Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Adiposity and plane of nutrition influence reproductive neuroendocrine and appetite responses to intracerebroventricular insulin and neuropeptide-Y in sheep

D. W. Miller D E , E. J. Bennett A B , J. L. Harrison A C D , P. A. Findlay A and C. L. Adam A
+ Author Affiliations
- Author Affiliations

A Obesity and Metabolic Health Division, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, UK.

B Sustainable Livestock Systems Group, Scottish Agricultural College, Aberdeen AB21 9YA, UK.

C School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.

D School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia.

E Corresponding author. Email: d.miller@murdoch.edu.au

Reproduction, Fertility and Development 23(2) 329-338 https://doi.org/10.1071/RD10150
Submitted: 18 June 2010  Accepted: 28 July 2010   Published: 4 January 2011

Abstract

Long-term nutritional background is thought to influence hypothalamic appetite and reproductive neuroendocrine responses to short-term nutritional feedback. In order to investigate this phenomenon, the effects of intracerebroventricular administration of insulin or neuropeptide-Y (NPY) on LH secretion and voluntary food intake (VFI) were examined in sheep that were initially thin and kept on an increasing nutritional plane (INP), or initially fat and kept on a decreasing nutritional plane (DNP), for 10 weeks. Intracerebroventricular insulin stimulated LH secretion and suppressed VFI in INP sheep when initially thin, but not when they became fat, and had no effect on LH in DNP sheep when initially fat, and stimulated LH secretion when they became thin. Intracerebroventricular NPY had no effect on LH or VFI in INP sheep when initially thin, decreased LH secretion and increased VFI when they became fat, and decreased LH secretion in DNP sheep when initially fat but had no effect when they became thin. Therefore, sensitivity to insulin increases with low or decreasing nutritional status and decreases with high or increasing nutritional status, whereas sensitivity to NPY increases with high or increasing nutritional status and decreases with low or decreasing nutritional status. In conclusion, reproductive neuroendocrine and appetite responses to acute changes in nutritional feedback signals depend on the individual’s longer-term nutritional background.

Additional keywords: body fat, food intake, GnRH, hypothalamus, LH.


References

Adam, C. L., and Findlay, P. A. (1998). Inhibition of luteinizing hormone secretion and expression of c-fos and corticotrophin-releasing factor genes in the paraventricular nucleus during insulin-induced hypoglycaemia in sheep. J. Neuroendocrinol. 10, 777–784.
Inhibition of luteinizing hormone secretion and expression of c-fos and corticotrophin-releasing factor genes in the paraventricular nucleus during insulin-induced hypoglycaemia in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmslWktLo%3D&md5=c90f3f561dd88ce725607e422cdcb719CAS | 9792329PubMed |

Adam, C. L., Findlay, P. A., Kyle, C. E., Young, P., and Mercer, J. G. (1997). Effect of chronic food restriction on pulsatile luteinizing hormone secretion and hypothalamic neuropeptide-Y gene expression in castrate male sheep. J. Endocrinol. 152, 329–337.
Effect of chronic food restriction on pulsatile luteinizing hormone secretion and hypothalamic neuropeptide-Y gene expression in castrate male sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVamt7w%3D&md5=23d6e0946e57ca543e8728d410c0dba1CAS | 9071990PubMed |

Adam, C. L., Findlay, P. A., and Moore, A. H. (1998). Effects of insulin-like growth factor-1 on luteinizing hormone secretion in sheep. Anim. Reprod. Sci. 50, 45–56.
Effects of insulin-like growth factor-1 on luteinizing hormone secretion in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1Wltbw%3D&md5=4f2fe59a0f93eed0b79d2706d75f21b2CAS | 9615179PubMed |

Anukulkitch, C., Rao, A., Pereira, A., McEwan, J., and Clarke, I. J. (2010). Expression of genes for appetite-regulating peptides in the hypothalamus of genetically selected lean and fat sheep. Neuroendocrinology 91, 223–238.
Expression of genes for appetite-regulating peptides in the hypothalamus of genetically selected lean and fat sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntFSgsLw%3D&md5=01554532de519dc1a433cc40a8d196d4CAS | 19940452PubMed |

Archer, Z. A., Rhind, S. M., Findlay, P. A., Kyle, C. E., Thomas, L., Marie, M., and Adam, C. L. (2002). Contrasting effects of different levels of food intake and adiposity on LH secretion and hypothalamic gene expression in sheep. J. Endocrinol. 175, 383–393.
Contrasting effects of different levels of food intake and adiposity on LH secretion and hypothalamic gene expression in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xptlaktbk%3D&md5=18cfcc8030f574c7bf1362bccae0282eCAS | 12429036PubMed |

Barker-Gibb, M. L., Scott, C. J., Boublik, J. H., and Clarke, I. J. (1995). The role of neuropeptide-Y (NPY) in the control of LH secretion in the ewe with respect to season, NPY receptor subtype and the site of action in the hypothalamus. J. Endocrinol. 147, 565–579.
The role of neuropeptide-Y (NPY) in the control of LH secretion in the ewe with respect to season, NPY receptor subtype and the site of action in the hypothalamus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslyjtbo%3D&md5=9c2b2f8b67bc00241d7434bdb357309dCAS | 8543927PubMed |

Blache, D., Zhang, S., and Martin, G. B. (2006). Dynamic and integrative aspects of the regulation of reproduction by metabolic status in male sheep. Reprod. Nutr. Dev. 46, 379–390.
Dynamic and integrative aspects of the regulation of reproduction by metabolic status in male sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOnsr3I&md5=726f17e7f3ea15045f56d57a0015e1b3CAS | 16824447PubMed |

Blache, D., Chagas, L. M., and Martin, G. B. (2007). Nutritional inputs into the reproductive neuroendocrine control system – a multidimensional perspective. Soc. Reprod. Fertil. Suppl. 64, 123–139..
| 1:CAS:528:DC%2BD1cXpvVyrs74%3D&md5=b81b058f1e7e1df197dcbf88f7b574f4CAS | 17491144PubMed |

Chilliard, Y., Delavaud, C., and Bonnet, M. (2005). Leptin expression in ruminants: nutritional and physiological regulations in relation with energy metabolism. Domest. Anim. Endocrinol. 29, 3–22.
Leptin expression in ruminants: nutritional and physiological regulations in relation with energy metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVegsr4%3D&md5=6f8df27149fbd6baca0e16d6608bf4d4CAS | 15876510PubMed |

Clarke, I. J., and Cummins, J. T. (1982). The temporal relationship between gonadotrophin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology 111, 1737–1739.
The temporal relationship between gonadotrophin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XmtVyqsrs%3D&md5=cfca7783cc6d3a6561dbd6b48284f649CAS | 6751801PubMed |

Clarke, I. J., and Cummins, J. T. (1985). GnRH pulse frequency determines LH pulse amplitude by altering the amount of releasable LH in the pituitary glands of ewes. J. Reprod. Fertil. 73, 425–431.
GnRH pulse frequency determines LH pulse amplitude by altering the amount of releasable LH in the pituitary glands of ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitFGlt7s%3D&md5=42009029ef04080392b940ac3499bc1bCAS | 3921703PubMed |

Crown, A., Clifton, D. K., and Steiner, R. A. (2007). Neuropeptide signalling in the integration of metabolism and reproduction. Neuroendocrinology 86, 175–182.
Neuropeptide signalling in the integration of metabolism and reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Kjtr7F&md5=33828444341f97a1350cf2fdcf96685aCAS | 17898535PubMed |

Foster, L. A., Ames, N. K., and Emery, R. S. (1991). Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I. Physiol. Behav. 50, 745–749.
Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltF2ltg%3D%3D&md5=f7ec2263b98ac0a32f7919a08f71b785CAS | 1663628PubMed |

Gerozissis, K. (2003). Brain insulin: regulation, mechanisms of action and functions. Cell. Mol. Neurobiol. 23, 1–25.
Brain insulin: regulation, mechanisms of action and functions.Crossref | GoogleScholarGoogle Scholar | 12701881PubMed |

Henry, B. A., Tilbrook, A. J., Dunshea, F. R., Rao, A., Blache, D., Martin, G. B., and Clarke, I. J. (2000). Long-term alterations in adiposity affect the expression of melanin-concentrating hormone and enkephalin but not proopiomelanocortin in the hypothalamus of ovariectomized ewes. Endocrinology 141, 1506–1514.
Long-term alterations in adiposity affect the expression of melanin-concentrating hormone and enkephalin but not proopiomelanocortin in the hypothalamus of ovariectomized ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFOkurY%3D&md5=01b7b94ed36dca583483ec81213f5049CAS | 10746657PubMed |

Ikeda, H., West, D. B., Pustek, J. J., Figlewicz, D. P., Greenwood, M. R., Porte, D., and Woods, S. C. (1986). Intraventricular insulin reduces food intake and body weight of lean but not obese Zucker rats. Appetite 7, 381–386..
| 1:CAS:528:DyaL2sXksVemtw%3D%3D&md5=b979d7eee1a5ad26a93e8a89d5e84088CAS | 3539015PubMed |

Laron, Z. (2009). Insulin and the brain. Arch. Physiol. Biochem. 115, 112–116..
| 1:CAS:528:DC%2BD1MXhtlCqtLjF&md5=0856991ec1dd89a173e5c0f36beb53a1CAS | 19485707PubMed |

MacRae, J. C., Bruce, L. A., Hovell, F. D., Hart, I. C., Inkster, J., Walker, A., and Atkinson, T. (1991). Influence of protein nutrition on the response of growing lambs to exogenous bovine growth hormone. J. Endocrinol. 130, 53–61.
Influence of protein nutrition on the response of growing lambs to exogenous bovine growth hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslShtb0%3D&md5=d5dafab379b2715756a0d5d9900b1ccfCAS | 1880478PubMed |

Mann, G. E., Lamming, G. E., and Fray, M. D. (1995). Plasma oestradiol and progesterone during early pregnancy in the cow and the effects of treatment with buserelin. Anim. Reprod. Sci. 37, 121–131.
Plasma oestradiol and progesterone during early pregnancy in the cow and the effects of treatment with buserelin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFKktLg%3D&md5=18beb92e0b4d67fafe8e24dd90404a68CAS |

Marie, M., Findlay, P. A., Thomas, L., and Adam, C. L. (2001). Daily patterns of plasma leptin in sheep: effects of photoperiod and food intake. J. Endocrinol. 170, 277–286.
Daily patterns of plasma leptin in sheep: effects of photoperiod and food intake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlaksLw%3D&md5=49455b6824395906da0bccffa7d25530CAS | 11431161PubMed |

McMahon, C. D., Buxton, D. F., Elsasser, T. H., Gunter, D. R., Sanders, L. G., Steele, B. P., and Sartin, J. L. (1999). Neuropeptide-Y restores appetite and alters concentrations of GH after central administration to endotoxic sheep. J. Endocrinol. 161, 333–339.
Neuropeptide-Y restores appetite and alters concentrations of GH after central administration to endotoxic sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs12ktb4%3D&md5=2e444baeb105cd2320c44cfe8a68cc5eCAS | 10320832PubMed |

McShane, T. M., May, T., Miner, J. L., and Keisler, D. H. (1992). Central actions of neuropeptide-Y may provide a neuromodulatory link between nutrition and reproduction. Biol. Reprod. 46, 1151–1157.
Central actions of neuropeptide-Y may provide a neuromodulatory link between nutrition and reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVWkurg%3D&md5=a0b563c4f5707f219f5b009d46eb17b4CAS | 1391313PubMed |

McShane, T. M., Petersen, S. L., McCrone, S., and Keisler, D. H. (1993). Influence of food restriction on neuropeptide-Y, proopiomelanocortin, and luteinizing hormone-releasing hormone gene expression in sheep hypothalami. Biol. Reprod. 49, 831–839.
Influence of food restriction on neuropeptide-Y, proopiomelanocortin, and luteinizing hormone-releasing hormone gene expression in sheep hypothalami.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVWltLY%3D&md5=0f3de9e85de0e33fee75ed11e27fc908CAS | 8218649PubMed |

Miller, D. W., Blache, D., and Martin, G. B. (1995). The role of intracerebral insulin in the effect of nutrition on gonadotrophin secretion in mature male sheep. J. Endocrinol. 147, 321–329.
The role of intracerebral insulin in the effect of nutrition on gonadotrophin secretion in mature male sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptVChsrg%3D&md5=312372c5f1452bd3d81ed89043b92616CAS | 7490562PubMed |

Miller, D. W., Blache, D., Boukhliq, R., Curlewis, J. D., and Martin, G. B. (1998). Central metabolic messengers and the effects of nutrition on gonadotrophin secretion in sheep. J. Reprod. Fertil. 112, 347–356.
Central metabolic messengers and the effects of nutrition on gonadotrophin secretion in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVensLc%3D&md5=fc63a81a63710446aa4e6b0144133908CAS | 9640274PubMed |

Miller, D. W., Findlay, P. A., Morrison, M. A., and Adam, C. L. (2002). Seasonal and dose-dependent effects of intracerebroventricular leptin on LH secretion and appetite in sheep. J. Endocrinol. 175, 395–404.
Seasonal and dose-dependent effects of intracerebroventricular leptin on LH secretion and appetite in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlaktbY%3D&md5=e619ed2113e95f31e8e967e6549ee977CAS | 12429037PubMed |

Miller, D. W., Harrison, J. L., Bennett, E. J., Findlay, P. A., and Adam, C. L. (2007). Nutritional influences on reproductive neuroendocrine output: insulin, leptin and orexigenic neuropeptide signalling in the ovine hypothalamus. Endocrinology 148, 5313–5322.
Nutritional influences on reproductive neuroendocrine output: insulin, leptin and orexigenic neuropeptide signalling in the ovine hypothalamus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1aju7nK&md5=bacbc14897d06b05f9cfc78c1431d5e3CAS | 17702844PubMed |

Morrison, C. D., Daniel, J. A., Hampton, J. H., Buff, P. R., McShane, T. M., Thomas, M. G., and Keisler, D. H. (2003). Luteinizing hormone and growth hormone secretion in ewes infused intracerebroventricularly with neuropeptide-Y. Domest. Anim. Endocrinol. 24, 69–80.
Luteinizing hormone and growth hormone secretion in ewes infused intracerebroventricularly with neuropeptide-Y.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFGrurc%3D&md5=9e304a6f22ab0f2ae0dc9a23134fc3e4CAS | 12450626PubMed |

Nilsson, C., Lindvall-Axelsson, M., and Owman, C. (1991). Simultaneous and continuous measurement of choroid plexus blood flow and cerebrospinal fluid production: effects of vasoactive intestinal polypeptide. J. Cereb. Blood Flow Metab. 11, 861–867..
| 1:CAS:528:DyaK3MXmt1Ciurk%3D&md5=63849a86374963ab4cbe2bc39cd798ddCAS | 1874819PubMed |

Pollay, M., Stevens, A., Estrada, E., and Kaplan, R. (1972). Excorporeal perfusion of choroid plexus. J. Appl. Physiol. 32, 612–617..
| 1:CAS:528:DyaE38XktFOiurg%3D&md5=1f22f354040bae434b1ca91007f243adCAS | 5038848PubMed |

Posey, K. A., Clegg, D. J., Printz, R. L., Byun, J., Morton, G. J., et al. (2009). Hypothalamic proinflammatory lipid accumulation, inflammation and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 296, E1003–E1012.
Hypothalamic proinflammatory lipid accumulation, inflammation and insulin resistance in rats fed a high-fat diet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFags7w%3D&md5=b894cdbc776e64971adfbccc2d451893CAS | 19116375PubMed |

Pralong, F. P. (2010). Insulin and NPY pathways and the control of GnRH function and puberty onset. Mol. Cell. Endocrinol. 324, 82–86.
Insulin and NPY pathways and the control of GnRH function and puberty onset.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWqsro%3D&md5=10b8968608405b1d8c981d0d06a8aa20CAS | 20138117PubMed |

Russel, A. J. F., Doney, J. M., and Gunn, R. G. (1969). Subjective assessment of body fat in live sheep. J. Agric. Sci. 72, 451–454.
Subjective assessment of body fat in live sheep.Crossref | GoogleScholarGoogle Scholar |

Schwartz, G. J. (2009). Your brain on fat: dietary-induced obesity impairs central nutrient sensing. Am. J. Physiol. Endocrinol. Metab. 296, E967–E968.
Your brain on fat: dietary-induced obesity impairs central nutrient sensing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFagsrk%3D&md5=9699352cddd579e184a51a44da97109cCAS | 19318517PubMed |

Szymanski, L. A., Schneider, J. E., Friedman, M. I., Ji, H., Kurose, Y., Blache, D., Rao, A., Dunshea, F. R., and Clarke, I. J. (2007). Changes in insulin, glucose and ketone bodies, but not leptin or body fat content precede restoration of luteinising hormone secretion in ewes. J. Neuroendocrinol. 19, 449–460.
Changes in insulin, glucose and ketone bodies, but not leptin or body fat content precede restoration of luteinising hormone secretion in ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVWnurY%3D&md5=142c17a235c8c5123c27208742369caaCAS | 17504439PubMed |

Trenkle, A. (1981). Endocrine regulation of energy metabolism in ruminants. Fed. Proc. 40, 2536–2541..
| 1:CAS:528:DyaL3MXltFagsLc%3D&md5=611f06bb28abcac0294720102261596aCAS | 7021187PubMed |

Zhang, S., Blache, D., Blackberry, M. A., and Martin, G. B. (2005). Body reserves affect the reproductive endocrine responses to an acute change in nutrition in mature male sheep. Anim. Reprod. Sci. 88, 257–269.
Body reserves affect the reproductive endocrine responses to an acute change in nutrition in mature male sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvV2mt7o%3D&md5=439f8ac87f0e53dcc9717c83ed69dab6CAS | 16143216PubMed |