Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Putative imprinted gene expression in uniparental bovine embryo models

Nancy T. D’ Cruz A E , Katrina J. Wilson A , Melissa A. Cooney A , R. Tayfur Tecirlioglu B , Irina Lagutina C , Cesare Galli C D , Michael K. Holland A and Andrew J. French A
+ Author Affiliations
- Author Affiliations

A Monash Institute of Medical Research, Monash University, Clayton, Vic. 3168, Australia.

B Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Vic. 3800, Australia.

C Laboratorio di Tecnologie della Riproduzione, Instituto Sperimentale Italiano Lazzaro Spallanzani, Cremona 26100, Italy.

D Dipartimento Clinico Veterinario, Università di Bologna, Ozzano Emilia (Bologna) 50-40064, Italy.

E Corresponding author. Email: nancy.dcruz@med.monash.edu.au

Reproduction, Fertility and Development 20(5) 589-597 https://doi.org/10.1071/RD08024
Submitted: 8 February 2008  Accepted: 7 April 2008   Published: 21 May 2008

Abstract

Altered patterns of gene expression and the imprinted status of genes have a profound effect on cell physiology and can markedly alter embryonic and fetal development. Failure to maintain correct imprinting patterns can lead to abnormal growth and behavioural problems, or to early pregnancy loss. Recently, it has been reported that the Igf2R and Grb10 genes are biallelically expressed in sheep blastocysts, but monoallelically expressed at Day 21 of development. The present study investigated the imprinting status of 17 genes in in vivo, parthenogenetic and androgenetic bovine blastocysts in order to determine the prevalence of this unique phenomenon. Specifically, the putatively imprinted genes Ata3, Impact, L3Mbtl, Magel2, Mkrn3, Peg3, Snrpn, Ube3a and Zac1 were investigated for the first time in bovine in vitro fertilised embryos. Ata3 was the only gene not detected. The results of the present study revealed that all genes, except Xist, failed to display monoallelic expression patterns in bovine embryos and support recent results reported for ovine embryos. Collectively, the data suggest that monoallelic expression may not be required for most imprinted genes during preimplantation development, especially in ruminants. The research also suggests that monoallelic expression of genes may develop in a gene- and time-dependent manner.

Additional keywords: androgenetic, genomic imprinting, parthenogenetic, preimplantation.


Acknowledgements

The authors thank Dr Sigrid Lehnert for her helpful discussions and leadership. This research was funded, in part, by the Co-operative Research Centre for Innovative Dairy Products (Melbourne, Victoria, Australia). The androgenetic work, as part of the European Science Foundation EUROCORES Program EuroSTELLS, was supported, in part, by funds from the European Commission Sixth Framework Program under contract no. ERAS-CT-2003–980409, EU grant Xenome (LSHB-CT-2006–037377) and by the Cariplo Foundation NOBEL program.


References

Abdollahi, A. , Pisarcik, D. , Roberts, D. , Weinstein, J. , Cairns, P. , and Hamilton, T. C. (2003). LOT1 (PLAGL1/ZAC1), the candidate tumor suppressor gene at chromosome 6q24–25, is epigenetically regulated in cancer. J. Biol. Chem. 278, 6041–6049.
Crossref | GoogleScholarGoogle Scholar | PubMed | Hall V. J., Ruddock N. T., Tercirlioglu R. T., Cooney M. A., and French A. J. (2005a) An expression profile of genes crucial for placental development in single in vivo, in vitro and cloned bovine blastocysts. Reprod. Fertil. Dev. 17, 261. [Abstract]

Hall, V. J. , Ruddock, N. T. , and French, A. J. (2005b). Expression profiling of genes crucial for placental and preimplantation development in bovine in vivo, in vitro, and nuclear transfer blastocysts. Mol. Reprod. Dev. 72, 16–24.
Crossref | GoogleScholarGoogle Scholar | PubMed | National Health and Medical Research Council of Australia (NHMRC) (2004). Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, 7th edn. Available at http://www.nhmrc.gov/publications/synopses/ea16syn.htm [Verified 21 April 2008].

Obata, Y. , and Kono, T. (2002). Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J. Biol. Chem. 277, 5285–5289.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Okamoto, I. , Otte, A. P. , Allis, C. D. , Reinberg, D. , and Heard, E. (2004). Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Okamura, K. , Hagiwara-Takeuchi, Y. , Li, T. , Vu, T. H. , Hirai, M. , Hattori, M. , Sakaki, Y. , Hoffman, A. R. , and Ito, T. (2000). Comparative genome analysis of the mouse imprinted gene impact and its nonimprinted human homolog IMPACT: toward the structural basis for species-specific imprinting. Genome Res. 10, 1878–1889.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Okamura, K. , Sakaki, Y. , and Ito, T. (2005). Comparative genomics approach toward critical determinants for the imprinting of an evolutionarily conserved gene Impact. Biochem. Biophys. Res. Commun. 329, 824–830.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Peterson, A. J. , and Lee, R. S. (2003). Improving successful pregnancies after embryo transfer. Theriogenology 59, 687–697.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Piras, G. , El Kharroubi, A. , Kozlov, S. , Escalante-Alcalde, D. , Hernandez, L. , Copeland, N. G. , Gilbert, D. J. , Jenkins, N. A. , and Stewart, C. L. (2000). Zac1 (Lot1), a potential tumor suppressor gene, and the gene for epsilon-sarcoglycan are maternally imprinted genes: identification by a subtractive screen of novel uniparental fibroblast lines. Mol. Cell. Biol. 20, 3308–3315.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Relaix, F. , Wei, X. , Li, W. , Pan, J. , Lin, Y. , Bowtell, D. D. , Sassoon, D. A. , and Wu, X. (2000). Pw1/Peg3 is a potential cell death mediator and cooperates with Siah1a in p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 97, 2105–2110.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rougeulle, C. , Glatt, H. , and Lalande, M. (1997). The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat. Genet. 17, 14–15.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ruddock, N. T. , Wilson, K. J. , Cooney, M. A. , Korfiatis, N. A. , Tecirlioglu, R. T. , and French, A. J. (2004). Analysis of imprinted messenger RNA expression during bovine preimplantation development. Biol. Reprod. 70, 1131–1135.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ruf, N. , Dunzinger, U. , Brinckmann, A. , Haaf, T. , Nurnberg, P. , and Zechner, U. (2006). Expression profiling of uniparental mouse embryos is inefficient in identifying novel imprinted genes. Genomics 87, 509–519.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Salpekar, A. , Huntriss, J. , Bolton, V. , and Monk, M. (2001). The use of amplified cDNA to investigate the expression of seven imprinted genes in human oocytes and preimplantation embryos. Mol. Hum. Reprod. 7, 839–844.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sotomaru, Y. , Katsuzawa, Y. , Hatada, I. , Obata, Y. , Sasaki, H. , and Kono, T. (2002). Unregulated expression of the imprinted genes H19 and Igf2r in mouse uniparental fetuses. J. Biol. Chem. 277, 12 474–12 478.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sugawara, M. , Nakanishi, T. , Fei, Y. J. , Martindale, R. G. , Ganapathy, M. E. , Leibach, F. H. , and Ganapathy, V. (2000). Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle. Biochim. Biophys. Acta 1509, 7–13.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Surani, M. A. (1994). Genomic imprinting: control of gene expression by epigenetic inheritance. Curr. Opin. Cell Biol. 6, 390–395.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Surani, M. A. , Barton, S. C. , and Norris, M. L. (1984). Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Szabo, P. E. , and Mann, J. R. (1995). Allele-specific expression and total expression levels of imprinted genes during early mouse development: implications for imprinting mechanisms. Genes Dev. 9, 3097–3108.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tanimoto, K. , Shimotsuma, M. , Matsuzaki, H. , Omori, A. , Bungert, J. , Engel, J. D. , and Fukamizu, A. (2005). Genomic imprinting recapitulated in the human beta-globin locus. Proc. Natl Acad. Sci. USA 102, 10 250–10 255.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thurston, A. , Taylor, J. , Gardner, J. , Sinclair, K. D. , and Young, L. E. (2008). Monoallelic expression of nine imprinted genes in the sheep embryo occurs after the blastocyst stage. Reproduction 135, 29–40.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Varrault, A. , Gueydan, C. , Delalbre, A. , Bellmann, A. , and Houssami, S. , et al. (2006). Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev. Cell 11, 711–722.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vu, T. H. , Li, T. , Nguyen, D. , Nguyen, B. T. , Yao, X. M. , Hu, J. F. , and Hoffman, A. R. (2000). Symmetric and asymmetric DNA methylation in the human IGF2–H19 imprinted region. Genomics 64, 132–143.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Walter, J. , and Paulsen, M. (2003). Imprinting and disease. Semin. Cell Dev. Biol. 14, 101–110.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Williams, C. A. (2005). Neurological aspects of the Angelman syndrome. Brain Dev. 27, 88–94.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wrzeska, M. , and Rejduch, B. (2004). Genomic imprinting in mammals. J. Appl. Genet. 45, 427–433.
PubMed |

Xu, K. P. , Yadav, B. R. , King, W. A. , and Betteridge, K. J. (1992). Sex-related differences in developmental rates of bovine embryos produced and cultured in vitro. Mol. Reprod. Dev. 31, 249–252.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yang, Y. , Li, T. , Vu, T. H. , Ulaner, G. A. , Hu, J. F. , and Hoffman, A. R. (2003). The histone code regulating expression of the imprinted mouse Igf2r gene. Endocrinology 144, 5658–5670.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yohn, C. B. , Pusateri, L. , Barbosa, V. , and Lehmann, R. (2003). l(3) malignant brain tumor and three novel genes are required for Drosophila germ-cell formation. Genetics 165, 1889–1900.
PubMed |

Young, L. E. , and Fairburn, H. R. (2000). Improving the safety of embryo technologies: possible role of genomic imprinting. Theriogenology 53, 627–648.
Crossref | GoogleScholarGoogle Scholar | PubMed |