Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

A unique method to produce transgenic embryos in ovine, porcine, feline, bovine and equine species

F. Pereyra-Bonnet A , R. Fernández-Martín A , R. Olivera A , J. Jarazo A , G. Vichera A , A. Gibbons B and D. Salamone A C
+ Author Affiliations
- Author Affiliations

A Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417 Buenos Aires, Argentina.

B Laboratorio de Reproducción de Rumiantes Menores, Instituto Nacional de Tecnología Agropecuaria, Box 277, EEA Bariloche, Argentina.

C Corresponding author. Email: salamone@agro.uba.ar

Reproduction, Fertility and Development 20(7) 741-749 https://doi.org/10.1071/RD07172
Submitted: 24 September 2007  Accepted: 21 April 2008   Published: 1 August 2008

Abstract

Transgenesis is an essential tool in many biotechnological applications. Intracytoplasmic sperm injection (ICSI)-mediated gene transfer is a powerful technique to obtain transgenic pups; however, most domestic animal embryos do not develop properly after ICSI. An additional step in the protocol, namely assistance by haploid chemical activation, permits the use of ICSI-mediated gene transfer to generate transgenic preimplantation embryos in a wide range of domestic species, including ovine, porcine, feline, equine and bovine. In the present study, spermatozoa from five species were coincubated with pCX-EGFP plasmid and injected into metaphase II oocytes. The chemical activation protocol consisted of ionomycin plus 6-dimethylaminopurine. We detected high proportions of fluorescent EGFP embryos for all five species (23–60%), but with a high frequency of mosaic expression (range 60–85%). To our knowledge, this is the first study to produce exogenous DNA expression in feline and equine embryos. Chemical activation reduces the lag phase of egfp expression in ovine embryos. Our results show that this unique method could be used to obtain ovine, porcine, feline, bovine and equine transgenic preimplantation embryos.

Additional keywords: chemical activation, gene expression, sperm mediated, transgenic mammals.


Acknowledgements

The authors are grateful to Marcela Cueto for critical suggestions and revision of the manuscript. The authors thank Mr. Fernando and Alejandro Gonzales (El Ombu), Dr M. Lloveras (INTA Pergamino), CIALE and Dr San Martín (La Pompeya) for providing the biological material and Dr N. Judewicz (BIOSIDUS) for technical assistance. The authors extend their special thanks in memory of María Muhlmann for her generous assistance with FISH analysis. Part of this work was financed by the Instituto Nacional de Tecnología Agropecuaria (AEGR 3424).


References

Alderson, J. , Wilson, B. , Laible, G. , Pfeffer, P. , and L’Huillier, P. (2006). Protamine sulfate protects exogenous DNA against nuclease degradation but is unable to improve the efficiency of bovine sperm mediated transgenesis. Anim. Reprod. Sci. 91, 23–30.
Crossref | GoogleScholarGoogle Scholar | PubMed | SAS Institute (1989). ‘SAS/STAT: User’s Guide. Version 6. Vol. 1.’ 4th edn. (SAS Institute: Cary, NC.)

Schnieke, A. E. , Kind, A. J. , Ritchie, W. A. , Mycock, K. , Scott, A. R. , Ritchie, M. , Wilmut, I. , Colman, A. , and Campbell, K. H. (1997). Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shemesh, M. , Gurevich, M. , Harel-Markowitz, E. , Benvenisti, L. , Shore, L. S. , and Stram, Y. (2000). Gene integration into bovine sperm genome and its expression in transgenic offspring. Mol. Reprod. Dev. 56(Suppl. 2), 306–308.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Smith, K. , and Spadafora, C. (2005). Sperm-mediated gene transfer: applications and implications. Bioessays 27, 551–562.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Smolenski, R. T. , Forni, M. , Maccherini, M. , Bacci, M. L. , and Slominska, E. M. , et al. (2007). Reduction of hyperacute rejection and protection of metabolism and function in hearts of human decay accelerating factor (hDAF)-expressing pigs. Cardiovasc. Res. 73, 143–152.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Susko-Parrish, J. L. , Liebfried-Rutledge, M. L. , Northey, D. L. , Schutzkus, V. , and First, N. L. (1994). Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Dev. Biol. 166, 729–739.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Szczygiel, M. A. , Moisyadi, S. , and Ward, W. S. (2003). Expression of foreign DNA is associated with paternal chromosome degradation in intracytoplasmic sperm injection-mediated transgenesis in the mouse. Biol. Reprod. 68, 1903–1910.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tian, J. H. , Wu, Z. H. , Liu, L. , Cai, Y. , Zeng, S. M. , Zhu, S. E. , Liu, G. S. , Li, Y. , and Wu, C. X. (2006). Effects of oocyte activation and sperm preparation on the development of porcine embryos derived from in vitro-matured oocytes and intracytoplasmic sperm injection. Theriogenology 66, 439–448.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wall, R. J. , Powell, A. M. , Paape, M. J. , Kerr, D. E. , Bannerman, D. D. , Pursel, V. G. , Wells, K. D. , Talbot, N. , and Hawk, H. W. (2005). Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat. Biotechnol. 23, 445–451.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wrenzycki, C. , Herrmann, D. , Gebert, C. , Carnwath, J. W. , and Niemann, H. (2006). Gene expression and methylation patterns in cloned embryos. Methods Mol. Biol. 348, 285–304.
PubMed |

Yamauchi, Y. , Doe, B. , Ajduk, A. , and Ward, M. A. (2007). Genomic DNA damage in mouse transgenesis. Biol. Reprod. 77, 803–812.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zani, M. , Lavitrano, M. , French, D. , Lulli, V. , Maione, B. , Sperandio, S. , and Spadafora, C. (1995). The mechanism of binding of exogenous DNA to sperm cells: factors controlling the DNA uptake. Exp. Cell Res. 217, 57–64.
Crossref | GoogleScholarGoogle Scholar | PubMed |