Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Equine early pregnancy endocrine profiles and ipsilateral endometrial immune cell, gene expression and protein localisation response

Irene Kalpokas https://orcid.org/0000-0002-7381-9813 A E , María Noel Martínez A , Daniel Cavestany C , Fernando Perdigón D , Rodrigo Costa Mattos B and Ana Meikle A
+ Author Affiliations
- Author Affiliations

A Laboratory of Animal Endocrinology and Metabolism, Veterinary Faculty, Montevideo, Uruguay.

B Reprolab, Faculdade de Veterinaria, UFRGS, Porto Alegre, Brazil.

C Department of Reproduction, Veterinary Faculty, Montevideo, Uruguay.

D Experimental Farm No. 1, Veterinary Faculty, Montevideo, Uruguay.

E Corresponding author. Email: irenekalpokas@gmail.com

Reproduction, Fertility and Development 33(6) 410-426 https://doi.org/10.1071/RD21001
Submitted: 1 January 2021  Accepted: 12 February 2021   Published: 23 March 2021

Abstract

We investigated the early effects of the equine embryo on maternal serum concentrations of insulin-like growth factor 1 (IGF1), leptin and adiponectin, uterine immune cells and genes and proteins related to embryo development and the maintenance of pregnancy. Ipsilateral endometrial expression was assessed on Days 7 and 13 after ovulation for the following transcripts: oestrogen receptor ERα (ESR1), progesterone receptor (PGR), progestin and adipoQ receptor family member 5 (PAQR5), oxytocin receptor (OXTR), prostaglandin-endoperoxide synthase 2 (PTGS2), raf-1 proto-oncogene serine/threonine kinase (RAF1), p21-activated kinase 6 (PAK6), fibroblast growth factor family member 9 (FGF9), IGF1 and its receptor (IGF1R), mucin 1 (MUC1), osteopontin (OPN), leptin receptor (LEPR) and adiponectin receptors 1 and 2 (ADIPOR1 and ADIPOR2). Ipsilateral endometrial immunological cell infiltration and immunohistochemical protein localisation were evaluated on Days 7, 10 and 13 after ovulation for ERα, PGR, OXTR, PTGS2, IGF1, IGF1R, IGF2 and MUC1. Serum hormone concentrations were not affected by reproductive status. Pregnancy downregulated ESR1 and PGR mRNA levels, upregulated the expression of all other genes and affected the expression of all genes, except PGR, on Day 7 (compared with eight genes affected at Day 13). Proteins were affected by pregnancy or by its interaction with other variables (day of extraction and endometrial compartment). Pregnant mares had a higher lymphocyte count, which decreased towards Day 13. The effect of pregnancy on leucocytes and proteins was more evident in superficial endometrial compartments. The results of this study suggest that the equine embryo exerts prompt paracrine regulation of critical biological processes.

Graphical Abstract Image

Keywords: mare, pregnant, molecular, leucocytes, endometrium, ovulation side.


References

Aupperle, H., Özgen, S., Schoon, H. A., Schoon, D., Hoppen, H. O., Sieme, H., and Tannapfel, A. (2000). Cyclical endometrial steroid hormone receptor expression and proliferation intensity in the mare. Equine Vet. J. 32, 228–232.
Cyclical endometrial steroid hormone receptor expression and proliferation intensity in the mare.Crossref | GoogleScholarGoogle Scholar | 10836478PubMed |

Aurich, C., and Budik, S. (2015). Early pregnancy in the horse revisited – does exception prove the rule? J. Anim. Sci. Biotechnol. , .
Early pregnancy in the horse revisited – does exception prove the rule?Crossref | GoogleScholarGoogle Scholar | 26635959PubMed |

Bae, S. E., and Watson, E. D. (2003). A light microscopic and ultrastructural study on the presence and location of oxytocin in the equine endometrium. Theriogenology 60, 909–921.
A light microscopic and ultrastructural study on the presence and location of oxytocin in the equine endometrium.Crossref | GoogleScholarGoogle Scholar | 12935868PubMed |

Bastos, H. B. A., Jobim, M. I. M., Martinez, M. N., Camozzato, G. C., Estradé, M. J., Meikle, A., Vital, C. E., Mattos, R. C., Vidigal, P. M. P., Gregory, R. M., and Barros, E. (2018). Proteomic profile of histotroph during early embryo development in mares. Theriogenology 125, 224–235.
Proteomic profile of histotroph during early embryo development in mares.Crossref | GoogleScholarGoogle Scholar |

Bazer, F. W., Spencer, T. E., Johnson, G. A., Burghardt, R. C., and Wu, G. (2009). Comparative aspects of implantation. Reproduction 138, 195–209.
Comparative aspects of implantation.Crossref | GoogleScholarGoogle Scholar | 19502456PubMed |

Bazer, F. W., Wu, G., and Johnson, G. A. (2017). Pregnancy recognition signals in mammals: The roles of interferons and estrogens. Anim. Reprod. 14, 7–29.
Pregnancy recognition signals in mammals: The roles of interferons and estrogens.Crossref | GoogleScholarGoogle Scholar |

Betteridge, K. J. (1989). The structure and function of the equine capsule in relation to embryo manipulation and transfer. Equine Vet. J. 21, 92–100.
The structure and function of the equine capsule in relation to embryo manipulation and transfer.Crossref | GoogleScholarGoogle Scholar |

Betteridge, K. J. (2000). Comparative aspects of equine embryonic development. Animal Reproduction Science 60–61, 691–702.
Comparative aspects of equine embryonic development.Crossref | GoogleScholarGoogle Scholar | 10844235PubMed |

Betteridge, K. J. (2007). Equine embryology: An inventory of unanswered questions. Theriogenology 68, S9–21.
Equine embryology: An inventory of unanswered questions.Crossref | GoogleScholarGoogle Scholar | 17532037PubMed |

Bionaz, M., and Loor, J. J. (2007). Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol. Genomics 29, 312–319.
Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle.Crossref | GoogleScholarGoogle Scholar | 17284669PubMed |

Boerboom, D., Brown, K. A., Vaillancourt, D., Poitras, P., Goff, A. K., Watanabe, K., Dore, M., and Sirois, J. (2004). Expression of key prostaglandin synthases in equine endometrium during late diestrus and early pregnancy. Biol. Reprod. 70, 391–399.
Expression of key prostaglandin synthases in equine endometrium during late diestrus and early pregnancy.Crossref | GoogleScholarGoogle Scholar | 14561653PubMed |

Boos, A., Meyer, W., Schwarz, R., and Grunert, E. (1996). Immunohistochemical assessment of oestrogen receptor and progesterone receptor distribution in biopsy samples of the bovine endometrium collected throughout the oestrous cycle. Anim. Reprod. Sci. 44, 11–21.
Immunohistochemical assessment of oestrogen receptor and progesterone receptor distribution in biopsy samples of the bovine endometrium collected throughout the oestrous cycle.Crossref | GoogleScholarGoogle Scholar |

Buff, P. R., McFadin, E. L., Dodds, A. C., Keisler, D. H., Djiane, J., Daniel, J. A., Whitley, N. C., and Morrison, C. D. (2002). Leptin in horses: Tissue localization and relationship between peripheral concentrations of leptin and body condition. J. Anim. Sci. 80, 2942–2948.
Leptin in horses: Tissue localization and relationship between peripheral concentrations of leptin and body condition.Crossref | GoogleScholarGoogle Scholar | 12462262PubMed |

Caetano, A. R., Shiue, Y. L., Lyons, L. A., O’Brien, S. J., Laughlin, T. F., Bowling, A. T., and Murray, J. D. (1999). A comparative gene map of the horse (Equus caballus). Genome Res. 9, 1239–1249.
A comparative gene map of the horse (Equus caballus).Crossref | GoogleScholarGoogle Scholar | 10613847PubMed |

Camozzato, G. C., Martinez, M. N., Bastos, H. B. A., Fiala-Rechsteiner, S., Meikle, A., Jobim, M. I. M., Gregory, R. M., and Mattos, R. C. (2019). Ultrastructural and histological characteristics of the endometrium during early embryo development in mares. Theriogenology 123, 1–10.
Ultrastructural and histological characteristics of the endometrium during early embryo development in mares.Crossref | GoogleScholarGoogle Scholar | 30253251PubMed |

Carriquiry, M., Weber, W. J., Fahrenkrug, S. C., and Crooker, B. A. (2009). Hepatic gene expression in multiparous Holstein cows treated with bovine somatotropin and fed n-3 fatty acids in early lactation. J. Dairy Sci. 92, 4889–4900.
Hepatic gene expression in multiparous Holstein cows treated with bovine somatotropin and fed n-3 fatty acids in early lactation.Crossref | GoogleScholarGoogle Scholar | 19762804PubMed |

Cattaneo, M. G., Lucci, G., and Vicentini, L. M. (2009). Oxytocin stimulates in vitro angiogenesis via a Pyk-2/Src-dependent mechanism. Exp. Cell Res. 315, 3210–3219.
Oxytocin stimulates in vitro angiogenesis via a Pyk-2/Src-dependent mechanism.Crossref | GoogleScholarGoogle Scholar | 19563802PubMed |

Colitz, C. M. H., Sugimoto, Y., Lu, P., Barden, C. A., Thomas-Ahner, J., and Chandler, H. L. (2009). ERalpha increases expression and interacts with TERT in cataractous canine lens epithelial cells. Mol. Vis. 15, 2259–2267.

Couse J. F., Hewitt S. C., and Korach K. S. (2006). Steroid receptors in the ovary and uterus. In ‘Knobil and Neill’s Physiology of Reproduction, Third Edition’. (Ed. J. D. Neill) pp. 593–678 10.1016/B978-012515400-0/50020-8

Daoud, N. M., and Ezzo, O. H. (2014). A study of some hormones concentrations in horses: Influences of reproductive status and breed differences. Asian Pac. J. Reprod. 3, 128–133.
A study of some hormones concentrations in horses: Influences of reproductive status and breed differences.Crossref | GoogleScholarGoogle Scholar |

de Brun, V., Meikle, A., Casal, A., Sequeira, M., Contreras-Solís, I., Carriquiry, M., Forcada, F., Sosa, C., and Abecia, J. A. (2015). Periconceptional undernutrition modifies endocrine profiles and hepatic gene expression in sheep. J. Anim. Physiol. Anim. Nutr. (Berl.) 99, 710–718.
Periconceptional undernutrition modifies endocrine profiles and hepatic gene expression in sheep.Crossref | GoogleScholarGoogle Scholar |

de Ruijter-Villani, M., Van Tol, H. T. A., and Stout, T. A. E. (2015). Effect of pregnancy on endometrial expression of luteolytic pathway components in the mare. Reprod. Fertil. Dev. 27, 834–845.
Effect of pregnancy on endometrial expression of luteolytic pathway components in the mare.Crossref | GoogleScholarGoogle Scholar | 24679480PubMed |

Derar, D. R., Taya, K., Watanabe, G., and Miyake, Y. I. (2012). Characterization of immunoreactive IGF-I pattern during the peri-ovulatory period of the oestrous cycle of thoroughbred mares and its relation to other hormones. Reprod. Domest. Anim. 47, 151–156.
Characterization of immunoreactive IGF-I pattern during the peri-ovulatory period of the oestrous cycle of thoroughbred mares and its relation to other hormones.Crossref | GoogleScholarGoogle Scholar | 21676036PubMed |

Dos Santos, E., Duval, F., Vialard, F., and Dieudonné, M.-N. (2015). The roles of leptin and adiponectin at the fetal-maternal interface in humans. Horm. Mol. Biol. Clin. Investig. 24, 47–63.
The roles of leptin and adiponectin at the fetal-maternal interface in humans.Crossref | GoogleScholarGoogle Scholar | 26509784PubMed |

Du, X. L., Jiang, T., Sheng, X. G., Gao, R., and Li, Q. S. (2009). Inhibition of osteopontin suppresses in vitro and in vivo angiogenesis in endometrial cancer. Gynecol. Oncol. 115, 371–376.
Inhibition of osteopontin suppresses in vitro and in vivo angiogenesis in endometrial cancer.Crossref | GoogleScholarGoogle Scholar | 19783287PubMed |

El-Maaty, A., Shata, F., Gabr, F., and Mahmoud, M. (2013). Leptin, Insulin Like growth factor-I, Nitric oxide, thyroid and ovarian hormones in serum of early pregnant and cyclic Arab mares with or without clinical endometritis. Int. Sci. Investigation J. 2, 1–25.

Fernandes, M. S., Pierron, V., Michalovich, D., Astle, S., Thornton, S., Peltoketo, H., Lam, E. W. F., Gellersen, B., Huhtaniemi, I., Allen, J., and Brosens, J. J. (2005). Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J. Endocrinol. 187, 89–101.
Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues.Crossref | GoogleScholarGoogle Scholar | 16214944PubMed |

Fiala, S. M., Pimentel, C. A., Mattos, A. L. G., Gregory, R. M., and Mattos, R. C. (2007). Effect of sperm numbers and concentration on sperm transport and uterine inflammatory response in the mare. Theriogenology 67, 556–562.
Effect of sperm numbers and concentration on sperm transport and uterine inflammatory response in the mare.Crossref | GoogleScholarGoogle Scholar | 17034841PubMed |

Gellersen, B., Fernandes, M. S., and Brosens, J. J. (2008). Non-genomic progesterone actions in female reproduction. Hum. Reprod. Update 15, 119–138.
Non-genomic progesterone actions in female reproduction.Crossref | GoogleScholarGoogle Scholar | 18936037PubMed |

Gerstenberg, C., Allen, W. R., and Stewart, F. (1999). Cell proliferation patterns in the equine endometrium throughout the non-pregnant reproductive cycle. J. Reprod. Fertil. 116, 167–175.
Cell proliferation patterns in the equine endometrium throughout the non-pregnant reproductive cycle.Crossref | GoogleScholarGoogle Scholar | 10505067PubMed |

Gibson, C., and Stout, T. A. E. (2015). Intrauterine expression of insulin-like-growth factor family members during early equine pregnancy. Anim. Reprod. 12, 797.

Gillies, L., Ruddock, W. D., Betteridge, K., Waelchli, R., and Lamarre, J. (1999). Patterns of MUC1 expression in the equine endometrium and trophoblast during early pregnancy. Theriogenology 51, 225.
Patterns of MUC1 expression in the equine endometrium and trophoblast during early pregnancy.Crossref | GoogleScholarGoogle Scholar |

Ginther, O. J. (1983). Mobility of the early equine conceptus. Theriogenology 19, 603–611.
Mobility of the early equine conceptus.Crossref | GoogleScholarGoogle Scholar | 16725808PubMed |

Goff, A. K., Pontbriand, D., and Sirois, J. (1987). Oxytocin stimulation of plasma 15-keto-13,14-dihydro prostaglandin F-2 alpha during the oestrous cycle and early pregnancy in the mare. J. Reprod. Fertil. Suppl. 35, 253–260.
| 3479581PubMed |

Goff, A. K., Leduc, S., Poitras, P., and Vaillancourt, D. (1993). Steroid synthesis by equine conceptuses between days 7 and 14 and endometrial steroid metabolism. Domest. Anim. Endocrinol. 10, 229–236.
Steroid synthesis by equine conceptuses between days 7 and 14 and endometrial steroid metabolism.Crossref | GoogleScholarGoogle Scholar | 8252843PubMed |

Griffin, P. G., Carnevale, E. M., and Ginther, O. J. (1993). Effects of the embryo on uterine morphology and function in mares. Anim. Reprod. Sci. 31, 311–329.
Effects of the embryo on uterine morphology and function in mares.Crossref | GoogleScholarGoogle Scholar |

Hansen, P. J. (2011). The immunology of early pregnancy in farm animals. Reprod. Domest. Anim. 46, 18–30.
The immunology of early pregnancy in farm animals.Crossref | GoogleScholarGoogle Scholar | 21854458PubMed |

Hantak, A. M., Bagchi, I. C., and Bagchi, M. K. (2014). Role of uterine stromal-epithelial crosstalk in embryo implantation. Int. J. Dev. Biol. 58, 139–146.
Role of uterine stromal-epithelial crosstalk in embryo implantation.Crossref | GoogleScholarGoogle Scholar | 25023679PubMed |

Herrler, A., Allen, W. R., Stewart, F., Pell, J. M., and Beier, H. M. (2000). Horse conceptuses secrete insulin-like growth factor-binding protein 3. Biol. Reprod. 62, 1804–1811.
Horse conceptuses secrete insulin-like growth factor-binding protein 3.Crossref | GoogleScholarGoogle Scholar | 10819785PubMed |

Hey, N. A., Meseguer, M., Simón, C., Smorodinsky, N. I., Wreschner, D. H., Ortíz, M. E., and Aplin, J. D. (2003). Transmembrane and truncated (SEC) isoforms of MUC1 in the human endometrium and Fallopian tube. Reprod. Biol. Endocrinol. 1, .
Transmembrane and truncated (SEC) isoforms of MUC1 in the human endometrium and Fallopian tube.Crossref | GoogleScholarGoogle Scholar | 12646057PubMed |

Johnson, G. A., Burghardt, R. C., and Bazer, F. W. (2014). Osteopontin: A leading candidate adhesion molecule for implantation in pigs and sheep. J. Anim. Sci. Biotechnol. 5, .
Osteopontin: A leading candidate adhesion molecule for implantation in pigs and sheep.Crossref | GoogleScholarGoogle Scholar | 25671104PubMed |

Kaczmarek, M. M., Blitek, A., Schams, D., and Ziecik, A. J. (2008). The effect of insulin-like growth factor-I, relaxin and luteinizing hormone on vascular endothelial growth factor secretion by cultured endometrial stromal cells on different days of early pregnancy in pigs. Reprod. Biol. 8, 163–170.
The effect of insulin-like growth factor-I, relaxin and luteinizing hormone on vascular endothelial growth factor secretion by cultured endometrial stromal cells on different days of early pregnancy in pigs.Crossref | GoogleScholarGoogle Scholar | 18677403PubMed |

Kalpokas, I., Perdigón, F., Rivero, R., Talmon, M., Sartore, I., and Viñoles, C. (2010). Effect of a povidone-iodine intrauterine infusion on progesterone levels and endometrial steroid receptor expression in mares. Acta Vet. Scand. 52, .
Effect of a povidone-iodine intrauterine infusion on progesterone levels and endometrial steroid receptor expression in mares.Crossref | GoogleScholarGoogle Scholar | 21162724PubMed |

Kalpokas, I., Mattos, R. C., Cavestany, D., Martínez, M. N., Perdigón, F., and Meikle, A. (2018). Effect of side of the corpus luteum and pregnancy on estrogen and progesterone receptor expression and localization in the endometrium of mares. Theriogenology 114, 221–228.
Effect of side of the corpus luteum and pregnancy on estrogen and progesterone receptor expression and localization in the endometrium of mares.Crossref | GoogleScholarGoogle Scholar | 29655155PubMed |

Katila, T. (1995). Onset and duration of uterine inflammatory response of mares after insemination with fresh semen. Biol. Reprod. 52, 515–517.
Onset and duration of uterine inflammatory response of mares after insemination with fresh semen.Crossref | GoogleScholarGoogle Scholar |

Keator, C. S., Mah, K., and Slayden, O. D. (2012). Alterations in progesterone receptor membrane component 2 (PGRMC2) in the endometrium of macaques afflicted with advanced endometriosis. Mol. Hum. Reprod. 18, 308–319.
Alterations in progesterone receptor membrane component 2 (PGRMC2) in the endometrium of macaques afflicted with advanced endometriosis.Crossref | GoogleScholarGoogle Scholar | 22307145PubMed |

Keenan, L. R., Forde, D., McGeady, T., Wade, J., and Roche, J. (1987). Endometrial histology of early pregnant and non-pregnant mares. J. Reprod. Fertil. Suppl. 35, 499–504.
| 3479603PubMed |

Keller, M. L., Roberts, A. J., and Seidel, G. E. (1998). Characterization of insulin-like growth factor-binding proteins in the uterus and conceptus during early conceptus elongation in cattle. Biol. Reprod. 59, 632–642.
Characterization of insulin-like growth factor-binding proteins in the uterus and conceptus during early conceptus elongation in cattle.Crossref | GoogleScholarGoogle Scholar | 9716564PubMed |

Kenney, R. M., and Doig, P. A. (1986). Equine endometrial biopsy. In ‘Current Therapy in Theriogenology’. (Ed. D. A. Morrow) pp. 723–729. (Philadelphia: WB Saunders)

Klein, C., and Troedsson, M. H. T. (2011a). Transcriptional profiling of equine conceptuses reveals new aspects of embryo-maternal communication in the horse. Biol. Reprod. 84, 872–885.
Transcriptional profiling of equine conceptuses reveals new aspects of embryo-maternal communication in the horse.Crossref | GoogleScholarGoogle Scholar | 21209420PubMed |

Klein, C., and Troedsson, M. H. T. (2011b). Maternal recognition of pregnancy in the horse: a mystery still to be solved. Reprod. Fertil. Dev. 23, 952.
Maternal recognition of pregnancy in the horse: a mystery still to be solved.Crossref | GoogleScholarGoogle Scholar | 22127001PubMed |

Klein, C., Scoggin, K. S., and Troedsson, M. H. T. (2010). Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy. Reprod. Fertil. Dev. 22, 229.
Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy.Crossref | GoogleScholarGoogle Scholar |

Klohonatz, K. M., Hess, A. M., Hansen, T. R., Squires, E. L., Bouma, G. J., and Bruemmer, J. E. (2015). Equine endometrial gene expression changes during and after maternal recognition of pregnancy. J. Anim. Sci. 93, 3364–3376.
Equine endometrial gene expression changes during and after maternal recognition of pregnancy.Crossref | GoogleScholarGoogle Scholar | 26440005PubMed |

Klohonatz, K., Nulton, L., Bouma, G., Hess, A., and Bruemmer, J. (2017). The role of embryo contact and focal adhesion molecules during maternal recognition of pregnancy in the mare. J. Equine Vet. Sci. 52, 112–113.
The role of embryo contact and focal adhesion molecules during maternal recognition of pregnancy in the mare.Crossref | GoogleScholarGoogle Scholar |

Klohonatz, K. M., Nulton, L. C., Hess, A. M., Bouma, G. J., and Bruemmer, J. E. (2019). The role of embryo contact and focal adhesions during maternal recognition of pregnancy. PLoS One 14, .
The role of embryo contact and focal adhesions during maternal recognition of pregnancy.Crossref | GoogleScholarGoogle Scholar | 30835748PubMed |

Lange Consiglio, A., Lacalandra, G. M., Arrighi, S., Cremonesi, F., Ambruosi, B., Dell’Aquila, M., Fiandanese, N., Cho, Y. S., and Bosi, G. (2009). Effects of leptin on in vitro maturation, fertilization and embryonic cleavage after ICSI and early developmental expression of leptin (Ob) and leptin receptor (ObR) proteins in the horse. Reprod. Biol. Endocrinol. 7, 113.
Effects of leptin on in vitro maturation, fertilization and embryonic cleavage after ICSI and early developmental expression of leptin (Ob) and leptin receptor (ObR) proteins in the horse.Crossref | GoogleScholarGoogle Scholar | 19835605PubMed |

Loux, S. C., Dini, P., Ali, H. E. S., Kalbfleisch, T., and Ball, B. A. (2019). Characterization of the placental transcriptome through mid to late gestation in the mare. PLoS One , .
Characterization of the placental transcriptome through mid to late gestation in the mare.Crossref | GoogleScholarGoogle Scholar | 31725741PubMed |

Low, B. G., and Hansen, P. J. (1988). Actions of steroids and prostaglandins secreted by the placenta and uterus of the cow and ewe on lymphocyte proliferation in vitro. Am. J. Reprod. Immunol. Microbiol. 18, 71–75.
Actions of steroids and prostaglandins secreted by the placenta and uterus of the cow and ewe on lymphocyte proliferation in vitro.Crossref | GoogleScholarGoogle Scholar | 3265596PubMed |

Maischberger, E., Carrington, S. D., Meijer, W. G., Miranda-CasoLuengo, R., Rousseau, K., Gallagher, M. E., Reid, C. J., Irwin, J. A., Worrall, S., Duggan, V. E., Cummins, C. A., Fitzpatrick, E., and Thornton, D. J. (2013). The expression of mucin genes and the presence of mucin gene products in the equine endometrium. Res. Vet. Sci. 95, 169–175.
The expression of mucin genes and the presence of mucin gene products in the equine endometrium.Crossref | GoogleScholarGoogle Scholar | 23583093PubMed |

Mattos, R. C., Mattos, A. L. G., and Klug, E. G. A. (1984). Endometrial cytology in the mare as an auxiliary and complementary diagnostic method. Rev. Bras. Reprod. Anim. 8, 83–90.

Medlock, K. L., Lyttle, C. R., Kelepouris, N., Newman, E. D., and Sheehan, D. M. (1991). Estradiol down-regulation of the rat uterine estrogen receptor. Proc. Soc. Exp. Biol. Med. 196, 293–300.
Estradiol down-regulation of the rat uterine estrogen receptor.Crossref | GoogleScholarGoogle Scholar | 1998006PubMed |

Merkl, M., Handler, J., Wanke, R., Otzdorff, C., Ulbrich, S. E., Herbach, N., Wolf, E., and Bauersachs, S. (2010). Microarray analysis of equine endometrium at days 8 and 12 of pregnancy. Biol. Reprod. 83, 874–886.
Microarray analysis of equine endometrium at days 8 and 12 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 20631402PubMed |

Miragliotta, V., Abramo, F., Donadio, E., Pirone, A., Theoret, C. L., and Ricciardi, M. P. (2016). Osteopontin expression in healing wounds of horses and in human keloids. Equine Vet. J. 48, 72–77.
Osteopontin expression in healing wounds of horses and in human keloids.Crossref | GoogleScholarGoogle Scholar | 25290989PubMed |

Naderi, A., Ahmed, A. A., Barbosa-Morais, N. L., Aparicio, S., Brenton, J. D., and Caldas, C. (2004). Expression microarray reproducibility is improved by optimising purification steps in RNA amplification and labelling. BMC Genomics 5, .
Expression microarray reproducibility is improved by optimising purification steps in RNA amplification and labelling.Crossref | GoogleScholarGoogle Scholar | 15005798PubMed |

Østrup, E., Bauersachs, S., Blum, H., Wolf, E., and Hyttel, P. (2010). Differential endometrial gene expression in pregnant and nonpregnant sows. Biol. Reprod. 83, 277–285.
Differential endometrial gene expression in pregnant and nonpregnant sows.Crossref | GoogleScholarGoogle Scholar | 20393170PubMed |

Ousey, J. (2011). Endocrinology of pregnancy. ‘Equine Reproduction’. (Eds A. McKinnon, E. Squires, W. Vaala and D. Dickson) pp. 2222–2233. (Wiley Blackwell: West Sussex, UK)

Pantaleon, M., Jericho, H., Rabnott, G., and Kaye, P. L. (2003). The role of insulin-like growth factor II and its receptor in mouse preimplantation development. Reprod. Fertil. Dev. 15, 37.
The role of insulin-like growth factor II and its receptor in mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 12729502PubMed |

Pearson, L. (2015). Adiponectin in equine reproduction. WASHINGTON STATE UNIVERSITY College of Veterinary Medicine. Doctoral thesis. Available at: http://hdl.handle.net/2376/5526.

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.
A new mathematical model for relative quantification in real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 11328886PubMed |

Raeside, J. I., Christie, H. L., Renaud, R. L., Waelchli, R. O., and Betteridge, K. J. (2004). Estrogen metabolism in the equine conceptus and endometrium during early pregnancy in relation to estrogen concentrations in yolk-sac fluid. Biol. Reprod. 71, 1120–1127.
Estrogen metabolism in the equine conceptus and endometrium during early pregnancy in relation to estrogen concentrations in yolk-sac fluid.Crossref | GoogleScholarGoogle Scholar | 15163615PubMed |

Raheem, K. A. (2017). An insight into maternal recognition of pregnancy in mammalian species. J. Saudi Soc. Agric. Sci. 16, 1–6.
An insight into maternal recognition of pregnancy in mammalian species.Crossref | GoogleScholarGoogle Scholar |

Rebordão, M. R., Galvão, A., Pinto-Bravo, P., Pinheiro, J., Gamboa, S., Silva, E., Mateus, L., and Ferreira-Dias, G. (2017). Endometrial prostaglandin synthases, ovarian steroids, and oxytocin receptors in mares with oxytocin-induced luteal maintenance. Theriogenology 87, 193–204.
Endometrial prostaglandin synthases, ovarian steroids, and oxytocin receptors in mares with oxytocin-induced luteal maintenance.Crossref | GoogleScholarGoogle Scholar | 27773348PubMed |

Rutledge, R. G., and Côté, C. (2003). Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res. 31, 93e.
Mathematics of quantitative kinetic PCR and the application of standard curves.Crossref | GoogleScholarGoogle Scholar |

Scaravaggi, I., Bauersachs, S., Zeng, S., Romer, R., Bollwein, H., Ulbrich, S. E., Imboden, I., and Borel, N. (2018). Cell type-specific endometrial transcriptome changes during initial recognition of pregnancy in the mare. Reprod. Fertil. Dev. , .
Cell type-specific endometrial transcriptome changes during initial recognition of pregnancy in the mare.Crossref | GoogleScholarGoogle Scholar |

Schoon, H. A., Schoon, D., and Klug, E. (1992). Uterusbiopsien als hilfsmittel für diagnose und prognose von fertilitätsstörungen der stute. Pferdeheilkunde 8, 355–362.
Uterusbiopsien als hilfsmittel für diagnose und prognose von fertilitätsstörungen der stute.Crossref | GoogleScholarGoogle Scholar |

Short, R. V. (1969). Implantation and the maternal recognition of pregnancy. In W. GE, and O’Connor W and M (eds) ‘Ciba Foundation Symposium on Foetal Autonomy’, London, Churchill. pp. 2–31. (London, Churchill)10.1002/9780470719688.CH2

Simmen, R. C. M., Green, M. L., and Simmen, F. A. (1995). IGF system in periimplantation uterus and embryonic development. Molecular and Cellular Aspects of Periimplantation Processes 123, 185–204.
IGF system in periimplantation uterus and embryonic development.Crossref | GoogleScholarGoogle Scholar |

Smith, T. J. (2010). Insulin-like growth factor-I regulation of immune function: A potential therapeutic target in autoimmune diseases? Pharmacol. Rev. 62, 199–236.
Insulin-like growth factor-I regulation of immune function: A potential therapeutic target in autoimmune diseases?Crossref | GoogleScholarGoogle Scholar | 20392809PubMed |

Smith, J. L., Kupchak, B. R., Garitaonandia, I., Hoang, L. K., Maina, A. S., Regalla, L. M., and Lyons, T. J. (2008). Heterologous expression of human mPRα, mPRβ and mPRγ in yeast confirms their ability to function as membrane progesterone receptors. Steroids 73, 1160–1173.
Heterologous expression of human mPRα, mPRβ and mPRγ in yeast confirms their ability to function as membrane progesterone receptors.Crossref | GoogleScholarGoogle Scholar | 18603275PubMed |

Smits, K., Van Poucke, M., Peelman, L., Van Nieuwerburgh, F., Govaere, J., Van Soom, A., Deforce, D., and De Coninck, D. I. M. (2016). The equine embryo influences immune-related gene expression in the oviduct. Biol. Reprod. 94, 36.
The equine embryo influences immune-related gene expression in the oviduct.Crossref | GoogleScholarGoogle Scholar | 26740593PubMed |

Sosa, C., Abecia, J. A., Carriquiry, M., Forcada, F., Martin, G. B., Palacín, I., and Meikle, A. (2009). Early pregnancy alters the metabolic responses to restricted nutrition in sheep. Domest. Anim. Endocrinol. 36, 13–23.
Early pregnancy alters the metabolic responses to restricted nutrition in sheep.Crossref | GoogleScholarGoogle Scholar | 18838244PubMed |

Sosa, C., Carriquiry, M., Chalar, C., Crespi, D., Sanguinetti, C., Cavestany, D., and Meikle, A. (2010). Endometrial expression of leptin receptor and members of the growth hormone-Insulin-like growth factor system throughout the estrous cycle in heifers. Anim. Reprod. Sci. 122, 208–214.
Endometrial expression of leptin receptor and members of the growth hormone-Insulin-like growth factor system throughout the estrous cycle in heifers.Crossref | GoogleScholarGoogle Scholar | 20950968PubMed |

Spencer, T. E., Forde, N., Dorniak, P., Hansen, T. R., Romero, J. J., and Lonergan, P. (2013). Conceptus-derived prostaglandins regulate gene expression In the endometrium prior to pregnancy recognition In ruminants. Reproduction 146, 377–387.
Conceptus-derived prostaglandins regulate gene expression In the endometrium prior to pregnancy recognition In ruminants.Crossref | GoogleScholarGoogle Scholar | 23966582PubMed |

Sponchiado, M., Fontes, P. K., Martins, T., del Collado, M., Pugliesi, G., Nogueira, M. F. G., Binelli, M., Pastore, A. de A., and Gomes, N. S. (2017). Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle. PLoS One 12, e0175954.
Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle.Crossref | GoogleScholarGoogle Scholar | 28423001PubMed |

Stabel, J. R., Palmer, M. V., Harris, B., Plattner, B., Hostetter, J., and Robbe-Austerman, S. (2009). Pathogenesis of Mycobacterium avium subsp. paratuberculosis in neonatal calves after oral or intraperitoneal experimental infection. Vet. Microbiol. 136, 306–313.
Pathogenesis of Mycobacterium avium subsp. paratuberculosis in neonatal calves after oral or intraperitoneal experimental infection.Crossref | GoogleScholarGoogle Scholar | 19135813PubMed |

Stout, T. A. E., and Allen, W. R. (2001). Role of prostaglandins in intrauterine migration of the equine conceptus. Reproduction 121, 771–775.
Role of prostaglandins in intrauterine migration of the equine conceptus.Crossref | GoogleScholarGoogle Scholar |

Šućurović, S., Nikolić, T., Brosens, J. J., and Mulac-Jericevic, B. (2017). Spatial and temporal analyses of FGF9 expression during early regnancy. Cell. Physiol. Biochem. 42, 2318–2329.
Spatial and temporal analyses of FGF9 expression during early regnancy.Crossref | GoogleScholarGoogle Scholar | 28848153PubMed |

Tang, Y. T., Hu, T., Arterburn, M., Boyle, B., Bright, J. M., Emtage, P. C., and Funk, W. D. (2005). PAQR proteins: A novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J. Mol. Evol. 61, 372–380.
PAQR proteins: A novel membrane receptor family defined by an ancient 7-transmembrane pass motif.Crossref | GoogleScholarGoogle Scholar | 16044242PubMed |

Thatcher, W. W., Guzeloglu, A., Meikle, A., Kamimura, S., Bilby, T., Kowalski, A. A., Badinga, L., Pershing, R., Bartolome, J., and Santos, J. E. P. (2003). Regulation of embryo survival in cattle. Reproduction 61, 253–266.
| 14635940PubMed |

Tsujii, M., Sawaoka, H., DuBois, R. N., Tsuji, S., Kawano, S., and Hori, M. (1998). Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93, 705–716.
Cyclooxygenase regulates angiogenesis induced by colon cancer cells.Crossref | GoogleScholarGoogle Scholar | 9630216PubMed |

Vanderwall, D. K., Woods, G. L., Weber, J. A., and Lichtenwalner, A. B. (1994). Corpus luteal function in nonpregnant mares following intrauterine administration of prostaglandin E2 or estradiol-17β. Theriogenology 42, 1069–1083.
Corpus luteal function in nonpregnant mares following intrauterine administration of prostaglandin E2 or estradiol-17β.Crossref | GoogleScholarGoogle Scholar | 16727611PubMed |

Watson, E. D., and Dixon, C. E. (1993). An immunohistological study of MHC Class II expression and T lymphocytes in the endometrium of the mare. Equine Vet. J. 25, 120–124.
An immunohistological study of MHC Class II expression and T lymphocytes in the endometrium of the mare.Crossref | GoogleScholarGoogle Scholar | 8467770PubMed |

Willmann, C., Budik, S., Walter, I., and Aurich, C. (2011). Influences of treatment of early pregnant mares with the progestin altrenogest on embryonic development and gene expression in the endometrium and conceptus. Theriogenology 76, 61–73.
Influences of treatment of early pregnant mares with the progestin altrenogest on embryonic development and gene expression in the endometrium and conceptus.Crossref | GoogleScholarGoogle Scholar | 21396689PubMed |

Wilsher, S., Gower, S., and Allen, W. R. (2013). Persistence of an immunoreactive MUC1 protein at the feto-maternal interface throughout pregnancy in the mare. Reprod. Fertil. Dev. 25, 753–761.
Persistence of an immunoreactive MUC1 protein at the feto-maternal interface throughout pregnancy in the mare.Crossref | GoogleScholarGoogle Scholar | 22951049PubMed |

Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R., and Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769.
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.Crossref | GoogleScholarGoogle Scholar | 12802337PubMed |