Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Spermatogonia: origin, physiology and prospects for conservation and manipulation of the male germ line

Jens Ehmcke A , Karin Hübner B , Hans R. Schöler B and Stefan Schlatt A C
+ Author Affiliations
- Author Affiliations

A University of Pittsburgh School of Medicine, Department of Cell Biology and Physiology, Center for Research in Reproductive Biology, W952 Biomedical Science Tower, 3500 Terrace Street, Pittsburgh, PA 15261, USA.

B Max Planck Institute for Molecular Biomedicine, Mendelstrasse 7, D-48149 Münster, Germany.

C Corresponding author. Email: schlatt@pitt.edu

Reproduction, Fertility and Development 18(2) 7-12 https://doi.org/10.1071/RD05119
Submitted: 21 September 2005  Accepted: 21 September 2005   Published: 14 December 2005

Abstract

In recent years, the scientific community has become increasingly interested in spermatogonia. Methodological breakthroughs, such as germ cell transplantation and spermatogonial culture combined with novel germ line transfection strategies, have provided interesting new opportunities for studying the physiology of spermatogonial stem cells and their interaction with the stem cell niche. Furthermore, intense research into pluripotent and adult stem cells has generated new insight into the differentiation pathway of germ line stem cells and has opened new perspectives for stem cell technologies. The present review briefly introduces the physiology of spermatogonial stem cells and discusses future directions of basic research and practical approaches applicable to livestock maintenance and animal reproduction.


Acknowledgments

The authors’ work presented in this review was funded by grants and fellowships from the Deutsche Forschungsgemeinschaft (Schl 394/6, Schl 394/3), start up funds from the University of Pittsburgh School of Medicine and a National Institutes of Health grant (1RO1 HD050617-01).


References

Capel, B. (2000). The battle of the sexes. Mech. Dev. 92, 89–103.
Crossref | GoogleScholarGoogle Scholar | PubMed | Fioroni P. 1987. ‘Allgemeine und vergleichende Embryologie.’ (Springer-Verlag: Berlin, Germany.)

Fouquet, J. P. , and Dadoune, J. O. (1986). Renewal of spermatogonia in the monkey (Macaca fascicularis). Biol. Reprod. 35, 199–207.
PubMed |

Geijsen, N. , Horoschak, M. , Kitai, K. , Gribnau, J. , Eggan, K. , and Daley, G. Q. (2004). Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427, 148–154.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hill, J. R. , and Dobrinski, I. (2006). Male germ cell transplantation in lifestock. Reprod. Fertil. Dev. 18, 13–18.


Honaramooz, A. , Snedaker, A. , Boiani, M. , Scholer, H. , Dobrinski, I. , and Schlatt, S. (2002). Sperm from neonatal mammalian testes grafted in mice. Nature 418, 778–781.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hubner, K. , Fuhrmann, G. , Christenson, L. K. , Kehler, J. , Reinbold, R. , De La Fuente, R. , Wood, J. , Strauss,, J. F. , Boiani, M. , and Scholer, H. R. (2003). Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Johnson, J. , Bagley, J. , Skaznik-Wikiel, M. , Lee, H. J. , and Adams, G. B. , et al. (2005). Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122, 303–315.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kamischke, A. , Kuhlmann, M. , Weinbauer, G. F. , Luetjens, C. M. , Yeung, C. H. , Kronholz, H. L. , and Nieschlag, E. (2003). Gonadal protection from radiation by GnRH antagonist or recombinant human FSH: a controlled trial in a male nonhuman primate (Macaca fascicularis). J. Endocrinol. 179, 183–194.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kluin, P. M. , Kramer, M. F. , and de Rooij, D. G. (1983). Testicular development in Macaca irus after birth. Int. J. Androl. 6, 25–43.
PubMed |

McLaren, A. (2003). Primordial germ cells in the mouse. Dev. Biol. 262, 1–15.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nagano, M. , and Brinster, R. L. (1998). Spermatogonial transplantation and reconstitution of donor cell spermatogenesis in recipient mice. APMIS 106, 47–57.
PubMed |

Nagano, M. , Ryu, B. Y. , Brinster, C. J. , Avarbock, M. R. , and Brinster, R. L. (2003). Maintenance of mouse male germ line stem cells in vitro. Biol. Reprod. 68, 2207–2214.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nayernia, K. , Drabent, B. , Meinhardt, A. , Adham, I. M. , Schwandt, I. , Muller, C. , Sancken, U. , Kleene, K. C. , and Engel, W. (2005). Triple knockouts reveal gene interactions affecting fertility of male mice. Mol. Reprod. Dev. 70, 406–416.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nordhoff, V. , and Schlatt, S. (2003). Present and future options for the preservation of testis tissue and function. Endocr. Dev. 5, 136–155.
PubMed |

Orwig, K. E. , and Schlatt, S. (2005). Cryopreservation and transplantation of spermatogonia and testicular tissue for preservation of male fertility. J. Natl Cancer Inst. Monogr. 34, 51–56.
PubMed |

Radford, J. (2003). Restoration of fertility after treatment for cancer. Horm. Res. 59(Suppl. 1), 21–23.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Radford, J. A. , Shalet, S. M. , and Lieberman, B. A. (1999). Fertility after treatment for cancer. BMJ 319, 935–936.
PubMed |

Schlatt, S. , Loveland, K. , and deKretser, D. M. (1996). Discriminative analysis of Sertoli and peritubular cells and their proliferation in vitro: evidence for FSH-mediated contact inhibition of Sertoli cell mitosis. Biol. Reprod. 55, 227–235.
PubMed |

Schlatt, S. , Foppiani, L. , Rolf, C. , Weinbauer, G. F. , and Nieschlag, E. (2002a). Germ cell transplantation into X-irradiated monkey testes. Hum. Reprod. 17, 55–62.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schlatt, S. , Kim, S. , and Gosden, R. (2002b). Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotropic grafting. Reproduction 124, 323–329.
PubMed |

Schlatt, S. , Honaramooz, A. , Boiani, M. , Schöler, H. R. , and Dobrinski, I. (2003). Progeny from sperm obtained after ectopic grafting of neonatal mouse testes. Biol. Reprod. 68, 2331–2335.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shinohara, T. , Inoue, K. , Ogonuki, N. , Kanatsu-Shinohara, M. , and Miki, H. , et al. (2002). Birth of offspring following transplantation of cryopreserved immature testicular pieces and in-vitro microinsemination. Hum. Reprod. 17, 3039–3045.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Toyooka, Y. , Tsunekawa, N. , Akasu, R. , and Noce, T. (2003). Embryonic stem cells can form germ cells in vitro. Proc. Natl Acad. Sci. USA 100, 11 457–11 462.
Crossref | GoogleScholarGoogle Scholar | PubMed |

van Pelt, A. M. , Roepers-Gajadien, H. L. , Gademan, I. S. , Creemers, L. B. , de Rooij, D. G. , and van Dissel-Emiliani, F. M. (2002). Establishment of cell lines with rat spermatogonial stem cell characteristics. Endocrinology 143, 1845–1850.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wallace, W. H. , and Thomson, A. B. (2003). Preservation of fertility in children treated for cancer. Arch. Dis. Child. 88, 493–496.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhengwei, Y. , McLachlan, R. I. , Bremner, W. J. , and Wreford, N. G. (1997). Quantitative (stereological) study of the normal spermatogenesis in the adult monkey (Macaca fascicularis). J. Androl. 18, 681–687.
PubMed |