serine400.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslaqu7c%3D&md5=ad7da65dec04049b2f712687e4e938fdCAS | 20008003PubMed |

Winterhager, E., Von Ostau, C., Gerke, M., Gruemmer, R., Traub, O., and Kaufmann, P. (1999). Connexin expression patterns in human trophoblast cells during placental development. Placenta 20, 627–638.
Connexin expression patterns in human trophoblast cells during placental development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVShurc%3D&md5=5e716bc9dc777068342ba98e18b972d2CAS | 10527817PubMed |

Yague, J. G., Garcia-Segura, L. M., and Azcoitia, I. (2009). Selective transcriptional regulation of aromatase gene by vitamin D, dexamethasone and mifepristone in human glioma cells. Endocrine 35, 252–261.
Selective transcriptional regulation of aromatase gene by vitamin D, dexamethasone and mifepristone in human glioma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVCqtLo%3D&md5=1877badcd37a91e5e70dd88d3670fd1bCAS | 19116788PubMed |