Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Bovine in vitro oocyte maturation as a model for manipulation of the γ-glutamyl cycle and intraoocyte glutathione

E. C. Curnow A B C , J. Ryan B , D. Saunders B and E. S. Hayes A
+ Author Affiliations
- Author Affiliations

A University of Washington National Primate Research Center, University of Washington, Box 357331, Seattle, WA 98195, USA.

B University of Sydney, Faculty of Medicine, Sydney, NSW 2006, Australia.

C Corresponding author. Email: ecur6111@usyd.com.au

Reproduction, Fertility and Development 20(5) 579-588 https://doi.org/10.1071/RD08041
Submitted: 3 March 2008  Accepted: 10 April 2008   Published: 21 May 2008

Abstract

Glutathione (GSH) is the main non-enzymatic defence against oxidative stress and is a critical intracellular component required for oocyte maturation. In the present study, several modulators of intracellular GSH were assessed for their effect on the in vitro maturation (IVM) and intracellular GSH content of bovine metaphase (MII) oocytes. Of the five GSH modulators tested, only the cell-permeable GSH donor glutathione ethyl ester (GSH-OEt) significantly increased the GSH content of IVM MII oocytes in a concentration-dependent manner without adversely affecting oocyte maturation rate. The GSH level in IVM MII oocytes was greatly influenced by the presence or absence of cumulus cells and severely restricted when oocytes were cultured in the presence of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis. The addition of GSH-OEt to cumulus-denuded or BSO-treated oocytes increased the GSH content of bovine MII oocytes. Supplementation of the maturation medium with bovine serum albumin (BSA) or fetal calf serum (FCS) affected the GSH content of IVM MII oocytes, with greater levels attained under BSA culture conditions. The addition of GSH-OEt to the maturation medium increased the GSH content of IVM MII oocytes, irrespective of protein source. Spindle morphology, as assessed by immunocytochemistry and confocal microscopy, displayed distinct alterations in response to changes in oocyte GSH levels. GSH depletion caused by BSO treatment tended to widen spindle poles and significantly increased spindle area. Supplementation of the IVM medium with GSH-OEt increased spindle length, but did not significantly alter spindle area or spindle morphology. GSH-OEt represents a novel oocyte-permeable and cumulus cell-independent approach for effective elevation of mammalian oocyte GSH levels.

Additional keywords: α-aminobutyrate, apocynin, cysteine ethyl ester, glutathione ethyl ester, prostaglandin J2.


References

Abeydeera, L. R. , Wang, W.-H. , Cantley, T. C. , Prather, R. S. , and Day, B. N. (1999). Glutathione content and embryo development after in vitro fertilisation of pig oocytes matured in the presence of a thiol compound and various concentrations of cysteine. Zygote 7, 203–210.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Albertini, D. F. (1992). Cytoplasmic microtubular dynamics and chromatin organization during mammalian oogenesis and oocyte maturation. Mutat. Res 296, 57–68.
PubMed |

Avery, B. , and Greve, T. (2000). Effects of ethanol and dimethylsulphoxide on nuclear and cytoplasmic maturation of bovine cumulus-oocyte complexes. Mol. Reprod. Dev. 55, 438–445.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Barbieri, S. S. , Cavalca, V. , Eligini, S. , Brambilla, M. , Caiani, A. , Tremoli, E. , and Colli, S. (2004). Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependant mechanisms. Free Radic. Biol. Med. 37, 156–165.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Brad, A. M. , Bormann, C. L. , Swain, J. E. , Durkin, R. E. , Johnson, A. E. , Clifford, A. L. , and Krisher, R. L. (2003). Glutathione and adenosine triphosphate content of in vivo and in vitro matured porcine oocytes. Mol. Reprod. Dev. 64, 492–498.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cetica, P. D. , Pintos, L. N. , Dalvit, G. C. , and Beconi, M. T. (2001). Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life 51, 57–64.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Comizzoli, P. , Wildt, D. E. , and Pukazhenthi, B. S. (2003). Overcoming poor in vitro nuclear maturation and developmental competence of domestic cat oocytes during the non-breeding season. Reproduction 126, 809–816.
Crossref | GoogleScholarGoogle Scholar | PubMed |

de Matos, D. G. , and Furnus, C. C. (2000). The importance of having high glutathione (GSH) levels after bovine in vitro maturation on embryo development: effect of β-mercaptoethanol, cysteine and cystine. Theriogenology 53, 761–771.
Crossref | GoogleScholarGoogle Scholar | PubMed |

de Matos, D. G. , Furnus, C. C. , Moses, D. F. , and Baldassarre, H. (1995). Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro. Mol. Reprod. Dev. 42, 432–436.
Crossref | GoogleScholarGoogle Scholar | PubMed |

de Matos, D. G. , Furnus, C. C. , and Moses, D. F. (1997). Glutathione synthesis during in vitro maturation of bovine oocytes: role of cumulus cells. Biol. Reprod. 57, 1420–1425.
Crossref | GoogleScholarGoogle Scholar | PubMed |

de Matos, D. G. , Gasparrini, B. , Pasqualini, S. R. , and Thompson, J. G. (2002). Effect of glutathione synthesis stimulation during in vitro maturation of ovine oocytes on embryo development and intracellular peroxide content. Theriogenology 57, 1443–1451.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fukui, K. , Kaneda, M. , Takahashi, E. , Washio, M. , and Doi, K. (1994). Protective effects of sulfhydryl compounds on HOCl-induced intracellular Ca2+ increase in single rat ventricular myocytes. J. Mol. Cell. Cardiol. 26, 455–461.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gasparrini, B. , Sayoud, H. , Neglia, G. , de Matos, D. G. , Donnay, I. , and Zicarelli, L. (2003). Glutathione synthesis during in vitro maturation of buffalo (Bubalus bubalis) oocytes: effects of cysteamine on embryos development. Theriogenology 60, 943–952.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Geshi, M. , Takenouchi, N. , Yaamauchi, N. , and Nagai, T. (2000). Effects of sodium pyruvate in nonserum maturation medium on maturation, fertilization, and subsequent development of bovine oocytes with or without cumulus cells. Biol. Reprod. 63, 1730–1734.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Griffith, O. W. , and Meister, A. (1979). Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (s-n-butyl homocysteine sulfoximine). J. Biol. Chem. 254, 7558–7560.
PubMed |

Guarnieri, C. , Turinetto, B. , Coli, G. , Muscari, C. , Cattabriga, I. , Vaona, I. , Finelli, C. , Pigini, F. , and Caldarera, C. M. (1993). Effect of glutathione monoethyl ester on glutathione level and cardiac energetics in reperfused pig heart. Res. Commun. Chem. Pathol. Pharmacol. 81, 33–44.
PubMed |

Ishii, T. , and Bannai, S. (1985). The synergistic action of the copper chelator bathocuproine sulphonate and cysteine in enhancing growth of L1210 cells in vitro. J. Cell. Physiol. 125, 151–155.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jensen, G. L. , and Meister, A. (1983). Radioprotection of human lymphoid cells by exogenously supplied glutathione is mediated by γ-glutamyl transpeptidase. Proc. Natl Acad. Sci. USA 80, 4714–4717.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lapperre, T. S. , Jimenez, L. A. , Antonicelli, F. , Drost, E. M. , Hiemstra, P. S. , Stolk, J. , MacNee, W. , and Rahman, I. (1999). Apocynin increases glutathione synthesis and activates AP-1 in alveolar epithelial cells. FEBS Lett. 443, 235–239.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Levonen, A.-L. , Dickinson, D. A. , Moellering, D. R. , Mulcahy, R. T. , Forman, H. J. , and Darley-Usmar, V. M. (2001). Biphasic effects of 15-deoxy-Δ12,14-prostaglandin J2 on glutathione induction and apoptosis in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 21, 1846–1851.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lonergan, P. , O’Kearney-Flynn, M. , and Boland, M. P. (1999). Effect of protein supplementation and presence of an antioxidant on the development of bovine zygotes in synthetic oviduct fluid medium under high or low oxygen tension. Theriogenology 51, 1565–1576.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Luciano, A. M. , Lodde, V. , Beretta, M. S. , Colleoni, S. , Lauria, A. , and Modina, S. (2005). Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus–oocyte complexes: role of cumulus cells, cyclic adenosine 3′,5′-monophosphate, and glutathione. Mol. Reprod. Dev. 71, 389–397.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Luciano, A. M. , Goudet, G. , Perazzoli, F. , Lahuec, C. , and Gérard, N. (2006). Glutathione content and glutathione peroxidase expression in in vivo and in vitro matured equine oocytes. Mol. Reprod. Dev. 73, 658–666.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Meister, A. (1985). Methods for the selective modification of glutathione metabolism and study of glutathione transport. Methods Enzymol. 113, 571–585.
PubMed |

Meister, A. , and Anderson, M. E. (1983). Glutathione. Annu. Rev. Biochem. 52, 711–760.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Meister, A. , and Tate, S. S. (1976). Glutathione and related γ-glutamyl compounds: biosynthesis and utilization. Annu. Rev. Biochem. 45, 559–604.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mori, T. , Amano, T. , and Shimizu, H. (2000). Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biol. Reprod. 62, 913–919.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nath, J. , and Rebhun, L. I. (1976). Effects of caffeine and other methylxanthines on the development and metabolism of sea urchin eggs. Involvement of NADP+ and glutathione. J. Cell Biol. 68, 440–450.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ohno, K. , and Hirata, M. (1990). Induction of γ-glutamylcysteine synthetase by prostaglandin A2 in L-1210 cells. Biochem. Biophys. Res. Commun. 168, 551–557.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Oliver, J. M. , Albertini, D. F. , and Berlin, R. D. (1976). Effects of glutathione-oxidizing agents on microtubule assembly and microtubule-dependant surface properties of human neutrophils. J. Cell Biol. 71, 921–932.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Oyamada, T. , and Fukui, Y. (2004). Oxygen tension and medium supplements for in vitro maturation of bovine oocytes cultured individually in a chemically defined medium. J. Reprod. Dev. 50, 107–117.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Perreault, S. D. , Barbee, R. R. , and Slott, V. L. (1988). Importance of glutathione in the acquisition and maintenance of sperm nuclear decondensing activity in maturing hamster oocytes. Dev. Biol. 125, 181–186.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Richman, P. G. , and Meister, A. (1975). Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J. Biol. Chem. 250, 1422–1426.
PubMed |

Riganti, C. , Costamagna, C. , Bosia, A. , and Ghigo, D. (2006). The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress. Toxicol. Appl. Pharmacol. 212, 179–187.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Roberts, R. , Iatropoulou, A. , Ciantar, D. , Stark, J. , Becker, D. , Franks, S. , and Hardy, K. (2005). Follicle-stimulating hormone affects metaphase I chromosome alignment and increases aneuploidy in mouse oocytes matured in vitro. Biol. Reprod. 72, 107–118.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sagirkaya, H. , Misirlioglu, M. , Kaya, A. , First, N. L. , Parrish, J. J. , and Memili, E. (2007). Developmental potential of bovine oocytes cultured in different maturation and culture conditions. Anim. Reprod. Sci. 101, 225–240.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sanfins, A. , Lee, G. Y. , Plancha, C. E. , Overstrom, E. W. , and Albertini, D. F. (2003). Distinctions in meiotic spindle structure and assembly during in vitro and in vivo maturation of mouse oocytes. Biol. Reprod. 69, 2059–2067.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Steenvoorden, D. P. T. , and Beijersbergen van Henegouwen, G. M. J. (1998). Glutathione ethylester protects against local and systemic suppression of contact hypersensitivity induced by ultraviolet B radiation in mice. Radiat. Res. 150, 292–297.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sutovsky, P. , and Schatten, G. (1997). Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization. Biol. Reprod. 56, 1503–1512.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Takahashi, M. , Nagai, T. , Hamano, S. , Kuwayama, M. , Okamura, N. , and Okano, A. (1993). Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol. Reprod. 49, 228–232.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tatemoto, H. , Sakurai, N. , and Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol. Reprod. 63, 805–810.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ueno, S. , Kurome, M. , Ueda, H. , Tomii, R. , Hiruma, K. , and Nagashima, H. (2005). Effects of maturation conditions on spindle morphology in porcine MII oocytes. J. Reprod. Dev. 51, 405–410.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wayner, D. D. M. , Burton, G. W. , Ingold, K. U. , and Locke, S. (1985). Quantitative measurement of total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. FEBS Lett. 187, 33–37.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Whitaker, B. D. , and Knight, J. W. (2004). Exogenous γ-glutamyl cycle compounds supplemented to in vitro maturation medium influence in vitro fertilization, culture, and viability parameters of porcine oocytes and embryos. Theriogenology 62, 311–322.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhang, L. , Jiang, S. , Wazniak, P. J. , Yang, X. , and Godke, R. A. (1995). Cumulus cell function during oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev. 40, 338–344.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zuelke, K. A. , Jones, D. P. , and Perreault, S. D. (1997). Glutathione oxidation is associated with altered microtubule function and disrupted fertilization in mature hamster oocytes. Biol. Reprod. 57, 1413–1419.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zuelke, K. A. , Jeffay, S. C. , Zucker, R. M. , and Perreault, S. D. (2003). Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos. Mol. Reprod. Dev. 64, 106–112.
Crossref | GoogleScholarGoogle Scholar | PubMed |