Dry storage of sperm: applications in primates and domestic animals
Stuart A. MeyersDepartment of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, 1 Shields Ave, University of California, Davis, CA 95616, USA. Email: smeyers@ucdavis.edu
Reproduction, Fertility and Development 18(2) 1-5 https://doi.org/10.1071/RD05116
Submitted: 21 September 2005 Accepted: 21 September 2005 Published: 14 December 2005
Abstract
Cryopreservation of spermatozoa, oocytes and embryos, as well as somatic cells or cell lines for cloning from cells, are all options for the long-term storage of unique genotypes and endangered species. Spermatozoal cryopreservation and storage currently require liquid nitrogen or ultralow refrigeration-based methods for long- or short-term storage, which requires routine maintenance and extensive space requirements. The preservation of stem cells also has strict requirements for long-term storage to maintain genetic integrity. Dessicated (lyopreserved) sperm and stem cells will provide an unprecedented type of long-term storage without the need for expensive and burdensome cryogenic conditions. Experiments were conducted to determine an effective intracellular concentration of the lyoprotectant trehalose. High-pressure liquid chromatography studies revealed that trehalose can be incorporated into mature sperm cells as well as spermatogonial stem cells from rhesus monkeys. In addition, using fourier transform infrared spectroscopy, we determined that thermotropic phase transitions for fresh ejaculates from rhesus monkey and stallion sperm occurred at 10–15, 33–37 and 55–59°C. Preliminary studies in our laboratory have indicated that spermatogonial stem cells can be dried to <3 g g−1 water and maintain viability following rehydration. Studies in our laboratory have provided preliminary results suggesting that the desiccated storage of sperm and spermatogonial stem cells may be a viable alternative to conventional cryopreservation.
Acker, J. P. , Fowler, A. , Layman, B. , Cheney, S. , and Toner, M. (2002). Survival of desiccated mammalian cells: beneficial effects of isotonic media. Cell Preserv. Tech. 1, 129–140.
| Crossref | GoogleScholarGoogle Scholar |
Crowe, J. H. , and Crowe, L. M. (1988). Trehalose and dry dipalmitoylphosphatidylcholine revisited. Biochim. Biophys. Acta 946, 193–201.
| PubMed |
Crowe, J. H. , and Crowe, L. M. (2000). Preservation of mammalian cells – learning nature’s tricks. Nat. Biotechnol. 18, 145–146.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Crowe, J. H. , Crowe, L. M. , and Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223, 701–703.
Crowe, J. H. , Hoekstra, F. A. , and Crowe, L. M. (1992). Anhydrobiosis. Ann. Rev. Physiol. 54, 579–599.
| Crossref | GoogleScholarGoogle Scholar |
Crowe, J. H. , Oliver, A. E. , Hoekstra, F. A. , and Crowe, L. M. (1997). Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology 35, 20–30.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Drennan, P. M. , Smith, M. T. , Goldsworthy, D. , and van Staden, J. (1993). The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. J. Plant Physiol. 142, 493–496.
Eroglu, A. , Russo, M. J. , Bieganski, R. , Fowler, A. , Cheley, S. , Bayley, H. , and Toner, M. (2000). Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18, 163–167.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Eroglu, A. , Toner, M. , and Toth, T. L. (2002). Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil. Steril. 77, 152–158.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Fuller, B. J. (2004). Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters 25, 375–388.
| PubMed |
Gadd, G. M. , Chalmers, K. , and Reed, R. H. (1987). The role of trehalose in dehydration resistance of Sacchromyces cerevisiae. FEMS Microbiol. Lett. 48, 249–254.
| Crossref | GoogleScholarGoogle Scholar |
Gordon, S. L. , Oppenheimer, S. R. , Mackay, A. M. , Brunnabend, J. , Puhlev, I. , and Levine, F. (2001). Recovery of human mesenchymal stem cells following dehydration and rehydration. Cryobiology 43, 182–187.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Guo, N. , Puhlev, I. , Brown, D. R. , Mansbridge, J. , and Levine, F. (2000). Trehalose expression confers desiccation tolerance on human cells. Nat. Biotechnol. 18, 168–171.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Harrigan, P. R. , Madden, T. D. , and Cullis, P. R. (1990). Protection of liposomes during dehydration or freezing. Chem. Phys. Lipids 52, 139–149.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hirabayashi, M. , Kato, M. , Ito, J. , and Hochi, S. (2005). Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote 13, 79–85.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hoekstra, F. A. , Crowe, J. H. , Crowe, L. M. , Vanroekel, T. , and Vermeer, E. (1992). Do phospholipids and sucrose determine membrane phase-transitions in dehydrating pollen species. Plant Cell Environ. 15, 601–606.
Hoekstra, F. A. , Golovina, E. A. , and Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6, 431–438.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jeyendran, R. S. , Graham, E. F. , and Schmehl, M. K. (1981). Fertility of dehydrated bull sperm. Cryobiology 18, 292–300.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kacurakova, M. , and Mathlouthi, M. (1996). FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydr. Res. 284, 145–157.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kaneko, T. , and Nakagata, N. (2005). Relation between storage temperature and fertilizing ability of freeze-dried mouse spermatozoa. Comp. Med. 55, 140–144.
| PubMed |
Keskintepe, L. , Pacholczyk, G. , Machnicka, A. , Norris, K. , Curuk, M. A. , Khan, I. , and Brackett, B. G. (2002). Bovine blastocyst development from oocytes injected with freeze-dried spermatozoa. Biol. Reprod. 67, 409–415.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Koster, K. L. , and Leopold, A. C. (1988). Sugars and desiccation tolerance in seeds. Plant Physiol. 88, 829–832.
Koster, K. L. , Webb, M. S. , Bryant, G. , and Lynch, D. V. (1994). Interactions between soluble sugars and POPC during dehydration: vitrification of sugars alters the phase behavior of the phospholipids. Biochim. Biophys. Acta 1193, 143–150.
| PubMed |
Koster, K. L. , Lei, Y. P. , Anderson, M. , Martin, S. , and Bryant, G. (2000). Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions. Biophys. J. 78, 1932–1946.
| PubMed |
Kusakabe, H. , Szczygiel, M. A. , Whittingham, D. G. , and Yanagimachi, R. (2001). Maintenance of genetic integrity in frozen and freeze-dried mouse spermatozoa. Proc. Natl Acad. Sci. USA 98, 13 501–13 506.
| Crossref | GoogleScholarGoogle Scholar |
Larson, E. V. , and Graham, E. F. (1976). Freeze-drying of spermatozoa. Dev. Biol. Stand. 36, 343–348.
| PubMed |
Leslie, S. B. , Teter, S. A. , Crowe, L. M. , and Crowe, J. H. (1994). Trehalose lowers membrane phase transitions in dry yeast cells. Biochim. Biophys. Acta 1192, 7–13.
| PubMed |
Liu, J. L. , Kusakabe, H. , Chang, C. C. , Suzuki, H. , and Schmidt, D. W. , et al. (2004). Freeze-dried sperm fertilization leads to full-term development in rabbits. Biol. Reprod. 70, 1776–1781.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Oliver, A. E. , Jamil, K. , Crowe, J. H. , and Tablin, F. (2004). Loading human mesenchymal stem cells with trehalose by fluid-phase endocytosis. Cell Preserv. Technol. 2, 35–49.
| Crossref | GoogleScholarGoogle Scholar |
Poleo, G. A. , Godke, R. R. , and Tiersch, T. R. (2005). Intracytoplasmic sperm injection using cryopreserved, fixed, and freeze-dried sperm in eggs of Nile tilapia. Biotechnology 7, 104–111.
Puhlev, I. , Guo, N. , Brown, D. R. , and Levine, F. (2001). Desiccation tolerance in human cells. Cryobiology 42, 207–217.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Reubinoff, B. E. , Pera, M. F. , Vajta, G. , and Trounson, A. E. (2001). Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum. Reprod. 16, 2187–2194.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Schebor, C. , Burin, L. , del Pilar Buera, M. , and Chirife, J. (1999). Stability to hydrolysis and browning of trehalose, sucrose and raffinose in low mositure systems in relation to their use as protectants of dry biomaterials. Lebensm. Wissensch. Technol. 32, 481–485.
| Crossref | GoogleScholarGoogle Scholar |
Sun, W. Q. , Leopold, A. C. , and Crowe, J. H. (1996). Stability of dry liposomes in sugar glasses. Biophys. J. 70, 1769–1776.
| PubMed |
Tsvetkova, N. M. , Phillips, B. L. , Crowe, L. M. , Crowe, J. H. , and Risbud, S. H. (1998). Effect of sugars on headgroup mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers: solid-state 31P NMR and FTIR studies. Biophys. J. 75, 2947–2955.
| PubMed |
Wakayama, T. , and Yanagimachi, R. (1998). Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat. Biotechnol. 16, 639–641.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ward, M. A. , Kaneko, T. , Kusakabe, H. , Biggers, J. D. , Whittingham, D. G. , and Yanagimachi, R. (2003). Long-term preservation of mouse spermatozoa after freeze-drying and freezing without cryoprotection. Biol. Reprod. 69, 2100–2108.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Westh, P. , and Ramlov, H. (1991). Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J. Exp. Zool. 258, 303–311.
| Crossref | GoogleScholarGoogle Scholar |
Wolkers, W. F. , Walker, N. J. , Tablin, F. , and Crowe, J. H. (2001). Human platelets loaded with trehalose survive freeze-drying. Cryobiology 42, 79–87.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wolkers, W. F. , Walker, N. J. , Tamari, Y. , Tablin, F. , and Crowe, J. H. (2002). Towards a clinical application of freeze-dried human platelets. Cell Preserv. Technol. 1, 175–188.
| Crossref | GoogleScholarGoogle Scholar |
Womersley, C. , and Ching, C. (1989). Natural dehydration regimes as a prerequisite for the successful induction of anhydrobiosis in the nematode Rotylenchulus reniformis. J. Exp. Biol. 143, 359–372.
| PubMed |