Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Predicted gene 31453 (Gm31453) and the gene encoding carboxypeptidase A5 (Cpa5) are not essential for spermatogenesis and male fertility in the mouse

Yang Zhou A * , Xiaona Zhang B * , Suping Xiong C , Xuhui Zeng A D and Xiaoning Zhang https://orcid.org/0000-0003-1227-866X A C D
+ Author Affiliations
- Author Affiliations

A Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China.

B Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, PR China.

C Institute of Life Science, Nanchang University, Nanchang 330031, PR China.

D Corresponding authors. Email: zengxuhui@ntu.edu.cn; zhangxn@ntu.edu.cn

Reproduction, Fertility and Development 33(6) 401-409 https://doi.org/10.1071/RD20284
Submitted: 30 October 2020  Accepted: 9 February 2021   Published: 22 March 2021

Abstract

Numerous long non-coding (lnc) RNAs are highly enriched or exclusively expressed in the mammalian testis, even in spermatids. Spermatid perinuclear RNA-binding protein (STRBP) can bind many RNAs, and loss of STRBP impairs male fertility. However, the functions of lncRNAs interacting with STRBP are unknown. In this study, the roles of one STRBP-interacting lncRNA, namely predicted gene 31453 (Gm31453), and its potential target gene encoding carboxypeptidase A5 (Cpa5) in spermatogenesis were determined using gene-knockout (KO) mice. Gm31453 and Cpa5 are located adjacent to each other on the same chromosome and are highly expressed in the testis. Gm31453 and Cpa5 are primarily expressed from secondary spermatocytes to elongated spermatids, implying their involvement in spermiogenesis. Although deletion of Gm31453 disturbed the expression of both its target and interacting gene, as indicated by decreased Cpa5 and increased Strbp mRNA levels, both Gm31453- and Cpa5-KO mice showed normal spermatogenesis and fertility, and had no detectable abnormalities in terms of testicular and epididymal development, sperm production morphology or motility, pregnancy rate or litter size. Thus, Gm31453 and Cpa5 are dispensable for spermatogenesis and male fertility in mice. Their involvement in spermatogenesis may be a fine-tuning role, regulating gene expression at the molecular level.

Graphical Abstract Image

Keywords: Cpa5, Gm31453, lncRNA, male fertility, spermatogenesis, Strbp.


References

Auld, D. S. (2004). Carboxypeptidase A. Handbook of Proteolytic Enzymes. Elsevier, pp. 812–821.

Cho, C., Willis, W. D., Goulding, E. H., Jung-Ha, H., Choi, Y. C., Hecht, N. B., and Eddy, E. M. (2001). Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat. Genet. 28, 82–86.
Haploinsufficiency of protamine-1 or -2 causes infertility in mice.Crossref | GoogleScholarGoogle Scholar | 11326282PubMed |

Cooke, H. J., and Elliott, D. J. (1997). RNA-binding proteins and human male infertility. Trends Genet. 13, 87–89.
RNA-binding proteins and human male infertility.Crossref | GoogleScholarGoogle Scholar | 9066264PubMed |

Dai, Y.-B., Lin, Y., Song, N., and Sun, F. (2019). LncRNA4667 is dispensable for spermatogenesis and fertility in mice. Reprod. Dev. Med. 3, 18–23.
LncRNA4667 is dispensable for spermatogenesis and fertility in mice.Crossref | GoogleScholarGoogle Scholar |

Dykes, I. M., and Emanueli, C. (2017). Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 15, 177–186.
Transcriptional and post-transcriptional gene regulation by long non-coding RNA.Crossref | GoogleScholarGoogle Scholar | 28529100PubMed |

Forné, I., Castellana, B., Marín‐Juez, R., Cerda, J., Abián, J., and Planas, J. V. (2011). Transcriptional and proteomic profiling of flatfish (Solea senegalensis) spermatogenesis. Proteomics 11, 2195–2211.
Transcriptional and proteomic profiling of flatfish (Solea senegalensis) spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 21538881PubMed |

Gaysinskaya, V., and Bortvin, A. (2015). Flow cytometry of murine spermatocytes. Curr. Protoc. Cytom 72, 7.44.41–47.44 24.
Flow cytometry of murine spermatocytes.Crossref | GoogleScholarGoogle Scholar |

Gil, N., and Ulitsky, I. (2019). Regulation of gene expression by cis-acting long non-coding RNAs. Nat. Rev. Genet. 21, 102–117.
Regulation of gene expression by cis-acting long non-coding RNAs.Crossref | GoogleScholarGoogle Scholar | 31729473PubMed |

Goudarzi, M., Berg, K., Pieper, L. M., and Schier, A. F. (2019). Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility. eLife 8, e40815.
Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility.Crossref | GoogleScholarGoogle Scholar | 30620332PubMed |

Hong, S. H., Kwon, J. T., Kim, J., Jeong, J., Kim, J., Lee, S., and Cho, C. (2018). Profiling of testis-specific long noncoding RNAs in mice. BMC Genomics 19, 539.
Profiling of testis-specific long noncoding RNAs in mice.Crossref | GoogleScholarGoogle Scholar | 30012089PubMed |

Jarroux, J., Morillon, A., and Pinskaya, M. (2017). History, Discovery, and Classification of lncRNAs. Adv. Exp. Med. Biol. 1008, 1–46.
History, Discovery, and Classification of lncRNAs.Crossref | GoogleScholarGoogle Scholar | 28815535PubMed |

Jitonnom, J., and Sontag, C. (2012). Comparative study on activation mechanism of carboxypeptidase A1, A2 and B: first insights from steered molecular dynamics simulations. J. Mol. Graph. Model. 38, 298–303.
Comparative study on activation mechanism of carboxypeptidase A1, A2 and B: first insights from steered molecular dynamics simulations.Crossref | GoogleScholarGoogle Scholar | 23085168PubMed |

Kim, J., Abdelmohsen, K., Yang, X., De, S., Grammatikakis, I., Noh, J. H., and Gorospe, M. (2016). LncRNA OIP5–AS1/cyrano sponges RNA-binding protein HuR. Nucleic Acids Res. 44, 2378–2392.
LncRNA OIP5–AS1/cyrano sponges RNA-binding protein HuR.Crossref | GoogleScholarGoogle Scholar | 26819413PubMed |

Kotaja, N. (2014). MicroRNAs and spermatogenesis. Fertil. Steril. 101, 1552–1562.
MicroRNAs and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 24882619PubMed |

Lassalle, B., Ziyyat, A., Testart, J., Finaz, C., and Lefevre, A. (1999). Flow cytometric method to isolate round spermatids from mouse testis. Hum. Reprod. 14, 388–394.
Flow cytometric method to isolate round spermatids from mouse testis.Crossref | GoogleScholarGoogle Scholar | 10099985PubMed |

Lewandowski, J. P., Dumbović, G., Watson, A. R., Hwang, T., Jacobs-Palmer, E., Chang, N., Much, C., Turner, K. M., Kirby, C., and Rubinstein, N. D. (2020). The Tug1 lncRNA locus is essential for male fertility. Genome Biol. 21, 237.
The Tug1 lncRNA locus is essential for male fertility.Crossref | GoogleScholarGoogle Scholar | 32894169PubMed |

Li, K., Zhong, S., Luo, Y., Zou, D., Li, M., Li, Y., Lu, Y., Miao, S., Wang, L., and Song, W. (2019). A long noncoding RNA binding to QKI-5 regulates germ cell apoptosis via p38 MAPK signaling pathway. Cell Death Dis. 10, 699.
| 31541077PubMed |

Li, C., Shen, C., Shang, X., Tang, L., Xiong, W., Ge, H., Zhang, H., Lu, S., Shen, Y., Wang, J., Fei, J., and Wang, Z. (2020). Two novel testis-specific long noncoding RNAs produced by 1700121C10Rik are dispensable for male fertility in mice. J. Reprod. Dev. 66, 57–65.
Two novel testis-specific long noncoding RNAs produced by 1700121C10Rik are dispensable for male fertility in mice.Crossref | GoogleScholarGoogle Scholar | 31801914PubMed |

Marchese, F. P., Raimondi, I., and Huarte, M. (2017). The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 18, 206.
The multidimensional mechanisms of long noncoding RNA function.Crossref | GoogleScholarGoogle Scholar | 29084573PubMed |

Meng, L., Xu, W., Zhu, Y., Zhang, N., Shao, C., Liu, Y., and Chen, S. (2018). Molecular characterization and expression analysis of strbp in Chinese tongue sole (Cynoglossus semilaevis). Theriogenology 118, 225–232.
Molecular characterization and expression analysis of strbp in Chinese tongue sole (Cynoglossus semilaevis).Crossref | GoogleScholarGoogle Scholar | 29945054PubMed |

Ojaghi, M., Kastelic, J., and Thundathil, J. (2017). Testis‐specific isoform of angiotensin‐converting enzyme (t ACE) is involved in the regulation of bovine sperm capacitation. Mol. Reprod. Dev. 84, 376–388.
Testis‐specific isoform of angiotensin‐converting enzyme (t ACE) is involved in the regulation of bovine sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 28244620PubMed |

Pires-daSilva, A., Nayernia, K., Engel, W., Torres, M., Stoykova, A., Chowdhury, K., and Gruss, P. (2001). Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities. Dev. Biol. 233, 319–328.
Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities.Crossref | GoogleScholarGoogle Scholar | 11336498PubMed |

Qu, M., Zhao, Y., Zhao, Y., Rui, Q., Kong, Y., and Wang, D. (2019). Identification of long non-coding RNAs in response to nanopolystyrene in Caenorhabditis elegans after long-term and low-dose exposure. Environ. Pollut. 255, 113137.
Identification of long non-coding RNAs in response to nanopolystyrene in Caenorhabditis elegans after long-term and low-dose exposure.Crossref | GoogleScholarGoogle Scholar | 31541829PubMed |

Said, S., Kurtin, P. J., Nasr, S. H., Graham, R. P., Dasari, S., Vrana, J. A., Yasir, S., Torbenson, M. S., Zhang, L., and Mounajjed, T. (2020). Carboxypeptidase A1 and regenerating islet-derived 1α as new markers for pancreatic acinar cell carcinoma. Hum. Pathol. 103, 120–126.
Carboxypeptidase A1 and regenerating islet-derived 1α as new markers for pancreatic acinar cell carcinoma.Crossref | GoogleScholarGoogle Scholar | 32702400PubMed |

Sassone-Corsi, P. (2002). Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296, 2176–2178.
Unique chromatin remodeling and transcriptional regulation in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 12077401PubMed |

Schumacher, J. M., Lee, K., Edelhoff, S., and Braun, R. E. (1995). Spnr, a murine RNA-binding protein that is localized to cytoplasmic microtubules. J. Cell Biol. 129, 1023–1032.
Spnr, a murine RNA-binding protein that is localized to cytoplasmic microtubules.Crossref | GoogleScholarGoogle Scholar | 7744952PubMed |

Shibahara, H., Kamata, M., Hu, J., Nakagawa, H., Obara, H., Kondoh, N., Shima, H., and Sato, I. (2001). Activity of testis angiotensin converting enzyme (ACE) in ejaculated human spermatozoa. Int. J. Androl. 24, 295–299.
Activity of testis angiotensin converting enzyme (ACE) in ejaculated human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 11554987PubMed |

Tang, A., Yu, Z., Gui, Y., Zhu, H., Zhang, L., Zhang, J., and Cai, Z. (2007). Characteristics of 292 testis-specific genes in human. Biol. Pharm. Bull. 30, 865–872.
Characteristics of 292 testis-specific genes in human.Crossref | GoogleScholarGoogle Scholar | 17473427PubMed |

Villegas, V. E., and Zaphiropoulos, P. G. (2015). Neighboring gene regulation by antisense long non-coding RNAs. Int. J. Mol. Sci. 16, 3251–3266.
Neighboring gene regulation by antisense long non-coding RNAs.Crossref | GoogleScholarGoogle Scholar | 25654223PubMed |

Wang, Y., Xie, Y., Li, L., He, Y., Zheng, D., Yu, P., Yu, L., Tang, L., Wang, Y., and Wang, Z. (2018). EZH2 RIP-seq identifies tissue-specific long non-coding RNAs. Curr. Gene Ther. 18, 275–285.
EZH2 RIP-seq identifies tissue-specific long non-coding RNAs.Crossref | GoogleScholarGoogle Scholar | 30295189PubMed |

Wei, S., Segura, S., Vendrell, J., Aviles, F. X., Lanoue, E., Day, R., Feng, Y., and Fricker, L. D. (2002). Identification and characterization of three members of the human metallocarboxypeptidase gene family. J. Biol. Chem. 277, 14954–14964.
Identification and characterization of three members of the human metallocarboxypeptidase gene family.Crossref | GoogleScholarGoogle Scholar | 11836249PubMed |

Wen, K., Yang, L., Xiong, T., Di, C., Ma, D., Wu, M., Xue, Z., Zhang, X., Long, L., and Zhang, W. (2016). Critical roles of long noncoding RNAs in Drosophila spermatogenesis. Genome Res. 26, 1233–1244.
Critical roles of long noncoding RNAs in Drosophila spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 27516619PubMed |

Wu, J. Y., Ribar, T. J., Cummings, D. E., Burton, K. A., McKnight, G. S., and Means, A. R. (2000). Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat. Genet. 25, 448–452.
Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4.Crossref | GoogleScholarGoogle Scholar | 10932193PubMed |

Wu, H.-Y., Wei, P., and Morgan, J. I. (2017). Role of cytosolic carboxypeptidase 5 in neuronal survival and spermatogenesis. Sci. Rep. 7, 41428.
Role of cytosolic carboxypeptidase 5 in neuronal survival and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 28128286PubMed |

Xiong, S., Li, Y., Xiang, Y., Peng, N., Shen, C., Cai, Y., Song, D., Zhang, P., Wang, X., and Zeng, X. (2019). Dysregulation of lncRNA and circRNA Expression in Mouse Testes after Exposure to Triptolide. Curr. Drug Metab. 20, 665–673.
Dysregulation of lncRNA and circRNA Expression in Mouse Testes after Exposure to Triptolide.Crossref | GoogleScholarGoogle Scholar | 31362668PubMed |

Yan, W. (2009). Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol. Cell. Endocrinol. 306, 24–32.
Male infertility caused by spermiogenic defects: lessons from gene knockouts.Crossref | GoogleScholarGoogle Scholar | 19481682PubMed |

Yan, P., Luo, S., Lu, J. Y., and Shen, X. (2017). Cis-and trans-acting lncRNAs in pluripotency and reprogramming. Curr. Opin. Genet. Dev. 46, 170–178.
Cis-and trans-acting lncRNAs in pluripotency and reprogramming.Crossref | GoogleScholarGoogle Scholar | 28843809PubMed |

Yan, J., Huang, X., Zhang, X., Chen, Z., Ye, C., Xiang, W., and Huang, Z. (2020). LncRNA LINC00470 promotes the degradation of PTEN mRNA to facilitate malignant behavior in gastric cancer cells. Biochem. Biophys. Res. Commun. 521, 887–893.
LncRNA LINC00470 promotes the degradation of PTEN mRNA to facilitate malignant behavior in gastric cancer cells.Crossref | GoogleScholarGoogle Scholar | 31711642PubMed |

Yang, J., Medvedev, S., Yu, J., Schultz, R. M., and Hecht, N. B. (2006). Deletion of the DNA/RNA-binding protein MSY2 leads to post-meiotic arrest. Mol. Cell. Endocrinol. 250, 20–24.
Deletion of the DNA/RNA-binding protein MSY2 leads to post-meiotic arrest.Crossref | GoogleScholarGoogle Scholar | 16413673PubMed |

Zhang, C., Gao, L., and Xu, E. Y. (2016). LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development. Semin Cell Dev Biol. 59, 110–117.
| 27345292PubMed |