Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Insights into conceptus elongation and establishment of pregnancy in ruminants

T. E. Spencer A D , N. Forde B and P. Lonergan C
+ Author Affiliations
- Author Affiliations

A Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.

B Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Molecular Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK.

C School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.

D Corresponding author. Email: spencerte@missouri.edu

Reproduction, Fertility and Development 29(1) 84-100 https://doi.org/10.1071/RD16359
Published: 2 December 2016

Abstract

This review integrates established and new information on the factors and pathways regulating conceptus–endometrial interactions, conceptus elongation and establishment of pregnancy in sheep and cattle. Establishment of pregnancy in domestic ruminants begins at the conceptus stage (embryo or fetus and associated extra-embryonic membranes) and includes pregnancy recognition signalling, implantation and the onset of placentation. Survival and growth of the preimplantation blastocyst and elongating conceptus require embryotrophic factors (amino acids, carbohydrates, proteins, lipids and other substances) provided by the uterus. The coordinated and interactive actions of ovarian progesterone and conceptus-derived factors (interferon-τ and prostaglandins) regulate expression of elongation- and implantation-related genes in the endometrial epithelia that alter the uterine luminal milieu and affect trophectoderm proliferation, migration, attachment, differentiation and function. A comparison of sheep and cattle finds both conserved and non-conserved embryotrophic factors in the uterus; however, the overall biological pathways governing conceptus elongation and establishment of pregnancy are likely conserved. Given that most pregnancy losses in ruminants occur during the first month of pregnancy, increased knowledge is necessary to understand why and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency.

Additional keywords: cattle, implantation, sheep.


References

Alexopoulos, N. I., Vajta, G., Maddox-Hyttel, P., French, A. J., and Trounson, A. O. (2005). Stereomicroscopic and histological examination of bovine embryos following extended in vitro culture. Reprod. Fertil. Dev. 17, 799–808.
Stereomicroscopic and histological examination of bovine embryos following extended in vitro culture.Crossref | GoogleScholarGoogle Scholar |

Aliotta, J. M., Pereira, M., Johnson, K. W., de Paz, N., Dooner, M. S., Puente, N., Ayala, C., Brilliant, K., Berz, D., Lee, D., Ramratnam, B., McMillan, P. N., Hixson, D. C., Josic, D., and Quesenberry, P. J. (2010). Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription. Exp. Hematol. 38, 233–245.
Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1ansr0%3D&md5=cff088c3c2aa61fcd1151aba723d29d4CAS |

Amoroso, E. C. (1952). Placentation. In ‘Marshall’s Physiology of Reproduction’. Vol. 2. (Ed. A. S. Parkes.) pp. 127–311. (Little Brown and Company: Boston.)

Antoniazzi, A. Q., Webb, B. T., Romero, J. J., Ashley, R. L., Smirnova, N. P., Henkes, L. E., Bott, R. C., Oliveira, J. F., Niswender, G. D., Bazer, F. W., and Hansen, T. R. (2013). Endocrine delivery of interferon tau protects the corpus luteum from prostaglandin F2 alpha-induced luteolysis in ewes. Biol. Reprod. 88, 144.
Endocrine delivery of interferon tau protects the corpus luteum from prostaglandin F2 alpha-induced luteolysis in ewes.Crossref | GoogleScholarGoogle Scholar |

Arosh, J. A., Banu, S. K., Kimmins, S., Chapdelaine, P., Maclaren, L. A., and Fortier, M. A. (2004). Effect of interferon-tau on prostaglandin biosynthesis, transport, and signaling at the time of maternal recognition of pregnancy in cattle: evidence of polycrine actions of prostaglandin E2. Endocrinology 145, 5280–5293.
Effect of interferon-tau on prostaglandin biosynthesis, transport, and signaling at the time of maternal recognition of pregnancy in cattle: evidence of polycrine actions of prostaglandin E2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVygsrg%3D&md5=85ef17cdfd5347da9fbf9a2fd9c5f5ceCAS |

Ashley, R. L., Antoniazzi, A. Q., Anthony, R. V., and Hansen, T. R. (2011). The chemokine receptor CXCR4 and its ligand CXCL12 are activated during implantation and placentation in sheep. Reprod. Biol. Endocrinol. 9, 148.
The chemokine receptor CXCR4 and its ligand CXCL12 are activated during implantation and placentation in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Gn&md5=30f6e9dbb3897da8d6ae2f560fadddbeCAS |

Austin, K. J., Carr, A. L., Pru, J. K., Hearne, C. E., George, E. L., Belden, E. L., and Hansen, T. R. (2004). Localization of ISG15 and conjugated proteins in bovine endometrium using immunohistochemistry and electron microscopy. Endocrinology 145, 967–975.
Localization of ISG15 and conjugated proteins in bovine endometrium using immunohistochemistry and electron microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFSktA%3D%3D&md5=b6e599182774bc2f6db2569a4d87240dCAS |

Barnwell, C. V., Farin, P. W., Ashwell, C. M., Farmer, W. T., Galphin, S. P., and Farin, C. E. (2016). Differences in mRNA populations of short and long bovine conceptuses on Day 15 of gestation. Mol. Reprod. Dev. 83, 424–441.
Differences in mRNA populations of short and long bovine conceptuses on Day 15 of gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XntlWjsLo%3D&md5=81a57edeb2a832199e93b445c54d152eCAS |

Bartol, F. F., Wiley, A. A., Floyd, J. G., Ott, T. L., Bazer, F. W., Gray, C. A., and Spencer, T. E. (1999). Uterine differentiation as a foundation for subsequent fertility. J. Reprod. Fertil. Suppl. 54, 287–302.
| 1:STN:280:DC%2BD3c7lslamsw%3D%3D&md5=4dbc34c2979759eebb4f0bb2db7dcdcdCAS |

Bauersachs, S., and Wolf, E. (2015). Uterine responses to the preattachment embryo in domestic ungulates: recognition of pregnancy and preparation for implantation. Annu. Rev. Anim. Biosci. 3, 489–511.
Uterine responses to the preattachment embryo in domestic ungulates: recognition of pregnancy and preparation for implantation.Crossref | GoogleScholarGoogle Scholar |

Bauersachs, S., Ulbrich, S. E., Gross, K., Schmidt, S. E., Meyer, H. H., Wenigerkind, H., Vermehren, M., Sinowatz, F., Blum, H., and Wolf, E. (2006). Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction 132, 319–331.
Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjs7s%3D&md5=0accc269587ba1a9c36a8a0ad06b259aCAS |

Bauersachs, S., Ulbrich, S. E., Reichenbach, H. D., Reichenbach, M., Buttner, M., Meyer, H. H., Spencer, T. E., Minten, M., Sax, G., Winter, G., and Wolf, E. (2012). Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2), on gene expression in bovine endometrium. Biol. Reprod. 86, 46.
Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2), on gene expression in bovine endometrium.Crossref | GoogleScholarGoogle Scholar |

Bazer, F. W. (1975). Uterine protein secretions: Relationship to development of the conceptus. J. Anim. Sci. 41, 1376–1382.
Uterine protein secretions: Relationship to development of the conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xis1Gk&md5=7758bb0447a895615c0af8e30edf58b1CAS |

Bazer, F. W., Roberts, R. M., and Thatcher, W. W. (1979). Actions of hormones on the uterus and effect on conceptus development. J. Anim. Sci. 49, 35–45.

Bazer, F. W., Thatcher, W. W., Hansen, P. J., Mirando, M. A., Ott, T. L., and Plante, C. (1991). Physiological mechanisms of pregnancy recognition in ruminants. J. Reprod. Fertil. Suppl. 43, 39–47.
| 1:CAS:528:DyaK38XktVSqtrs%3D&md5=07375762960a11d2ef1dde48db52d642CAS |

Bazer, F. W., Spencer, T. E., and Johnson, G. A. (2009a). Interferons and uterine receptivity. Semin. Reprod. Med. 27, 90–102.
Interferons and uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVGntrY%3D&md5=558ac9195c91dace16f83fd286b6e9f8CAS |

Bazer, F. W., Spencer, T. E., Johnson, G. A., Burghardt, R. C., and Wu, G. (2009b). Comparative aspects of implantation. Reproduction 138, 195–209.
Comparative aspects of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlemt74%3D&md5=8c3cc60f5cf5365558bdd25f965af094CAS |

Bazer, F. W., Wu, G., Spencer, T. E., Johnson, G. A., Burghardt, R. C., and Bayless, K. (2010). Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol. Hum. Reprod. 16, 135–152.
Novel pathways for implantation and establishment and maintenance of pregnancy in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslKru7g%3D&md5=89fd1508054b9aef5203239f79bcbc33CAS |

Beltman, M. E., Lonergan, P., Diskin, M. G., Roche, J. F., and Crowe, M. A. (2009a). Effect of progesterone supplementation in the first week post conception on embryo survival in beef heifers. Theriogenology 71, 1173–1179.
Effect of progesterone supplementation in the first week post conception on embryo survival in beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsV2qs70%3D&md5=c5850722ee24a6206955443ce67325b3CAS |

Beltman, M. E., Roche, J. F., Lonergan, P., Forde, N., and Crowe, M. A. (2009b). Evaluation of models to induce low progesterone during the early luteal phase in cattle. Theriogenology 72, 986–992.
Evaluation of models to induce low progesterone during the early luteal phase in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlsrrP&md5=afeb80b5f9f386aa1226b915e928eac8CAS |

Berendt, F. J., Frohlich, T., Schmidt, S. E., Reichenbach, H. D., Wolf, E., and Arnold, G. J. (2005). Holistic differential analysis of embryo-induced alterations in the proteome of bovine endometrium in the preattachment period. Proteomics 5, 2551–2560.
Holistic differential analysis of embryo-induced alterations in the proteome of bovine endometrium in the preattachment period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtF2gt7k%3D&md5=6712312df2650d9451c4bbdb03efb471CAS |

Berg, D. K., van Leeuwen, J., Beaumont, S., Berg, M., and Pfeffer, P. L. (2010). Embryo loss in cattle between Days 7 and 16 of pregnancy. Theriogenology 73, 250–260.
Embryo loss in cattle between Days 7 and 16 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MfhvVWguw%3D%3D&md5=cce5e75b0f97b6b244e505af4f1156daCAS |

Betteridge, K. J., and Flechon, J. E. (1988). The anatomy and physiology of pre-attachment bovine embryos. Theriogenology 29, 155–187.
The anatomy and physiology of pre-attachment bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Betteridge, K. J., Eaglesome, M. D., Randall, G. C., and Mitchell, D. (1980). Collection, description and transfer of embryos from cattle 10–16 days after oestrus. J. Reprod. Fertil. 59, 205–216.
Collection, description and transfer of embryos from cattle 10–16 days after oestrus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c3ltFGhsQ%3D%3D&md5=9fc4147234252f13d8bb0132f56dfdccCAS |

Blomberg, L., Hashizume, K., and Viebahn, C. (2008). Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation. Reproduction 135, 181–195.
Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrtL8%3D&md5=fdf50d4f8c664a9a80b30a461af63553CAS |

Bobrie, A., Colombo, M., Raposo, G., and Thery, C. (2011). Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12, 1659–1668.
Exosome secretion: molecular mechanisms and roles in immune responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SqtrbJ&md5=3fae00b83df32866b20acb278fc5ceebCAS |

Brandão, D. O., Maddox-Hyttel, P., Løvendahl, P., Rumpf, R., Stringfellow, D., and Callesen, H. (2004). Post hatching development: a novel system for extended in vitro culture of bovine embryos. Biol. Reprod. 71, 2048–2055.
Post hatching development: a novel system for extended in vitro culture of bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Brooks, K., and Spencer, T. E. (2015). Biological roles of interferon tau (IFNT) and type I IFN receptors in elongation of the ovine conceptus. Biol. Reprod. 92, 47.
Biological roles of interferon tau (IFNT) and type I IFN receptors in elongation of the ovine conceptus.Crossref | GoogleScholarGoogle Scholar |

Brooks, K. E., Burns, G. W., and Spencer, T. E. (2015). Peroxisome proliferator activator receptor gamma (PPARG) regulates conceptus elongation in sheep. Biol. Reprod. 92, 42.
Peroxisome proliferator activator receptor gamma (PPARG) regulates conceptus elongation in sheep.Crossref | GoogleScholarGoogle Scholar |

Brooks, K., Burns, G. W., Moraes, J. G. N., and Spencer, T. E. (2016). Analysis of the uterine epithelial transcriptome and luminal fluid proteome during the peri-implantation period of pregnancy in sheep. Biol. Reprod. , .
Analysis of the uterine epithelial transcriptome and luminal fluid proteome during the peri-implantation period of pregnancy in sheep.Crossref | GoogleScholarGoogle Scholar |

Budipitojo, T., Matsuzaki, S., Cruzana, M. B., Baltazar, E. T., Hondo, E., Sunaryo, S., Kitamura, N., and Yamada, J. (2001). Immunolocalization of gastrin-releasing peptide in the bovine uterus and placenta. J. Vet. Med. Sci. 63, 11–15.
Immunolocalization of gastrin-releasing peptide in the bovine uterus and placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFCnt7g%3D&md5=ce6b98326bade8ab35b9179a9bc0d845CAS |

Budipitojo, T., Sasaki, M., Matsuzaki, S., Cruzana, M. B., Iwanaga, T., Kitamura, N., and Yamada, J. (2003). Expression of gastrin-releasing peptide (GRP) in the bovine uterus during the estrous cycle. Arch. Histol. Cytol. 66, 337–346.
Expression of gastrin-releasing peptide (GRP) in the bovine uterus during the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkslChsA%3D%3D&md5=4a8bc654ada172186850bc21b6d13da6CAS |

Burghardt, R. C., Johnson, G. A., Jaeger, L. A., Ka, H., Garlow, J. E., Spencer, T. E., and Bazer, F. W. (2002). Integrins and extracellular matrix proteins at the maternal–fetal interface in domestic animals. Cells Tissues Organs 172, 202–217.
Integrins and extracellular matrix proteins at the maternal–fetal interface in domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSjur8%3D&md5=817c8d2d764ca9f4d81ed85b15d55c67CAS |

Burghardt, R. C., Burghardt, J. R., Taylor, J. D., Reeder, A. T., Nguen, B. T., Spencer, T. E., Bayless, K. J., and Johnson, G. A. (2009). Enhanced focal adhesion assembly reflects increased mechanosensation and mechanotransduction at maternal–conceptus interface and uterine wall during ovine pregnancy. Reproduction 137, 567–582.
Enhanced focal adhesion assembly reflects increased mechanosensation and mechanotransduction at maternal–conceptus interface and uterine wall during ovine pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2ktrc%3D&md5=8192a9a7ce3329ff9750dd26e35160e8CAS |

Burnett, L. A., and Nowak, R. A. (2016). Exosomes mediate embryo and maternal interactions at implantation and during pregnancy. Front. Biosci. (Schol. Ed.) 8, 79–96.
Exosomes mediate embryo and maternal interactions at implantation and during pregnancy.Crossref | GoogleScholarGoogle Scholar |

Burns, G., Brooks, K., Wildung, M., Navakanitworakul, R., Christenson, L. K., and Spencer, T. E. (2014). Extracellular vesicles in luminal fluid of the ovine uterus. PLoS One 9, e90913.
Extracellular vesicles in luminal fluid of the ovine uterus.Crossref | GoogleScholarGoogle Scholar |

Burns, G. W., Brooks, K. E., and Spencer, T. E. (2016). Extracellular vesicles originate from the conceptus and uterus during early pregnancy in sheep. Biol. Reprod. 94, 56.
Extracellular vesicles originate from the conceptus and uterus during early pregnancy in sheep.Crossref | GoogleScholarGoogle Scholar |

Burton, G. J., Watson, A. L., Hempstock, J., Skepper, J. N., and Jauniaux, E. (2002). Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J. Clin. Endocrinol. Metab. 87, 2954–2959.
Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFCjsrk%3D&md5=cde9be6a7c332c48331102e129da386aCAS |

Cammas, L., Reinaud, P., Bordas, N., Dubois, O., Germain, G., and Charpigny, G. (2006). Developmental regulation of prostacyclin synthase and prostacyclin receptors in the ovine uterus and conceptus during the peri-implantation period. Reproduction 131, 917–927.
Developmental regulation of prostacyclin synthase and prostacyclin receptors in the ovine uterus and conceptus during the peri-implantation period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtV2it78%3D&md5=c661f7d419ec4a9b7eae65a247d9542cCAS |

Carter, F., Forde, N., Duffy, P., Wade, M., Fair, T., Crowe, M. A., Evans, A. C., Kenny, D. A., Roche, J. F., and Lonergan, P. (2008). Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod. Fertil. Dev. 20, 368–375.
Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVKksLg%3D&md5=bfbd17e9ed72b8903108af0a26504061CAS |

Cerri, R. L., Thompson, I. M., Kim, I. H., Ealy, A. D., Hansen, P. J., Staples, C. R., Li, J. L., Santos, J. E., and Thatcher, W. W. (2012). Effects of lactation and pregnancy on gene expression of endometrium of Holstein cows at Day 17 of the estrous cycle or pregnancy. J. Dairy Sci. 95, 5657–5675.
Effects of lactation and pregnancy on gene expression of endometrium of Holstein cows at Day 17 of the estrous cycle or pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCns7rJ&md5=f6921b6d2a1e5f6706ca452fce9feea6CAS |

Charlier, C., Agerholm, J. S., Coppieters, W., Karlskov-Mortensen, P., Li, W., de Jong, G., Fasquelle, C., Karim, L., Cirera, S., Cambisano, N., Ahariz, N., Mullaart, E., Georges, M., and Fredholm, M. (2012). A deletion in the bovine FANCI gene compromises fertility by causing fetal death and brachyspina. PLoS One 7, e43085.
A deletion in the bovine FANCI gene compromises fertility by causing fetal death and brachyspina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12htL%2FO&md5=0338e9301ed5ccdf209a9ece16d764b8CAS |

Charpigny, G., Reinaud, P., Tamby, J. P., Creminon, C., and Guillomot, M. (1997a). Cyclooxygenase-2 unlike cyclooxygenase-1 is highly expressed in ovine embryos during the implantation period. Biol. Reprod. 57, 1032–1040.
Cyclooxygenase-2 unlike cyclooxygenase-1 is highly expressed in ovine embryos during the implantation period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFSgu7g%3D&md5=1053bd32fc2ab606a737289f592bd6daCAS |

Charpigny, G., Reinaud, P., Tamby, J. P., Creminon, C., Martal, J., Maclouf, J., and Guillomot, M. (1997b). Expression of cyclooxygenase-1 and -2 in ovine endometrium during the estrous cycle and early pregnancy. Endocrinology 138, 2163–2171.
| 1:CAS:528:DyaK2sXislCls74%3D&md5=1c4962414caeef1b630d2fcd33937784CAS |

Choi, Y., Johnson, G. A., Burghardt, R. C., Berghman, L. R., Joyce, M. M., Taylor, K. M., Stewart, M. D., Bazer, F. W., and Spencer, T. E. (2001). Interferon regulatory factor-two restricts expression of interferon-stimulated genes to the endometrial stroma and glandular epithelium of the ovine uterus. Biol. Reprod. 65, 1038–1049.
Interferon regulatory factor-two restricts expression of interferon-stimulated genes to the endometrial stroma and glandular epithelium of the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1Cmsr0%3D&md5=5b84dab5716c05fd459c704e20f3e754CAS |

Choi, Y., Johnson, G. A., Spencer, T. E., and Bazer, F. W. (2003). Pregnancy and interferon tau regulate MHC class I and beta-2-microglobulin expression in the ovine uterus. Biol. Reprod. 68, 1703–1710.
Pregnancy and interferon tau regulate MHC class I and beta-2-microglobulin expression in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12lt78%3D&md5=1681fc5cadf39964ad2d879d73d25b2dCAS |

Choi, D. S., Kim, D. K., Kim, Y. K., and Gho, Y. S. (2013). Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 13, 1554–1571.
Proteomics, transcriptomics and lipidomics of exosomes and ectosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslajt7Y%3D&md5=219f62fc2065235fec357a490bd32f8bCAS |

Clemente, M., de La Fuente, J., Fair, T., Al Naib, A., Gutierrez-Adan, A., Roche, J. F., Rizos, D., and Lonergan, P. (2009). Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium? Reproduction 138, 507–517.
Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOgtrvL&md5=db02bbad50a0f9884f6fd189eae30497CAS |

Cocucci, E., Racchetti, G., and Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51.
Shedding microvesicles: artefacts no more.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1amt7Y%3D&md5=122580705b84edfea031c239947ec557CAS |

Delorme-Axford, E., Donker, R. B., Mouillet, J. F., Chu, T., Bayer, A., Ouyang, Y., Wang, T., Stolz, D. B., Sarkar, S. N., Morelli, A. E., Sadovsky, Y., and Coyne, C. B. (2013). Human placental trophoblasts confer viral resistance to recipient cells. Proc. Natl Acad. Sci. USA 110, 12 048–12 053.
Human placental trophoblasts confer viral resistance to recipient cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1emurfJ&md5=de12da6549759f220d256a91f1a7ff7eCAS |

Desvergne, B., and Wahli, W. (1999). Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688.
| 1:CAS:528:DyaK1MXmvFalsLo%3D&md5=bb47f50b5f609adcfd41116c9c57e5b7CAS |

Diskin, M. G., and Morris, D. G. (2008). Embryonic and early foetal losses in cattle and other ruminants. Reprod. Domest. Anim. 43, 260–267.
Embryonic and early foetal losses in cattle and other ruminants.Crossref | GoogleScholarGoogle Scholar |

Diskin, M. G., Murphy, J. J., and Sreenan, J. M. (2006). Embryo survival in dairy cows managed under pastoral conditions. Anim. Reprod. Sci. 96, 297–311.
Embryo survival in dairy cows managed under pastoral conditions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28nitFGgsg%3D%3D&md5=7333da936b58ad02e693bad79022a0b4CAS |

Donker, R. B., Mouillet, J. F., Chu, T., Hubel, C. A., Stolz, D. B., Morelli, A. E., and Sadovsky, Y. (2012). The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol. Hum. Reprod. 18, 417–424.
The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVeisr3K&md5=8060818956d39e933a9b60849b697de0CAS |

Dorniak, P., Bazer, F. W., and Spencer, T. E. (2011). Prostaglandins regulate conceptus elongation and mediate effects of interferon tau on the ovine uterine endometrium. Biol. Reprod. 84, 1119–1127.
Prostaglandins regulate conceptus elongation and mediate effects of interferon tau on the ovine uterine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFemur4%3D&md5=2b5e3d83d125cfe7eea8a5d2f29692b0CAS |

Dorniak, P., Bazer, F. W., Wu, G., and Spencer, T. E. (2012). Conceptus-derived prostaglandins regulate endometrial function in sheep. Biol. Reprod. 87, 9.
Conceptus-derived prostaglandins regulate endometrial function in sheep.Crossref | GoogleScholarGoogle Scholar |

Dorniak, P., Bazer, F. W., and Spencer, T. E. (2013a). Physiology and Endocrinology Symposium: biological role of interferon tau in endometrial function and conceptus elongation. J. Anim. Sci. 91, 1627–1638.
Physiology and Endocrinology Symposium: biological role of interferon tau in endometrial function and conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFWrtb4%3D&md5=eccc89cb0d49913fa2ffcaf9c2bc0d12CAS |

Dorniak, P., Welsh, T. H., Bazer, F. W., and Spencer, T. E. (2013b). Cortisol and interferon tau regulation of endometrial function and conceptus development in female sheep. Endocrinology 154, 931–941.
Cortisol and interferon tau regulation of endometrial function and conceptus development in female sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVehtbw%3D&md5=2036c74e490c4acc72af13a999814f92CAS |

Dunlap, K. A., Erikson, D. W., Burghardt, R. C., White, F. J., Reed, K. M., Farmer, J. L., Spencer, T. E., Magness, R. R., Bazer, F. W., Bayless, K. J., and Johnson, G. A. (2008). Progesterone and placentation increase secreted phosphoprotein one (SPP1 or osteopontin) in uterine glands and stroma for histotrophic and hematotrophic support of ovine pregnancy. Biol. Reprod. 79, 983–990.
Progesterone and placentation increase secreted phosphoprotein one (SPP1 or osteopontin) in uterine glands and stroma for histotrophic and hematotrophic support of ovine pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrtLnJ&md5=6f9b25fbaab916322aab75b6d7c461dbCAS |

El-Sayed, A., Hoelker, M., Rings, F., Salilew, D., Jennen, D., Tholen, E., Sirard, M. A., Schellander, K., and Tesfaye, D. (2006). Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genomics 28, 84–96.
Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCmtrzK&md5=ec063a8f959fe8ed75fc5cb67c42ab77CAS |

Ellinwood, W. E., Nett, T. M., and Niswender, G. D. (1979). Maintenance of the corpus luteum of early pregnancy in the ewe. II. Prostaglandin secretion by the endometrium in vitro and in vivo. Biol. Reprod. 21, 845–856.
Maintenance of the corpus luteum of early pregnancy in the ewe. II. Prostaglandin secretion by the endometrium in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlsF2ntQ%3D%3D&md5=c574f69291877dad61270f7d3f00626dCAS |

Emond, V., MacLaren, L. A., Kimmins, S., Arosh, J. A., Fortier, M. A., and Lambert, R. D. (2004). Expression of cyclooxygenase-2 and granulocyte–macrophage colony-stimulating factor in the endometrial epithelium of the cow is up-regulated during early pregnancy and in response to intrauterine infusions of interferon-tau. Biol. Reprod. 70, 54–64.
Expression of cyclooxygenase-2 and granulocyte–macrophage colony-stimulating factor in the endometrial epithelium of the cow is up-regulated during early pregnancy and in response to intrauterine infusions of interferon-tau.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVyh&md5=422312cf5a13d5e1be48d0163fd26e3cCAS |

Erdem, H., and Guzeloglu, A. (2010). Effect of meloxicam treatment during early pregnancy in Holstein heifers. Reprod. Domest. Anim. 45, 625–628.
| 1:CAS:528:DC%2BC3cXhtVOntbnF&md5=788e758f6474ce11ded06054542cfc6cCAS |

Farmer, J. L., Burghardt, R. C., Jousan, F. D., Hansen, P. J., Bazer, F. W., and Spencer, T. E. (2008). Galectin 15 (LGALS15) functions in trophectoderm migration and attachment. FASEB J. 22, 548–560.
Galectin 15 (LGALS15) functions in trophectoderm migration and attachment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVSqtrg%3D&md5=0d67a5813e5cf43d8995acfccac8bf55CAS |

Filant, J., and Spencer, T. E. (2014). Uterine glands: biological roles in conceptus implantation, uterine receptivity and decidualization. Int. J. Dev. Biol. 58, 107–116.
Uterine glands: biological roles in conceptus implantation, uterine receptivity and decidualization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslSrsLzK&md5=a7f5e214fe71935b6740478c233a3891CAS |

Fléchon, J.-E., Guillomot, M., Charlier, M., Fléchon, B., and Martal, J. (1986). Experimental studies on the elongation of the ewe blastocyst. Reprod. Nutr. Dev. 26, 1017–1024.
Experimental studies on the elongation of the ewe blastocyst.Crossref | GoogleScholarGoogle Scholar |

Forde, N., and Lonergan, P. (2012). Transcriptomic analysis of the bovine endometrium: what is required to establish uterine receptivity to implantation in cattle? J. Reprod. Dev. 58, 189–195.
Transcriptomic analysis of the bovine endometrium: what is required to establish uterine receptivity to implantation in cattle?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVKju7Y%3D&md5=2f87a3fa33e0868104c0c185c8b0fcc4CAS |

Forde, N., Carter, F., Fair, T., Crowe, M. A., Evans, A. C., Spencer, T. E., Bazer, F. W., McBride, R., Boland, M. P., O’Gaora, P., Lonergan, P., and Roche, J. F. (2009). Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod. 81, 784–794.
Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhsLbM&md5=a25fb39b733d5a86e4c067c2c956b833CAS |

Forde, N., Spencer, T. E., Bazer, F. W., Song, G., Roche, J. F., and Lonergan, P. (2010). Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium. Physiol. Genomics 41, 53–62.
Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlakt7jN&md5=23453c686531ddf8ce582b3a5372adb3CAS |

Forde, N., Beltman, M. E., Duffy, G. B., Duffy, P., Mehta, J. P., O’Gaora, P., Roche, J. F., Lonergan, P., and Crowe, M. A. (2011a). Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol. Reprod. 84, 266–278.
Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVeltr4%3D&md5=0a7a6f6a116f989ca5516d45a00fefa3CAS |

Forde, N., Carter, F., Spencer, T. E., Bazer, F. W., Sandra, O., Mansouri-Attia, N., Okumu, L. A., McGettigan, P. A., Mehta, J. P., McBride, R., O’Gaora, P., Roche, J. F., and Lonergan, P. (2011b). Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant? Biol. Reprod. 85, 144–156.
Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOlsL4%3D&md5=feb27dac8cbf65a3a033c94190a5944dCAS |

Forde, N., Duffy, G. B., McGettigan, P. A., Browne, J. A., Mehta, J. P., Kelly, A. K., Mansouri-Attia, N., Sandra, O., Loftus, B. J., Crowe, M. A., Fair, T., Roche, J. F., Lonergan, P., and Evans, A. C. (2012a). Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau. Physiol. Genomics 44, 799–810.
Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslamuw%3D%3D&md5=8b5a3085d32e5c04592e1cb79daf2bdbCAS |

Forde, N., Mehta, J. P., Minten, M., Crowe, M. A., Roche, J. F., Spencer, T. E., and Lonergan, P. (2012b). Effects of low progesterone on the endometrial transcriptome in cattle. Biol. Reprod. 87, 124.
Effects of low progesterone on the endometrial transcriptome in cattle.Crossref | GoogleScholarGoogle Scholar |

Forde, N., Mehta, J. P., McGettigan, P. A., Mamo, S., Bazer, F. W., Spencer, T. E., and Lonergan, P. (2013). Alterations in expression of endometrial genes coding for proteins secreted into the uterine lumen during conceptus elongation in cattle. BMC Genomics 14, 321.
Alterations in expression of endometrial genes coding for proteins secreted into the uterine lumen during conceptus elongation in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptlyiu7w%3D&md5=c2e1d8c36a3be1c173c8c06a5d285a82CAS |

Forde, N., McGettigan, P. A., Mehta, J. P., O’Hara, L., Mamo, S., Bazer, F. W., Spencer, T. E., and Lonergan, P. (2014a). Proteomic analysis of uterine fluid during the pre-implantation period of pregnancy in cattle. Reproduction 147, 575–587.
Proteomic analysis of uterine fluid during the pre-implantation period of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFGntbo%3D&md5=b0f969d54ca1678ca7ab64168d4bc9f9CAS |

Forde, N., Simintiras, C. A., Sturmey, R., Mamo, S., Kelly, A. K., Spencer, T. E., Bazer, F. W., and Lonergan, P. (2014b). Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle. PLoS One 9, e100010.
Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar |

Forde, N., Bazer, F. W., Spencer, T. E., and Lonergan, P. (2015). ‘Conceptualizing’ the endometrium: identification of conceptus-derived proteins during early pregnancy in cattle. Biol. Reprod. 92, 156.
‘Conceptualizing’ the endometrium: identification of conceptus-derived proteins during early pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar |

Gao, H., Wu, G., Spencer, T. E., Johnson, G. A., and Bazer, F. W. (2009a). Select nutrients in the ovine uterine lumen. II. Glucose transporters in the uterus and peri-implantation conceptuses. Biol. Reprod. 80, 94–104.
Select nutrients in the ovine uterine lumen. II. Glucose transporters in the uterus and peri-implantation conceptuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFOn&md5=f39940bd9be6b0062e0401f1e0408df9CAS |

Gao, H., Wu, G., Spencer, T. E., Johnson, G. A., and Bazer, F. W. (2009b). Select nutrients in the ovine uterine lumen. III. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses. Biol. Reprod. 80, 602–609.
Select nutrients in the ovine uterine lumen. III. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1amtbc%3D&md5=d76f29127f55cd275357f755adcdf135CAS |

Gao, H., Wu, G., Spencer, T. E., Johnson, G. A., and Bazer, F. W. (2009c). Select nutrients in the ovine uterine lumen. IV. Expression of neutral and acidic amino acid transporters in ovine uteri and peri-implantation conceptuses. Biol. Reprod. 80, 1196–1208.
Select nutrients in the ovine uterine lumen. IV. Expression of neutral and acidic amino acid transporters in ovine uteri and peri-implantation conceptuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlGmsLw%3D&md5=0082717406e58762dab229e8408c1b0bCAS |

Gao, H., Wu, G., Spencer, T. E., Johnson, G. A., Li, X., and Bazer, F. W. (2009d). Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol. Reprod. 80, 86–93.
Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFOg&md5=394b0a5d894cf38bebf29cd401bf7704CAS |

Geary, T. W., Burns, G. W., Moraes, J. G., Moss, J. I., Denicol, A. C., Dobbs, K. B., Ortega, M. S., Hansen, P. J., Wehrman, M. E., Neibergs, H., O’Neil, E., Behura, S., and Spencer, T. E. (2016). Identification of beef heifers with superior uterine capacity for pregnancy. Biol. Reprod. 95, 47.
Identification of beef heifers with superior uterine capacity for pregnancy.Crossref | GoogleScholarGoogle Scholar |

Giraud, A., Whitley, J., Shulkes, A., and Parker, L. (1996). The pregnant ovine endometrium constitutively expresses and secretes a highly stable bombesin-like peptide, which shares C-terminal sequence but differs structurally from gastrin-releasing peptide. Biochim. Biophys. Acta 1296, 189–197.
The pregnant ovine endometrium constitutively expresses and secretes a highly stable bombesin-like peptide, which shares C-terminal sequence but differs structurally from gastrin-releasing peptide.Crossref | GoogleScholarGoogle Scholar |

Gonzales, P. A., Zhou, H., Pisitkun, T., Wang, N. S., Star, R. A., Knepper, M. A., and Yuen, P. S. (2010). Isolation and purification of exosomes in urine. Methods Mol. Biol. 641, 89–99.
Isolation and purification of exosomes in urine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KmtL%2FJ&md5=7a6203055f00b12c736171c5b4f02adfCAS |

Gray, C. A., Bartol, F. F., Taylor, K. M., Wiley, A. A., Ramsey, W. S., Ott, T. L., Bazer, F. W., and Spencer, T. E. (2000a). Ovine uterine gland knock-out model: effects of gland ablation on the estrous cycle. Biol. Reprod. 62, 448–456.
Ovine uterine gland knock-out model: effects of gland ablation on the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVyjsQ%3D%3D&md5=29623d110eddb0ed39ffdc8855e7384dCAS |

Gray, C. A., Taylor, K. M., Bazer, F. W., and Spencer, T. E. (2000b). Mechanisms regulating norgestomet inhibition of endometrial gland morphogenesis in the neonatal ovine uterus. Mol. Reprod. Dev. 57, 67–78.
Mechanisms regulating norgestomet inhibition of endometrial gland morphogenesis in the neonatal ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFyksbk%3D&md5=ca2a123a002875a665c6302f7723363cCAS |

Gray, C. A., Bartol, F. F., Tarleton, B. J., Wiley, A. A., Johnson, G. A., Bazer, F. W., and Spencer, T. E. (2001a). Developmental biology of uterine glands. Biol. Reprod. 65, 1311–1323.
Developmental biology of uterine glands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVeku7g%3D&md5=be6d1d98f3ecb6aa4713934ec96b34f0CAS |

Gray, C. A., Taylor, K. M., Ramsey, W. S., Hill, J. R., Bazer, F. W., Bartol, F. F., and Spencer, T. E. (2001b). Endometrial glands are required for preimplantation conceptus elongation and survival. Biol. Reprod. 64, 1608–1613.
Endometrial glands are required for preimplantation conceptus elongation and survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFGgsbs%3D&md5=45efc0cc1c6e267419f2ac6174634168CAS |

Gray, C. A., Burghardt, R. C., Johnson, G. A., Bazer, F. W., and Spencer, T. E. (2002). Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction 124, 289–300.
Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVCitL8%3D&md5=9c3c9308109c7db4c2607a50781867fcCAS |

Gray, C. A., Adelson, D. L., Bazer, F. W., Burghardt, R. C., Meeusen, E. N., and Spencer, T. E. (2004). Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proc. Natl Acad. Sci. USA 101, 7982–7987.
Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkslCisLg%3D&md5=59826440661b0135f34ecec7d688d96cCAS |

Greening, D. W., Nguyen, H. P. T., Elgass, K., Simpson, R. J., and Salamonsen, L. A. (2016). Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial–embryo interactions. Biol. Reprod. 94, 38.
Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial–embryo interactions.Crossref | GoogleScholarGoogle Scholar |

Guillomot, M. (1995). Cellular interactions during implantation in domestic ruminants. J. Reprod. Fertil. Suppl. 49, 39–51.
| 1:CAS:528:DyaK2MXmslWit7g%3D&md5=9114b7e851bb2497f01391c105b49d0bCAS |

Guillomot, M., Flechon, J. E., and Wintenberger-Torres, S. (1981). Conceptus attachment in the ewe: an ultrastructural study. Placenta 2, 169–181.
Conceptus attachment in the ewe: an ultrastructural study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M7pvFWqtA%3D%3D&md5=9b9a4d92c48b6e983246432df6f660a0CAS |

Han, H., Austin, K. J., Rempel, L. A., and Hansen, T. R. (2006). Low blood ISG15 mRNA and progesterone levels are predictive of non-pregnant dairy cows. J. Endocrinol. 191, 505–512.
Low blood ISG15 mRNA and progesterone levels are predictive of non-pregnant dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlejsLrJ&md5=3e5e63d2adb01cf80a14e1040273f3ebCAS |

Hansen, P. J., and Block, J. (2004). Towards an embryocentric world: the current and potential uses of embryo technologies in dairy production. Reprod. Fertil. Dev. 16, 1–14.
Towards an embryocentric world: the current and potential uses of embryo technologies in dairy production.Crossref | GoogleScholarGoogle Scholar |

Hansen, T. R., Austin, K. J., Perry, D. J., Pru, J. K., Teixeira, M. G., and Johnson, G. A. (1999). Mechanism of action of interferon-tau in the uterus during early pregnancy. J. Reprod. Fertil. Suppl. 54, 329–339.
| 1:CAS:528:DyaK1MXnslSit74%3D&md5=b377ed7e5addd56315eaf287baea6764CAS |

Hansen, T. R., Henkes, L. K., Ashley, R. L., Bott, R. C., Antoniazzi, A. Q., and Han, H. (2010). Endocrine actions of interferon-tau in ruminants. Soc. Reprod. Fertil. Suppl. 67, 325–340.
| 1:STN:280:DC%2BC3MnosFemsA%3D%3D&md5=9fa152d468aeba31eb4c3bde250bf6ffCAS |

Hashizume, K., Ushizawa, K., Patel, O. V., Kizaki, K., Imai, K., Yamada, O., Nakano, H., and Takahashi, T. (2007). Gene expression and maintenance of pregnancy in bovine: roles of trophoblastic binucleate cell-specific molecules. Reprod. Fertil. Dev. 19, 79–90.
Gene expression and maintenance of pregnancy in bovine: roles of trophoblastic binucleate cell-specific molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtleitr%2FP&md5=47bfeb8d5ad67f17de44b0a078aa3741CAS |

Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A. J., Zeiher, A. M., Scheffer, M. P., Frangakis, A. S., Yin, X., Mayr, M., Braun, T., Urbich, C., Boon, R. A., and Dimmeler, S. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14, 249–256.
Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFalu7c%3D&md5=1c1a7fe18b81223fd8ef7c630e311afdCAS |

Hue, I., Degrelle, S. A., and Turenne, N. (2012). Conceptus elongation in cattle: genes, models and questions. Anim. Reprod. Sci. 134, 19–28.
Conceptus elongation in cattle: genes, models and questions.Crossref | GoogleScholarGoogle Scholar |

Hugentobler, S. A., Sreenan, J. M., Humpherson, P. G., Leese, H. J., Diskin, M. G., and Morris, D. G. (2010). Effects of changes in the concentration of systemic progesterone on ions, amino acids and energy substrates in cattle oviduct and uterine fluid and blood. Reprod. Fertil. Dev. 22, 684–694.
Effects of changes in the concentration of systemic progesterone on ions, amino acids and energy substrates in cattle oviduct and uterine fluid and blood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvF2isLY%3D&md5=21af4c8d5e90010677dc51576f97906dCAS |

Johnson, G. A., Austin, K. J., Collins, A. M., Murdoch, W. J., and Hansen, T. R. (1999a). Endometrial ISG17 mRNA and a related mRNA are induced by interferon-tau and localized to glandular epithelial and stromal cells from pregnant cows. Endocrine 10, 243–252.
Endometrial ISG17 mRNA and a related mRNA are induced by interferon-tau and localized to glandular epithelial and stromal cells from pregnant cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1Ols78%3D&md5=52753e362fb6a423121a16547c942d5fCAS |

Johnson, G. A., Spencer, T. E., Burghardt, R. C., and Bazer, F. W. (1999b). Ovine osteopontin: I. Cloning and expression of messenger ribonucleic acid in the uterus during the periimplantation period. Biol. Reprod. 61, 884–891.
Ovine osteopontin: I. Cloning and expression of messenger ribonucleic acid in the uterus during the periimplantation period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlajsb4%3D&md5=a43691550e58b96ecab204b725d3e858CAS |

Johnson, G. A., Spencer, T. E., Hansen, T. R., Austin, K. J., Burghardt, R. C., and Bazer, F. W. (1999c). Expression of the interferon tau inducible ubiquitin cross-reactive protein in the ovine uterus. Biol. Reprod. 61, 312–318.
Expression of the interferon tau inducible ubiquitin cross-reactive protein in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFKnsrg%3D&md5=96b5bc73bd6983aee38b46b841f9cceaCAS |

Johnson, G. A., Spencer, T. E., Burghardt, R. C., Joyce, M. M., and Bazer, F. W. (2000). Interferon-tau and progesterone regulate ubiquitin cross-reactive protein expression in the ovine uterus. Biol. Reprod. 62, 622–627.
Interferon-tau and progesterone regulate ubiquitin cross-reactive protein expression in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVOrsrc%3D&md5=3037e1d39df0aba5f896aa9a75f21f1eCAS |

Johnson, G. A., Stewart, M. D., Gray, C. A., Choi, Y., Burghardt, R. C., Yu-Lee, L. Y., Bazer, F. W., and Spencer, T. E. (2001). Effects of the estrous cycle, pregnancy, and interferon tau on 2′,5′-oligoadenylate synthetase expression in the ovine uterus. Biol. Reprod. 64, 1392–1399.
Effects of the estrous cycle, pregnancy, and interferon tau on 2′,5′-oligoadenylate synthetase expression in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFKqsro%3D&md5=ff0bcdb9aeed98f5d14dac6390f7a898CAS |

Johnson, G. A., Burghardt, R. C., Bazer, F. W., and Spencer, T. E. (2003a). Osteopontin: roles in implantation and placentation. Biol. Reprod. 69, 1458–1471.
Osteopontin: roles in implantation and placentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosV2kur8%3D&md5=cfc397026bb119b05e0afce49521ff09CAS |

Johnson, G. A., Burghardt, R. C., Joyce, M. M., Spencer, T. E., Bazer, F. W., Gray, C. A., and Pfarrer, C. (2003b). Osteopontin is synthesized by uterine glands and a 45-kDa cleavage fragment is localized at the uterine–placental interface throughout ovine pregnancy. Biol. Reprod. 69, 92–98.
Osteopontin is synthesized by uterine glands and a 45-kDa cleavage fragment is localized at the uterine–placental interface throughout ovine pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCntrc%3D&md5=2ee271feecbb64624c40ac238c9f2c8aCAS |

Keller, S., Ridinger, J., Rupp, A. K., Janssen, J. W., and Altevogt, P. (2011). Body fluid derived exosomes as a novel template for clinical diagnostics. J. Transl. Med. 9, 86.
Body fluid derived exosomes as a novel template for clinical diagnostics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1yisrc%3D&md5=0c5a181a910b32b9a4c7de562a36ab4aCAS |

Kim, S., Choi, Y., Bazer, F. W., and Spencer, T. E. (2003). Identification of genes in the ovine endometrium regulated by interferon tau independent of signal transducer and activator of transcription 1. Endocrinology 144, 5203–5214.
Identification of genes in the ovine endometrium regulated by interferon tau independent of signal transducer and activator of transcription 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsV2gtLo%3D&md5=1715e8ebf31a006e196019af768f43b9CAS |

Kim, J., Erikson, D. W., Burghardt, R. C., Spencer, T. E., Wu, G., Bayless, K.J., Johnson, G. A., and Bazer, F. W. (2010). Secreted phosphoprotein 1 binds integrins to initiate multiple cell signaling pathways, including FRAP1/mTOR, to support attachment and force-generated migration of trophectoderm cells. Matrix Biol. 29, 369–382.
Secreted phosphoprotein 1 binds integrins to initiate multiple cell signaling pathways, including FRAP1/mTOR, to support attachment and force-generated migration of trophectoderm cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslaiurg%3D&md5=e01e6122add87b80dd73c8775fed472eCAS |

Kim, J. Y., Burghardt, R. C., Wu, G., Johnson, G. A., Spencer, T. E., and Bazer, F. W. (2011a). Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol. Reprod. 84, 62–69.
Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVegtbY%3D&md5=b4203e1911827659b6ee7bae985f69d3CAS |

Kim, J. Y., Burghardt, R. C., Wu, G., Johnson, G. A., Spencer, T. E., and Bazer, F. W. (2011b). Select nutrients in the ovine uterine lumen. VIII. Arginine stimulates proliferation of ovine trophectoderm cells through MTOR–RPS6K–RPS6 signaling cascade and synthesis of nitric oxide and polyamines. Biol. Reprod. 84, 70–78.
Select nutrients in the ovine uterine lumen. VIII. Arginine stimulates proliferation of ovine trophectoderm cells through MTOR–RPS6K–RPS6 signaling cascade and synthesis of nitric oxide and polyamines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVegtbc%3D&md5=6f64296cc98ab5aaf408e19b78967060CAS |

Kimmins, S., Lim, H. C., and MacLaren, L. A. (2004). Immunohistochemical localization of integrin alpha V beta 3 and osteopontin suggests that they do not interact during embryo implantation in ruminants. Reprod. Biol. Endocrinol. 2, 19.
Immunohistochemical localization of integrin alpha V beta 3 and osteopontin suggests that they do not interact during embryo implantation in ruminants.Crossref | GoogleScholarGoogle Scholar |

Koch, J. M., Ramadoss, J., and Magness, R. R. (2010). Proteomic profile of uterine luminal fluid from early pregnant ewes. J. Proteome Res. 9, 3878–3885.
Proteomic profile of uterine luminal fluid from early pregnant ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVCitrs%3D&md5=d149c67ba168d4e777a9e2350c7d838eCAS |

Kshirsagar, S. K., Alam, S. M., Jasti, S., Hodes, H., Nauser, T., Gilliam, M., Billstrand, C., Hunt, J. S., and Petroff, M. G. (2012). Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta 33, 982–990.
Immunomodulatory molecules are released from the first trimester and term placenta via exosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12gtrnM&md5=88619d98d04cd9783fdf30dec7981498CAS |

Larson, J. E., Krisher, R. L., and Lamb, G. C. (2011). Effects of supplemental progesterone on the development, metabolism and blastocyst cell number of bovine embryos produced in vitro. Reprod. Fertil. Dev. 23, 311–318.
Effects of supplemental progesterone on the development, metabolism and blastocyst cell number of bovine embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFeqsQ%3D%3D&md5=b47d86ec3116e1c9a5a1362d966a056eCAS |

Leese, H. J. (2012). Metabolism of the preimplantation embryo: 40 years on. Reproduction 143, 417–427.
Metabolism of the preimplantation embryo: 40 years on.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntV2ns7k%3D&md5=83d34b17b0b1e61c2d26a433da03c4c2CAS |

Lewis, G. S. (1989). Prostaglandin secretion by the blastocyst. J. Reprod. Fertil. Suppl. 37, 261–267.
| 1:CAS:528:DyaL1MXitVGktLk%3D&md5=7e1503d8c7ffe4ad4d9ff34617bd16efCAS |

Lewis, G. S., and Waterman, R. A. (1983). Effects of endometrium on metabolism of arachidonic acid by bovine blastocysts in vitro. Prostaglandins 25, 881–889.
Effects of endometrium on metabolism of arachidonic acid by bovine blastocysts in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXks1Gjurs%3D&md5=c914ed2ce9ec08eab88fa7f82eaf124bCAS |

Lewis, G. S., and Waterman, R. A. (1985). Metabolism of arachidonic acid in vitro by ovine conceptuses recovered during early pregnancy. Prostaglandins 30, 263–283.
Metabolism of arachidonic acid in vitro by ovine conceptuses recovered during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlvFSmsb8%3D&md5=228a230a90598a25c3a8045db7828075CAS |

Lewis, G. S., Thatcher, W. W., Bazer, F. W., and Curl, J. S. (1982). Metabolism of arachidonic acid in vitro by bovine blastocysts and endometrium. Biol. Reprod. 27, 431–439.
Metabolism of arachidonic acid in vitro by bovine blastocysts and endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlslGrtro%3D&md5=be2ef54308dc1d86f415f12190c3f199CAS |

Lewis, S. K., Farmer, J. L., Burghardt, R. C., Newton, G. R., Johnson, G. A., Adelson, D. L., Bazer, F. W., and Spencer, T. E. (2007). Galectin 15 (LGALS15): a gene uniquely expressed in the uteri of sheep and goats that functions in trophoblast attachment. Biol. Reprod. 77, 1027–1036.
Galectin 15 (LGALS15): a gene uniquely expressed in the uteri of sheep and goats that functions in trophoblast attachment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSgtLfO&md5=0a2adc87e5fd4ac97121d4a0bc160488CAS |

Li, Q. L., Bu, N., Yu, Y. C., Hua, W., and Xin, X. Y. (2008). Exvivo experiments of human ovarian cancer ascites-derived exosomes presented by dendritic cells derived from umbilical cord blood for immunotherapy treatment. Clin. Med. Oncol. 2, 461–467.
| 1:CAS:528:DC%2BD1cXpvV2gs7c%3D&md5=55838b5342e343c9639ddd705093aae5CAS |

Lonergan, P. (2011). Influence of progesterone on oocyte quality and embryo development in cows. Theriogenology 76, 1594–1601.
Influence of progesterone on oocyte quality and embryo development in cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVanurzI&md5=d73229f411c176ec14a6c8d4b2eac00cCAS |

Lonergan, P., and Forde, N. (2014). Maternal–embryo interaction leading up to the initiation of implantation of pregnancy in cattle. Animal 8, 64–69.
Maternal–embryo interaction leading up to the initiation of implantation of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotF2qt78%3D&md5=b339c123a5aa03ffd99ad1c20f09e367CAS |

Lonergan, P., Woods, A., Fair, T., Carter, F., Rizos, D., Ward, F., Quinn, K., and Evans, A. (2007). Effect of embryo source and recipient progesterone environment on embryo development in cattle. Reprod. Fertil. Dev. 19, 861–868.
Effect of embryo source and recipient progesterone environment on embryo development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWhtrzK&md5=4f8950cc2ffe3e2aa9f71aba4f422ae8CAS |

Lonergan, P., Fair, T., Forde, N., and Rizos, D. (2016a). Embryo development in dairy cattle. Theriogenology 86, 270–277.
Embryo development in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsVWgurk%3D&md5=b732c23e97de8ba6081f85864cf2855eCAS |

Lonergan, P., Forde, N., and Spencer, T. (2016b). Role of progesterone in embryo development in cattle. Reprod. Fertil. Dev. 28, 66–74.
Role of progesterone in embryo development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvF2itLzE&md5=bfa192a5d44d469c0315fb4fe3ecf406CAS |

Looney, C. R., Nelson, J. S., Schneider, H. J., and Forrest, D. W. (2006). Improving fertility in beef cow recipients. Theriogenology 65, 201–209.
Improving fertility in beef cow recipients.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MnjtFSlsA%3D%3D&md5=4c7c0e4018d34a1e942ba6f23cbb0350CAS |

Mamo, S., Rizos, D., and Lonergan, P. (2012). Transcriptomic changes in the bovine conceptus between the blastocyst stage and initiation of implantation. Anim. Reprod. Sci. 134, 56–63.
Transcriptomic changes in the bovine conceptus between the blastocyst stage and initiation of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlamtLjL&md5=cd059b2c161117c4fdcaa0cfb449571aCAS |

Mann, G. E., Fray, M. D., and Lamming, G. E. (2006). Effects of time of progesterone supplementation on embryo development and interferon-tau production in the cow. Vet. J. 171, 500–503.
Effects of time of progesterone supplementation on embryo development and interferon-tau production in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Kis70%3D&md5=63957190e9099279286de64d655a922bCAS |

Mansouri-Attia, N., Aubert, J., Reinaud, P., Giraud-Delville, C., Taghouti, G., Galio, L., Everts, R. E., Degrelle, S., Richard, C., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., Renard, J.-P., and Sandra, O. (2009). Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation. Physiol. Genomics 39, 14–27.
Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlakt7rM&md5=214c62741cf51d70dd8a3300d7b1966bCAS |

Mapletoft, R. J. (2013). History and perspectives on bovine embryo transfer. Anim. Reprod. 10, 168–173.

Marcus, G. J. (1981). Prostaglandin formation by the sheep embryo and endometrium as an indication of maternal recognition of pregnancy. Biol. Reprod. 25, 56–64.
Prostaglandin formation by the sheep embryo and endometrium as an indication of maternal recognition of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltlSgtb0%3D&md5=4bdb3792fa3e8d584ed648df8c72977eCAS |

McMillan, W. H. (1998). Statistical models predicting embryo survival to term in cattle after embryo transfer. Theriogenology 50, 1053–1070.
Statistical models predicting embryo survival to term in cattle after embryo transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVGqug%3D%3D&md5=4161fb17ca95be9f79740bf751b88e9cCAS |

McMillan, W. H., and Donnison, M. J. (1999). Understanding maternal contributions to fertility in recipient cattle: development of herds with contrasting pregnancy rates. Anim. Reprod. Sci. 57, 127–140.
Understanding maternal contributions to fertility in recipient cattle: development of herds with contrasting pregnancy rates.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2Fns1Wmtw%3D%3D&md5=462d02d9a222eef9cfc99ab2fc73d022CAS |

Minten, M. A., Bilby, T. R., Bruno, R. G., Allen, C. C., Madsen, C. A., Wang, Z., Sawyer, J. E., Tibary, A., Neibergs, H. L., Geary, T. W., Bauersachs, S., and Spencer, T. E. (2013). Effects of fertility on gene expression and function of the bovine endometrium. PLoS One 8, e69444.
Effects of fertility on gene expression and function of the bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSmsLvL&md5=1ef84883e00286b065b80f9b0b9c2489CAS |

Nagaoka, K., Nojima, H., Watanabe, F., Chang, K. T., Christenson, R. K., Sakai, S., and Imakawa, K. (2003a). Regulation of blastocyst migration, apposition, and initial adhesion by a chemokine, interferon gamma-inducible protein 10 kDa (IP-10), during early gestation. J. Biol. Chem. 278, 29 048–29 056.
Regulation of blastocyst migration, apposition, and initial adhesion by a chemokine, interferon gamma-inducible protein 10 kDa (IP-10), during early gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsl2msLk%3D&md5=35a095b9a0286d5e64ee3776dd42b979CAS |

Nagaoka, K., Sakai, A., Nojima, H., Suda, Y., Yokomizo, Y., Imakawa, K., Sakai, S., and Christenson, R. K. (2003b). A chemokine, interferon (IFN)-gamma-inducible protein 10 kDa, is stimulated by IFN-tau and recruits immune cells in the ovine endometrium. Biol. Reprod. 68, 1413–1421.
A chemokine, interferon (IFN)-gamma-inducible protein 10 kDa, is stimulated by IFN-tau and recruits immune cells in the ovine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVerurg%3D&md5=6afbe0bad0835fc5f9161b7cb818e345CAS |

Nakamura, K., Kusama, K., Bai, R., Sakurai, T., Isuzugawa, K., Godkin, J. D., Suda, Y., and Imakawa, K. (2016). Induction of IFNT-Stimulated genes by conceptus-derived exosomes during the attachment period. PLoS One 11, e0158278.
Induction of IFNT-Stimulated genes by conceptus-derived exosomes during the attachment period.Crossref | GoogleScholarGoogle Scholar |

Nephew, K. P., McClure, K. E., Ott, T. L., Dubois, D. H., Bazer, F. W., and Pope, W. F. (1991). Relationship between variation in conceptus development and differences in estrous cycle duration in ewes. Biol. Reprod. 44, 536–539.
Relationship between variation in conceptus development and differences in estrous cycle duration in ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtFGkurg%3D&md5=9ecdfa86eeb6798ee8d46b18641227edCAS |

Ng, Y. H., Rome, S., Jalabert, A., Forterre, A., Singh, H., Hincks, C. L., and Salamonsen, L. A. (2013a). Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo–endometrial cross talk at implantation. PLoS One 8, e58502.
Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo–endometrial cross talk at implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXks1Wnsb0%3D&md5=d2d8958a0c3923446b5da40c42edb00fCAS |

O’Hara, L., Scully, S., Maillo, V., Kelly, A. K., Duffy, P., Carter, F., Forde, N., Rizos, D., and Lonergan, P. (2012). Effect of follicular aspiration just before ovulation on corpus luteum characteristics, circulating progesterone concentrations and uterine receptivity in single-ovulating and superstimulated heifers. Reproduction 143, 673–682.
Effect of follicular aspiration just before ovulation on corpus luteum characteristics, circulating progesterone concentrations and uterine receptivity in single-ovulating and superstimulated heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFKqsL8%3D&md5=1e052aebaa3cc47d89465af42408d346CAS |

Ogawa, Y., Kanai-Azuma, M., Akimoto, Y., Kawakami, H., and Yanoshita, R. (2008). Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol. Pharm. Bull. 31, 1059–1062.
Exosome-like vesicles with dipeptidyl peptidase IV in human saliva.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVyjtro%3D&md5=bb314d3a36f60e3ef4956080556629a4CAS |

Okumu, L. A., Forde, N., Fahey, A. G., Fitzpatrick, E., Roche, J. F., Crowe, M. A., and Lonergan, P. (2010). The effect of elevated progesterone and pregnancy status on mRNA expression and localisation of progesterone and oestrogen receptors in the bovine uterus. Reproduction 140, 143–153.
The effect of elevated progesterone and pregnancy status on mRNA expression and localisation of progesterone and oestrogen receptors in the bovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVWls77E&md5=63aa5323c3a0d7697bbdc1623a24a247CAS |

Ott, T. L., and Gifford, C. A. (2010). Effects of early conceptus signals on circulating immune cells: lessons from domestic ruminants. Am. J. Reprod. Immunol. 64, 245–254.
Effects of early conceptus signals on circulating immune cells: lessons from domestic ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSgtrbI&md5=8268ba60cda465e1ae3d670ccf22ecf0CAS |

Ouyang, Y., Mouillet, J. F., Coyne, C. B., and Sadovsky, Y. (2014). Review: placenta-specific microRNAs in exosomes – good things come in nano-packages. Placenta 35, S69–S73.
Review: placenta-specific microRNAs in exosomes – good things come in nano-packages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKjurrK&md5=afebacd3797feb8df385c774ada7b262CAS |

Parr, M. H., Crowe, M. A., Lonergan, P., Evans, A. C., Rizos, D., and Diskin, M. G. (2014). Effect of exogenous progesterone supplementation in the early luteal phase post-insemination on pregnancy per artificial insemination in Holstein–Friesian cows. Anim. Reprod. Sci. 150, 7–14.
Effect of exogenous progesterone supplementation in the early luteal phase post-insemination on pregnancy per artificial insemination in Holstein–Friesian cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2nsbvM&md5=2e9a4a153a2f025c6a22951ad093b810CAS |

Patel, O., Shulkes, A., and Baldwin, G. S. (2006). Gastrin-releasing peptide and cancer. Biochim. Biophys. Acta 1766, 23–41.
| 1:CAS:528:DC%2BD28XotVyru7Y%3D&md5=45f9b3f847be97e32ee26c9e0c2d3f8eCAS |

Perry, G. W. (2015). 2014 Statistics of embryo collection and transfer in domestic farm animals. Available at http://www.iets.org/pdf/comm_data/December2015.pdf [verified 15 September 2016].

Pestka, S. (2007). The interferons: 50 years after their discovery, there is much more to learn. J. Biol. Chem. 282, 20 047–20 051.
The interferons: 50 years after their discovery, there is much more to learn.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFWnsbc%3D&md5=43f74b1a42e57a652d4e8c0b12738989CAS |

Racicot, K., Schmitt, A., and Ott, T. (2012). The myxovirus-resistance protein, MX1, is a component of exosomes secreted by uterine epithelial cells. Am. J. Reprod. Immunol. 67, 498–505.
The myxovirus-resistance protein, MX1, is a component of exosomes secreted by uterine epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVClsb7J&md5=2dd2251a138c373f211c2fa1f642fecaCAS |

Rana, S., Yue, S., Stadel, D., and Zoller, M. (2012). Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int. J. Biochem. Cell Biol. 44, 1574–1584.
Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVektr7P&md5=f11190fa526d388c10c93df522c292f9CAS |

Raposo, G., and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383.
Extracellular vesicles: exosomes, microvesicles, and friends.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtFCnsbk%3D&md5=73224e7b99e8c01f220c50fbe60cb4c3CAS |

Reinhardt, T. A., Lippolis, J. D., Nonnecke, B. J., and Sacco, R. E. (2012). Bovine milk exosome proteome. J. Proteomics 75, 1486–1492.
Bovine milk exosome proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSlsb0%3D&md5=f1bcf5af3aa6fa21116427c9cb453391CAS |

Ribeiro, E. S., Santos, J. E. P., and Thatcher, W. W. (2016a). Role of lipids on elongation of the preimplantation conceptus in ruminants. Reproduction 152, R115–R126.
Role of lipids on elongation of the preimplantation conceptus in ruminants.Crossref | GoogleScholarGoogle Scholar |

Ribeiro, E. S., Greco, L. F., Bisinotto, R. S., Lima, F. S., Thatcher, W. W., and Santos, J. E. (2016b). Biology of Preimplantation conceptus at the onset of elongation in dairy cows. Biol. Reprod. 94, 97.
Biology of Preimplantation conceptus at the onset of elongation in dairy cows.Crossref | GoogleScholarGoogle Scholar |

Ribeiro, E. S., Monteiro, A. P., Bisinotto, R. S., Lima, F. S., Greco, L. F., Ealy, A. D., Thatcher, W. W., and Santos, J. E. (2016c). Conceptus development and transcriptome at preimplantation stages in lactating dairy cows of distinct genetic groups and estrous cyclic statuses. J. Dairy Sci. 99, 4761–4777.
Conceptus development and transcriptome at preimplantation stages in lactating dairy cows of distinct genetic groups and estrous cyclic statuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xksl2lsrs%3D&md5=6d0c1f6c7ef2d59882d119a517f58076CAS |

Riley, J. K., and Moley, K. H. (2006). Glucose utilization and the PI3-K pathway: mechanisms for cell survival in preimplantation embryos. Reproduction 131, 823–835.
Glucose utilization and the PI3-K pathway: mechanisms for cell survival in preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtV2itr0%3D&md5=7b20e214579912fe4ee74ed47230372aCAS |

Roberts, R. M., and Bazer, F. W. (1988). The functions of uterine secretions. J. Reprod. Fertil. 82, 875–892.
The functions of uterine secretions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1Gisr0%3D&md5=80faaf59448a10a95090915b6b185ad2CAS |

Roberts, R. M., Ezashi, T., Rosenfeld, C. S., Ealy, A. D., and Kubisch, H. M. (2003). Evolution of the interferon tau genes and their promoters, and maternal–trophoblast interactions in control of their expression. Reprod. Suppl. 61, 239–251.
| 1:CAS:528:DC%2BD3sXptFKhsbs%3D&md5=264449f3738c6f6ecae6c553331d6913CAS |

Ruiz-González, I., Xu, J., Wang, X., Burghardt, R. C., Dunlap, K. A., and Bazer, F. W. (2015). Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes. Reproduction 149, 281–291.
Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes.Crossref | GoogleScholarGoogle Scholar |

Sarker, S., Scholz-Romero, K., Perez, A., Illanes, S. E., Mitchell, M. D., Rice, G. E., and Salomon, C. (2014). Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J. Transl. Med. 12, 204.
Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy.Crossref | GoogleScholarGoogle Scholar |

Satterfield, M. C., Bazer, F. W., and Spencer, T. E. (2006). Progesterone regulation of preimplantation conceptus growth and galectin 15 (LGALS15) in the ovine uterus. Biol. Reprod. 75, 289–296.
Progesterone regulation of preimplantation conceptus growth and galectin 15 (LGALS15) in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVWgsbo%3D&md5=dcaa3d128df7f00be96a2c2426f42c4cCAS |

Satterfield, M. C., Song, G., Kochan, K. J., Riggs, P. K., Simmons, R. M., Elsik, C. G., Adelson, D. L., Bazer, F. W., Zhou, H., and Spencer, T. E. (2009). Discovery of candidate genes and pathways in the endometrium regulating ovine blastocyst growth and conceptus elongation. Physiol. Genomics 39, 85–99.
Discovery of candidate genes and pathways in the endometrium regulating ovine blastocyst growth and conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlakt77J&md5=e6b7941876bf87540d6c42615e4d318bCAS |

Simmons, R. M., Erikson, D. W., Kim, J., Burghardt, R. C., Bazer, F. W., Johnson, G. A., and Spencer, T. E. (2009). Insulin-like growth factor binding protein one in the ruminant uterus: potential endometrial marker and regulator of conceptus elongation. Endocrinology 150, 4295–4305.
Insulin-like growth factor binding protein one in the ruminant uterus: potential endometrial marker and regulator of conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyrtLfP&md5=6ed73ca5b29ad6ae5d99b95c869d0b3fCAS |

Simmons, R. M., Satterfield, M. C., Welsh, T. H., Bazer, F. W., and Spencer, T. E. (2010). HSD11B1, HSD11B2, PTGS2, and NR3C1 expression in the peri-implantation ovine uterus: effects of pregnancy, progesterone, and interferon tau. Biol. Reprod. 82, 35–43.
HSD11B1, HSD11B2, PTGS2, and NR3C1 expression in the peri-implantation ovine uterus: effects of pregnancy, progesterone, and interferon tau.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WgsrrM&md5=7db380c4a5587fe33fd139a0222a7d42CAS |

Simons, M., and Raposo, G. (2009). Exosomes: vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581.
Exosomes: vesicular carriers for intercellular communication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Cltbc%3D&md5=0521223e980f5f021914d5773e495ef8CAS |

Simpson, R. J., Jensen, S. S., and Lim, J. W. (2008). Proteomic profiling of exosomes: current perspectives. Proteomics 8, 4083–4099.
Proteomic profiling of exosomes: current perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Kgur7P&md5=487120c576add7db5b54714e4988a3e0CAS |

Skog, J., Wurdinger, T., van Rijn, S., Meijer, D. H., Gainche, L., Sena-Esteves, M., Curry, W. T., Carter, B. S., Krichevsky, A. M., and Breakefield, X. O. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476.
Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVentbfI&md5=bab35c27aa5ec045e89f8188441c5a35CAS |

Sohel, M. M., Hoelker, M., Noferesti, S. S., Salilew-Wondim, D., Tholen, E., Looft, C., Rings, F., Uddin, M. J., Spencer, T. E., Schellander, K., and Tesfaye, D. (2013). Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One 8, e78505.
Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGisLjJ&md5=90e917d2955d4f88cb1a55ad92fb5a5eCAS |

Song, G., Bazer, F. W., and Spencer, T. E. (2007). Pregnancy and interferon tau regulate RSAD2 and IFIH1 expression in the ovine uterus. Reproduction 133, 285–295.
Pregnancy and interferon tau regulate RSAD2 and IFIH1 expression in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1ais74%3D&md5=f4ff7ae8ee0d2edce7ebcce9ba2e2529CAS |

Song, G., Satterfield, M. C., Kim, J., Bazer, F. W., and Spencer, T. E. (2008). Gastrin-releasing peptide (GRP) in the ovine uterus: regulation by interferon tau and progesterone. Biol. Reprod. 79, 376–386.
Gastrin-releasing peptide (GRP) in the ovine uterus: regulation by interferon tau and progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFWmsbw%3D&md5=8a3057739830855a80b8546b539e55acCAS |

Spencer, T. E., and Bazer, F. W. (2002). Biology of progesterone action during pregnancy recognition and maintenance of pregnancy. Front. Biosci. 7, d1879–d1898.
Biology of progesterone action during pregnancy recognition and maintenance of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlslygsrg%3D&md5=5a94f9b92451857a0134b9225ba4a1f5CAS |

Spencer, T. E., and Bazer, F. W. (2004). Conceptus signals for establishment and maintenance of pregnancy. Reprod. Biol. Endocrinol. 2, 49.
Conceptus signals for establishment and maintenance of pregnancy.Crossref | GoogleScholarGoogle Scholar |

Spencer, T. E., Johnson, G. A., Bazer, F. W., and Burghardt, R. C. (2007a). Fetal–maternal interactions during the establishment of pregnancy in ruminants. Soc. Reprod. Fertil. Suppl. 64, 379–396.
| 1:CAS:528:DC%2BD1cXpvVyrsLc%3D&md5=7144274148e25127a503d062da051724CAS |

Spencer, T. E., Johnson, G. A., Bazer, F. W., Burghardt, R. C., and Palmarini, M. (2007b). Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reprod. Fertil. Dev. 19, 65–78.
Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtleitr%2FN&md5=b87bada4698188938f7113a02e5cf21bCAS |

Spencer, T. E., Sandra, O., and Wolf, E. (2008). Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 135, 165–179.
Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrtL4%3D&md5=3b64ff9dc8399d2026fb89333ff07bfaCAS |

Spencer, T. E., Forde, N., Dorniak, P., Hansen, T. R., Romero, J. J., and Lonergan, P. (2013). Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction 146, 377–387.
Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ygtr3P&md5=4144a4aae581b1b19bf1cd1d2f4682ceCAS |

Sreenan, J. M., and Diskin, M. G. (1986). The extent and timing of embryonic mortality in cattle. In ‘Embryonic Mortality in Farm Animals’. (Eds J. M. Sreenan and M. G. Diskin.) pp. 142–158. (Martinus Nijhoff: Dordecht, The Netherlands)

Sullivan, R., and Saez, F. (2013). Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction 146, R21–R35.
Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFejsLbN&md5=a60e06f46d4cbbbbba37863b7ce32e9eCAS |

Tan, W., Carlson, D. F., Lancto, C. A., Garbe, J. R., Webster, D. A., Hackett, P. B., and Fahrenkrug, S. C. (2013). Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc. Natl Acad. Sci. USA 110, 16 526–16 531.
Efficient nonmeiotic allele introgression in livestock using custom endonucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Kju7%2FL&md5=a83a7b24ead6540ad1ea3106e455b51dCAS |

Thatcher, W. W., Hansen, P. J., Gross, T. S., Helmer, S. D., Plante, C., and Bazer, F. W. (1989). Antiluteolytic effects of bovine trophoblast protein-1. J. Reprod. Fertil. Suppl. 37, 91–99.
| 1:CAS:528:DyaL1MXit12itb0%3D&md5=403ff89e9ae373a90a77c97872083aceCAS |

Théry, C. (2011). Exosomes: secreted vesicles and intercellular communications. F1000 Biol. Rep. 3, 15.
Exosomes: secreted vesicles and intercellular communications.Crossref | GoogleScholarGoogle Scholar |

Ulbrich, S. E., Schulke, K., Groebner, A. E., Reichenbach, H. D., Angioni, C., Geisslinger, G., and Meyer, H. H. (2009). Quantitative characterization of prostaglandins in the uterus of early pregnant cattle. Reproduction 138, 371–382.
Quantitative characterization of prostaglandins in the uterus of early pregnant cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlemtLg%3D&md5=d21d77da5811752de9df49fab88e0303CAS |

Ulbrich, S. E., Groebner, A. E., and Bauersachs, S. (2013). Transcriptional profiling to address molecular determinants of endometrial receptivity: lessons from studies in livestock species. Methods 59, 108–115.
Transcriptional profiling to address molecular determinants of endometrial receptivity: lessons from studies in livestock species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWgtbnL&md5=c3a253fc37b0e258ad983bc8bd85c21aCAS |

Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., and Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659.
Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVSmtb8%3D&md5=d049afe795fe8310b750a3fe9826ddceCAS |

VanRaden, P. M., and Miller, R. H. (2006). Effects of nonadditive genetic interactions, inbreeding, and recessive defects on embryo and fetal loss by seventy days. J. Dairy Sci. 89, 2716–2721.
Effects of nonadditive genetic interactions, inbreeding, and recessive defects on embryo and fetal loss by seventy days.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVOltbw%3D&md5=d7cb29d2045db3312dfc8b650488a274CAS |

VanRaden, P. M., Olson, K. M., Null, D. J., and Hutchison, J. L. (2011). Harmful recessive effects on fertility detected by absence of homozygous haplotypes. J. Dairy Sci. 94, 6153–6161.
Harmful recessive effects on fertility detected by absence of homozygous haplotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFClsbjM&md5=9a8d4a8e8cc1474ddfc9c88ff6ef6dabCAS |

Vilella, F., Moreno-Moya, J. M., Balaguer, N., Grasso, A., Herrero, M., Martínez, S., Marcilla, A., and Simón, C. (2015). Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development 142, 3210–3221.
Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XksV2qs7o%3D&md5=45046fb0bbe176425d0dfaf52bd7949dCAS |

Wales, R. G., and Cuneo, C. L. (1989). Morphology and chemical analysis of the sheep conceptus from the 13th to the 19th day of pregnancy. Reprod. Fertil. Dev. 1, 31–39.
Morphology and chemical analysis of the sheep conceptus from the 13th to the 19th day of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1yks70%3D&md5=a5830858d859f2243b13a2f42115c526CAS |

Wales, R. G., and Waugh, E. E. (1993). Catabolic utilization of glucose by the sheep conceptus between days 13 and 19 of pregnancy. Reprod. Fertil. Dev. 5, 111–122.
Catabolic utilization of glucose by the sheep conceptus between days 13 and 19 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsF2lurc%3D&md5=1d80b7565024aedf6ea1414ab0db7007CAS |

Wang, J., Guillomot, M., and Hue, I. (2009). Cellular organization of the trophoblastic epithelium in elongating conceptuses of ruminants. C. R. Biol. 332, 986–997.
Cellular organization of the trophoblastic epithelium in elongating conceptuses of ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVensLnO&md5=7dea9e074c30b0a57c7666d325b6e4dfCAS |

Wang, X., Frank, J. W., Little, D. R., Dunlap, K. A., Satterfield, M. C., Burghardt, R. C., Hansen, T. R., Wu, G., and Bazer, F. W. (2014a). Functional role of arginine during the peri-implantation period of pregnancy. I. Consequences of loss of function of arginine transporter SLC7A1 mRNA in ovine conceptus trophectoderm. FASEB J. 28, 2852–2863.
Functional role of arginine during the peri-implantation period of pregnancy. I. Consequences of loss of function of arginine transporter SLC7A1 mRNA in ovine conceptus trophectoderm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFaltb%2FL&md5=d05e8341596fa71b7a9478ce07321d35CAS |

Wang, X., Frank, J. W., Xu, J., Dunlap, K. A., Satterfield, M. C., Burghardt, R. C., Romero, J. J., Hansen, T. R., Wu, G., and Bazer, F. W. (2014b). Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm. Biol. Reprod. 91, 59.
Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm.Crossref | GoogleScholarGoogle Scholar |

Wang, X., Johnson, G. A., Burghardt, R. C., Wu, G., and Bazer, F. W. (2015). Uterine histotroph and conceptus development. I. Cooperative effects of arginine and secreted phosphoprotein 1 on proliferation of ovine trophectoderm cells via activation of the PDK1–Akt/PKB–TSC2–MTORC1 signaling cascade. Biol. Reprod. 92, 51.
Uterine histotroph and conceptus development. I. Cooperative effects of arginine and secreted phosphoprotein 1 on proliferation of ovine trophectoderm cells via activation of the PDK1–Akt/PKB–TSC2–MTORC1 signaling cascade.Crossref | GoogleScholarGoogle Scholar |

Wiltbank, M. C., Souza, A. H., Carvalho, P. D., Bender, R. W., and Nascimento, A. B. (2012). Improving fertility to timed artificial insemination by manipulation of circulating progesterone concentrations in lactating dairy cattle. Reprod. Fertil. Dev. 24, 238–243.
Improving fertility to timed artificial insemination by manipulation of circulating progesterone concentrations in lactating dairy cattle.Crossref | GoogleScholarGoogle Scholar |

Wiltbank, M. C., Baez, G. M., Garcia-Guerra, A., Toledo, M. Z., Monteiro, P. L., Melo, L. F., Ochoa, J. C., Santos, J. E., and Sartori, R. (2016). Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 86, 239–253.
Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar |

Wimsatt, W. A. (1950). New histological observations on the placenta of the sheep. Am. J. Anat. 87, 391–457.
New histological observations on the placenta of the sheep.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG3M%2FhvFaqsw%3D%3D&md5=8b75c4af265c9ca40cb98ecb97cc743eCAS |

Wintenberger-Torrés, S., and Fléchon, J. E. (1974). Ultrastructural evolution of the trophoblast cells of the pre-implantation sheep blastocyst from Day 8 to Day 18. J. Anat. 118, 143–153.

Yang, M., Chen, J., Su, F., Yu, B., Su, F., Lin, L., Liu, Y., Huang, J. D., and Song, E. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol. Cancer 10, 117.
Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtleis7vM&md5=08f9090001c584c03edc1635c5f255d8CAS |

Zhao, S., Liu, Z. X., Gao, H., Wu, Y., Fang, Y., Wu, S. S., Li, M. J., Bai, J. H., Liu, Y., Evans, A., and Zeng, S. M. (2015). A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development in vitro. Theriogenology 84, 184–192.
A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvVSrs7o%3D&md5=b99034cbb164fb91692ca8ad9c94f609CAS |

Zhou, Q., Li, M., Wang, X., Li, Q., Wang, T., Zhu, Q., Zhou, X., Wang, X., Gao, X., and Li, X. (2012). Immune-related microRNAs are abundant in breast milk exosomes. Int. J. Biol. Sci. 8, 118–123.
Immune-related microRNAs are abundant in breast milk exosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1aksA%3D%3D&md5=a3cee3ed5f50a3f06c969b0eaa5d360aCAS |