Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Emerging role of extracellular vesicles in communication of preimplantation embryos in vitro

Krishna C. Pavani A , Carmen Alminana B , Eline Wydooghe A , Maaike Catteeuw A , Miguel A. Ramírez C , Pascal Mermillod B , Dimitrios Rizos C and Ann Van Soom A D
+ Author Affiliations
- Author Affiliations

A Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium.

B INRA, Reproductive Physiology and Behavior, UMR085, INRA, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France.

C Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid 28040, Spain.

D Corresponding author. Email: ann.vansoom@ugent.be

Reproduction, Fertility and Development 29(1) 66-83 https://doi.org/10.1071/RD16318
Published: 2 December 2016

Abstract

In vitro, efficient communication between mammalian embryos in groups or between embryos and cocultured somatic cells implies that there is a sender, a message and a receiver that is able to decode the message. Embryos secrete a variety of autocrine and paracrine factors and, of these, extracellular vesicles have recently been implicated as putative messengers in embryo–embryo communication, as well as in communication of the embryo with the maternal tract. Extracellular vesicles (EVs) are membrane-bound vesicles that are found in biofluids and in culture media conditioned by the presence of embryos or cells. EVs carry and transfer regulatory molecules, such as microRNAs, mRNAs, lipids and proteins. We conducted a systematic search of the literature to review and present the currently available evidence regarding the possible roles of EVs in in vitro embryo communication and embryo development. It is important to note that there is limited information available on the molecular mechanisms and many of the biologically plausible functions of EVs in embryo communication have not yet been substantiated by conclusive experimental evidence. However, indirect evidence, such as the use of media conditioned by embryos or by somatic cells with improved embryo development as a result, may indicate that EVs can be an important asset for the development of tailor-made media, allowing better embryo development in vitro, even for single embryo culture.

Additional keywords: embryo culture, embryo–maternal communication.


References

Al-Nedawi, K., Meehan, B., Micallef, J., Lhotak, V., May, L., Guha, A., and Rak, J. (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624.
Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltl2isLw%3D&md5=0f65fbf738b71e6e828e209ec2051adbCAS |

Al-Nedawi, K., Meehan, B., and Rak, J. (2009a). Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8, 2014–2018.
Microvesicles: messengers and mediators of tumor progression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFyrtg%3D%3D&md5=74465be3c3f53b5b8d9931aba18e7f7dCAS |

Al-Nedawi, K., Meehan, B., Kerbel, R. S., Allison, A. C., and Rak, J. (2009b). Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc. Natl. Acad. Sci. USA 106, 3794–3799.
Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR.Crossref | GoogleScholarGoogle Scholar |

Allan, D., and Raval, P. (1983). Some morphological consequences of uncoupling the lipid bilayer from the plasma membrane skeleton in intact erythrocytes. Biomed. Biochim. Acta 42, S11–S16.
| 1:STN:280:DyaL2c3gt12muw%3D%3D&md5=18aca0c52cab2685bda921619f72a342CAS |

Almiñana, C., Corbin, E., Tsikis, G., Soleilhavoup, C., Galio, L., Sandra, O., and Mermillod, P. (2015). Characterization of bovine oviductal exosomes from in vivo and in vitro origin. Reprod. Fertil. Dev. 27, 147.
Characterization of bovine oviductal exosomes from in vivo and in vitro origin.Crossref | GoogleScholarGoogle Scholar |

Almiñana, C., Corbin, E., Harichaux, G., Labas, V., Tsikis, G., Soleilhavoup, C., Reynaud, K., Druart, X., and Mermillod, P. (2016). Interception of exosomal messages between the oviduct and the embryo: What are they tweeting about? Reprod. Fertil. Dev. 28, 168.
Interception of exosomal messages between the oviduct and the embryo: What are they tweeting about?Crossref | GoogleScholarGoogle Scholar |

André, F., Chaput, N., Schartz, N. E., Flament, C., Aubert, N., Bernard, J., Lemonnier, F., Raposo, G., Escudier, B., Hsu, D. H., Tursz, T., Amigorena, S., Angevin, E., and Zitvogel, L. (2004). Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol. 172, 2126–2136.
Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells.Crossref | GoogleScholarGoogle Scholar |

Avilés, M., Gutiérrez-Adán, A., and Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? Mol. Hum. Reprod. 16, 896–906.
Oviductal secretions: will they be key factors for the future ARTs?Crossref | GoogleScholarGoogle Scholar |

Avilés, M., Coy, P., and Rizos, D. (2015). The oviduct: a key organ for the success of early reproductive events. Animal Frontiers 5, 25–31.
The oviduct: a key organ for the success of early reproductive events.Crossref | GoogleScholarGoogle Scholar |

Baj-Krzyworzeka, M., Szatanek, R., Weglarczyk, K., Baran, J., Urbanowicz, B., Branski, P., Ratajczak, M. Z., and Zembala, M. (2006). Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol. Immunother. 55, 808–818.
Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFShuro%3D&md5=93e6b788c294d8c181a60324be520023CAS |

Baran, J., Baj-Krzyworzeka, M., Weglarczyk, K., Szatanek, R., Zembala, M., Barbasz, J., Czupryna, A., Szczepanik, A., and Zembala, M. (2010). Circulating tumour-derived microvesicles in plasma f gastric cancer patients. Cancer Immunol. Immunother. 59, 841–850.
Circulating tumour-derived microvesicles in plasma f gastric cancer patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFOjtL4%3D&md5=5094b9ecf9d13f0e035cd0ac0475ac96CAS |

Beardsley, A. J., Li, Y., and O’Neill, C. (2010). Characterization of a diverse secretome generated by the mouse preimplantation embryo in vitro. Reprod. Biol. Endocrinol. 8, 71.

Bemis, L. T., McCue, P. M., Hatzel, J. N., Bemis, J., and Ferris, R. A. (2012). Evidence for production of early pregnancy factor (Hsp10), microRNAs and exosomes by Day 8 equine embryos. J. Equine Vet. Sci. 32, 397–422.
Evidence for production of early pregnancy factor (Hsp10), microRNAs and exosomes by Day 8 equine embryos.Crossref | GoogleScholarGoogle Scholar |

Berckmans, R. J., Nieuwland, R., Tak, P. P., Boing, A. N., Romijn, F. P., Kraan, M. C., Breedveld, F. C., Hack, C. E., and Sturk, A. (2002). Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum. 46, 2857–2866.
Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlSksr4%3D&md5=c3a720cd004dbccccd670b30dae94d87CAS |

Besenfelder, U., Havlicek, V., and Brem, G. (2012). Role of the oviduct in early embryo development. Reprod. Domest. Anim. 47, 156–163.
Role of the oviduct in early embryo development.Crossref | GoogleScholarGoogle Scholar |

Beyer, C., and Pisetsky, D. S. (2010). The role of microparticles in the pathogenesis of rheumatic diseases. Nat. Rev. Rheumatol. 6, 21–29.
The role of microparticles in the pathogenesis of rheumatic diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlSn&md5=029c07842259fde36f513ede2554b7ddCAS |

Bilyy, R. O., Shkandina, T., Tomin, A., Muñoz, L. E., Franz, S., Antonyuk, V., Kit, Y. Y., Zirngibl, M., Fürnrohr, B. G., Janko, C., Lauber, K., Schiller, M., Schett, G., Stoika, R. S., and Herrmann, M. (2012). Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles. J. Biol. Chem. 287, 496–503.
Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVel&md5=e0d3bd2b05a7295534b88b69100d5712CAS |

Böing, A. N., van der Pol, E., Grootemaat, A. E., Coumans, F. A., Sturk, A., and Nieuwland, R. (2014). Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles 3, 23430.
Single-step isolation of extracellular vesicles by size-exclusion chromatography.Crossref | GoogleScholarGoogle Scholar |

Booth, A. M., Fang, Y., Fallon, J. K., Yang, J. M., Hildreth, J. E., and Gould, S. J. (2006). Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172, 923–935.
Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFKisLs%3D&md5=f0c8cdee0c8240ac85b8c5e0447d8750CAS |

Buhi, W. C., Alvarez, I. M., and Kouba, A. J. (2000). Secreted proteins of the oviduct. Cells Tissues Organs 166, 165–179.
Secreted proteins of the oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVyru74%3D&md5=845d813fbb90353ab809ae1328e08e83CAS |

Burnett, L. A., and Nowak, R. A. (2016). Exosomes mediate embryo and maternal interactions at implantation and during pregnancy. Front. Biosci. (Schol. Ed.). 8, 79–96.

Burns, G., Brooks, K., Wildung, M., Navakanitworakul, R., Christenson, L. K., and Spencer, T. E. (2014). Extracellular vesicles in luminal fluid of the ovine uterus. PLoS One 9, e90913.
Extracellular vesicles in luminal fluid of the ovine uterus.Crossref | GoogleScholarGoogle Scholar |

Burns, G. W., Brooks, K. E., and Spencer, T. E. (2016). Extracellular vesicles originate from the conceptus and uterus during early pregnancy in sheep. Biol. Reprod. 94, 56–67.
Extracellular vesicles originate from the conceptus and uterus during early pregnancy in sheep.Crossref | GoogleScholarGoogle Scholar |

Camussi, G., Deregibus, M.-C., Bruno, S., Grange, C., Fonsato, V., and Tetta, C. (2011). Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am. J. Cancer Res. 1, 98–110.

Carolan, C., Lonergan, P., Khatir, H., and Mermillod, P. (1996). In vitro production of bovine embryos using individual oocytes. Mol. Reprod. Dev. 45, 145–150.
In vitro production of bovine embryos using individual oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFGmtLg%3D&md5=f3e36ed297c7411117656a48d7d532a5CAS |

Cebrian-Serrano, A., Salvador, I., Garcia-Rosello, E., Pericuesta, E., Perez-Cerezales, S., Gutierrez-Adan, A., Coy, P., and Silvestre, M. A. (2013). Effect of the bovine oviductal fluid on in vitro fertilization, development and gene expression of in vitro-produced bovine blastocysts. Reprod. Domest. Anim. 48, 331–338.
Effect of the bovine oviductal fluid on in vitro fertilization, development and gene expression of in vitro-produced bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlWqu7c%3D&md5=e3a36ca4f56797588c0ba58a512617a5CAS |

Chavez-Munoz, C., Hartwell, R., Jalili, R. B., and Ghahary, A. (2010). Immunoprotective role of IDO in engraftment of allogeneic skin substitutes. Expert. Rev. Dermatol. 5, 611–616.
Immunoprotective role of IDO in engraftment of allogeneic skin substitutes.Crossref | GoogleScholarGoogle Scholar |

Cocucci, E., and Meldolesi, J. (2015). Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 25, 364–372.
Ectosomes and exosomes: shedding the confusion between extracellular vesicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitFCqs7c%3D&md5=b3d00c24971949d7191248eacb926073CAS |

Cocucci, E., Racchetti, G., and Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51.
Shedding microvesicles: artefacts no more.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1amt7Y%3D&md5=84da68237c27a1d9ef98116355a69265CAS |

Cordova, A., Perreau, C., Uzbekova, S., Ponsart, C., Locatelli, Y., and Mermillod, P. (2014). Development rate and gene expression of IVP bovine embryos cocultured with bovine oviduct epithelial cells at early or late stage of preimplantation development. Theriogenology 81, 1163–1173.
Development rate and gene expression of IVP bovine embryos cocultured with bovine oviduct epithelial cells at early or late stage of preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlWmurc%3D&md5=2d97a7ed8ef234ae42cb2d785b6026faCAS |

Crawford, N. (1971). The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. Br. J. Haematol. 21, 53–69.
The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlt1OksLw%3D&md5=a14f3f1dea90dff252a8fe0d7cafe0b6CAS |

Crescitelli, R., Lässer, C., Szabó, T.G., Kittel, A., Eldh, M., Dianzani, I., Buzás, E. I., and Lötvall, J. (2013). Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles 2, 20677–20686.
Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes.Crossref | GoogleScholarGoogle Scholar |

del Conde, I., Shrimpton, C. N., Thiagarajan, P., and López, J. A. (2005). Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106, 1604–1611.
Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1OgsLY%3D&md5=1d4ee911e4d5b337b1bd005a63621ba1CAS |

Donnay, I., Van Langendonckt, A., Auquier, P., Grisart, B., Vansteenbrugge, A., Massip, A., and Dessy, F. (1997). Effects of coculture and embryo number on the in vitro development of bovine embryos. Theriogenology 47, 1549–1561.
Effects of coculture and embryo number on the in vitro development of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVynuw%3D%3D&md5=6fa05e49f31fba7da09b9b0b7008101eCAS |

Dragovic, R. A., Gardiner, C., Brooks, A. S., Tannetta, D. S., Ferguson, D. J., Hole, P., Carr, B., Redman, C. W., Harris, A. L., Dobson, P. J., Harrison, P., and Sargent, I. L. (2011). Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 7, 780–788.
| 1:CAS:528:DC%2BC38XhtFWmurw%3D&md5=60560661d76d441cec04089f791b2af6CAS |

Ebner, T., Shebl, O., Moser, M., Mayer, R. B., Arzt, W., and Tews, G. (2010). Group culture of human zygotes is superior to individual culture in terms of blastulation, implantation and life birth. Reprod. Biomed. Online 21, 762–768.
Group culture of human zygotes is superior to individual culture in terms of blastulation, implantation and life birth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cbpvFKisg%3D%3D&md5=0e705a43645f8b87529bbaefe764f037CAS |

Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516.
Apoptosis: a review of programmed cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlWmtb4%3D&md5=1e17527d5913a369cfdf5b271673c856CAS |

Escola, J. M., Kleijmeer, M. J., Stoorvogel, W., Griffith, J. M., Yoshie, O., and Geuze, H. J. (1998). Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20 121–20 127.
Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVWgsbs%3D&md5=8ed8930732e6a5fba0faaac3ac0bf082CAS |

Eyestone, W. H., and First, N. L. (1989). Co-culture of early cattle embryos to the blastocyst stage with oviducal tissue or in conditioned medium. J. Reprod. Fertil. 85, 715–720.
Co-culture of early cattle embryos to the blastocyst stage with oviducal tissue or in conditioned medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7pvFGmtA%3D%3D&md5=a085d64810d6e6b0a016f76165a676d8CAS |

Fang, Y., Wu, N., Gan, X., Yan, W., Morrell, J. C., and Gould, S. J. (2007). Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. e158, 1267.
Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes.Crossref | GoogleScholarGoogle Scholar |

Fauré, J., Lachenal, G., Court, M., Hirrlinger, J., Chatellard-Causse, C., Blot, B., Grange, J., Schoehn, G., Goldberg, Y., Boyer, V., Kirchhoff, F., Raposo, G., Garin, J., and Sadoul, R. (2006). Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31, 642–648.
Exosomes are released by cultured cortical neurones.Crossref | GoogleScholarGoogle Scholar |

Fazeli, A. (2011). Maternal communication with gametes and embryo: a personal opinion. Reprod. Domest. Anim. 46, 75–78.
Maternal communication with gametes and embryo: a personal opinion.Crossref | GoogleScholarGoogle Scholar |

Feng, D., Zhao, W. L., Ye, Y. Y., Bai, X. C., Liu, R. Q., Chang, L. F., Zhou, Q., and Sui, S. F. (2010). Cellular internalization of exosomes occurs through phagocytosis. Traffic 11, 675–687.
Cellular internalization of exosomes occurs through phagocytosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Kis7Y%3D&md5=e2b6c64e94aa46bd0aa11493573fd762CAS |

Ferry, L., Mermillod, P., Massip, A., and Dessy, F. (1994). Bovine embryos cultured in serum-poor oviduct-conditioned medium need cooperation to reach the blastocyst stage. Theriogenology 42, 445–453.
Bovine embryos cultured in serum-poor oviduct-conditioned medium need cooperation to reach the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVejuw%3D%3D&md5=e0d3fe59a9076b4725585f4f034b9b03CAS |

Foresta, C., Ubaldi, F. M., Rienzi, L., Franchin, C., Pivato, M., Romano, S., Guidolin, D., De Caro, R., Ferlin, A., and De Toni, L. (2016). Early protein profile of human embryonic secretome. Front. Biosci. (Landmark Ed.) 21, 620–634.
Early protein profile of human embryonic secretome.Crossref | GoogleScholarGoogle Scholar |

Fukui, K., Hori, R., Yoshimoto, I., Ochi, H., and Ito, M. (2000). Correlation between progesterone binding sites on human spermatozoa and in vitro fertilization outcome. Gynecol. Obstet. Invest. 49, 1–5.
Correlation between progesterone binding sites on human spermatozoa and in vitro fertilization outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVegtbc%3D&md5=cf3eaef2619f4c66ae57289901b7944fCAS |

Gandolfi, F., and Moor, R. M. (1987). Stimulation of early development in sheep by co-culture with oviduct epithelial cells. J. Reprod. Fert. 81, 23–28.
Stimulation of early development in sheep by co-culture with oviduct epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FjsFyhtg%3D%3D&md5=58c9a0c0d86accfcb61b7dc012d6543dCAS |

Gardiner, C., Ferreira, Y. J., Dragovic, R. A., Redman, C. W. G., and Sargent, I. L. (2013). Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J. Extracell. Vesicles 2, 19671–19682.
Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis.Crossref | GoogleScholarGoogle Scholar |

Gardner, D. K., Lane, M., Spitzer, A., and Batt, P. A. (1994). Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol. Reprod. 50, 390–400.
Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7ptFWisA%3D%3D&md5=0bd4b3752e4db2e1045304f3674d0c77CAS |

George, J. N., Potterf, R. D., Lewis, P. C., and Sears, D. A. (1976). Studies on platelet plasma membranes. I. Characterization of surface proteins of human platelets labeled with diazotized (125I)-diiodosulfanilic acid. J. Lab. Clin. Med. 88, 232–246.
| 1:CAS:528:DyaE28Xlt1SlsLc%3D&md5=ccc8462fa0bc9505523500323f8f071bCAS |

Ghersevich, S., Massa, E., and Zumoffen, C. (2015). Oviductal secretion and gamete interaction. Reproduction 149, R1–R14.
Oviductal secretion and gamete interaction.Crossref | GoogleScholarGoogle Scholar |

Goovaerts, I. G., Leroy, J. L., Van Soom, A., De Clercq, J. B., Andries, S., and Bols, P. E. (2009). Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly. Theriogenology 71, 729–738.
Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M7kt1Grsg%3D%3D&md5=2f185d02605d88cdfc889d6b4a3ce285CAS |

Goovaerts, I. G., Leroy, J. L., Langbeen, A., Jorssen, E. P., Bosmans, E., and Bols, P. E. (2012). Unravelling the needs of singly in vitro-produced bovine embryos: from cumulus cell co-culture to semi-defined, oil-free culture conditions. Reprod. Fertil. Dev. 24, 1084–1092.
Unravelling the needs of singly in vitro-produced bovine embryos: from cumulus cell co-culture to semi-defined, oil-free culture conditions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38bktlGhtQ%3D%3D&md5=6f60156b7614913542755489abc30958CAS |

Goto, K., Kajihara, Y., Kosaka, S., Koba, M., Nakanishi, Y., and Ogawa, K. (1988). Pregnancies after co-culture of cumulus cells with bovine embryos derived from in-vitro fertilization of in-vitro matured follicular oocytes. J. Reprod. Fertil. 83, 753–758.
Pregnancies after co-culture of cumulus cells with bovine embryos derived from in-vitro fertilization of in-vitro matured follicular oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1czhs1yntw%3D%3D&md5=3a54f6da96e5c6c267e55b4f1fb08ecfCAS |

Guescini, M., Genedani, S., Stocchi, V., and Agnati, L. F. (2010). Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. 117, 1–4.
Astrocytes and Glioblastoma cells release exosomes carrying mtDNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWmurjF&md5=3316e9f700fd355645c206dc52733b4cCAS |

György, B., Módos, K., Pállinger, E., Pálóczi, K., Pásztói, M., Misják, P., Deli, M. A., Sipos, A., Szalai, A., Voszka, I., Polgár, A., Tóth, K., Csete, M., Nagy, G., Gay, S., Falus, A., Kittel, A., and Buzás, E. I. (2011a). Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117, e39–e48.
Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters.Crossref | GoogleScholarGoogle Scholar |

Hagemann, L. J., Weilert, L. L., Beaumont, S. E., and Tervit, H. R. (1998). Development of bovine embryos in single in vitro production (sIVP) systems. Mol. Reprod. Dev. 51, 143–147.
Development of bovine embryos in single in vitro production (sIVP) systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvV2gs7Y%3D&md5=8e6241ac7753403e867a3b3a29f92ebbCAS |

Harding, C., Heuser, J., and Stahl, P. (1983). Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339.
Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltF2rs7w%3D&md5=0b451268f3ac405376d5762c3ca48f28CAS |

Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J., and Sixma, J. J. (1999). Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94, 3791–3799.
| 1:CAS:528:DyaK1MXnslyktLc%3D&md5=1b32e2c5c9cbd9635c94194f245f39e9CAS |

Hill, J. L., Wade, M. G., Nancarrow, C. D., Kelleher, D. L., and Boland, M. P. (1997). Influence of ovine oviducal amino acid concentrations and an ovine oestrus-associated glycoprotein on development and viability of bovine embryos. Mol. Reprod. Dev. 47, 164–169.
Influence of ovine oviducal amino acid concentrations and an ovine oestrus-associated glycoprotein on development and viability of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFWmtb8%3D&md5=e9b50eb82886ebd30329f89af6d07d51CAS |

Hoelker, M., Rings, F., Lund, Q., Phatsara, C., Schellander, K., and Tesfaye, D. (2010). Effect of embryo density on in vitro developmental characteristics of bovine preimplantative embryos with respect to micro and macroenvironments. Reprod. Domest. Anim. 45, e138–e145.
| 1:STN:280:DC%2BC3MzosFCksw%3D%3D&md5=a38632ba190c5ac4283b7168f8c6b946CAS |

Holmgren, L., Szeles, A., Rajnavolgyi, E., Folkman, J., Klein, G., Ernberg, I., and Falk, K. I. (1999). Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 93, 3956–3963.
| 1:CAS:528:DyaK1MXjsVOnt7c%3D&md5=fc79f59008bd562091a887ea8aa9f43dCAS |

Hristov, M., Erl, W., Linder, S., and Weber, P. C. (2004). Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104, 2761–2766.
Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslKjtrY%3D&md5=12f241b2613781b3bb1e92ac3a4fc782CAS |

Hugentobler, S. A., Diskin, M. G., Leese, H. J., Humpherson, P. G., Watson, T., Sreenan, J. M., and Morris, D. G. (2007). Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol. Reprod. Dev. 74, 445–454.
Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFCqtLg%3D&md5=879ea04d54a5e247bbfaae7614cbc0c9CAS |

Hugentobler, S. A., Diskin, M. G., Leese, H. J., Humpherson, P. G., Watson, T., Sreenan, J. M., and Morris, D. G. (2007a). Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol. Reprod. Dev. 74, 445–454.
Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFCqtLg%3D&md5=879ea04d54a5e247bbfaae7614cbc0c9CAS |

Hugentobler, S. A., Morris, D. G., Sreenan, J. M., and Diskin, M. G. (2007b). Ion concentrations in oviduct and uterine fluid and blood serum during the estrous cycle in the bovine. Theriogenology 68, 538–548.
Ion concentrations in oviduct and uterine fluid and blood serum during the estrous cycle in the bovine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlWqu78%3D&md5=de92c4465b71420ea56812e3e6d599c3CAS |

Hugentobler, S. A., Humpherson, P. G., Leese, H. J., Sreenan, J. M., and Morris, D. G. (2008). Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. Mol. Reprod. Dev. 75, 496–503.
Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Crsrw%3D&md5=83c1087d0cb6ef07094682eca501fa3dCAS |

Hurley, J. H., Boura, E., Carlson, L. A., and Rózycki, B. (2010). Membrane budding. Cell 143, 875–887.
Membrane budding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGgsrbP&md5=cfc5e4c1aaf7120cbb335bb174b78e61CAS |

Jeppesen, D. K., Hvam, M. L., Primdahl-Bengtson, B., Boysen, A. T., Whitehead, B., Dyrskjøt, L., Orntoft, T. F., Howard, K. A., and Ostenfeld, M. S. (2014). Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J. Extracell. Vesicles 3, 25011–25022.
Comparative analysis of discrete exosome fractions obtained by differential centrifugation.Crossref | GoogleScholarGoogle Scholar |

Ji, H., Erfani, N., Tauro, B. J., Kapp, E. A., Zhu, H. J., Moritz, R. L., Lim, J. W., and Simpson, R. J. (2008). Difference gel electrophoresis analysis of Ras‐transformed fibroblast cell‐derived exosomes. Electrophoresis 29, 2660–2671.
Difference gel electrophoresis analysis of Ras‐transformed fibroblast cell‐derived exosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFymtrY%3D&md5=914c4b754af21b269a1477448b90e399CAS |

Kalra, H., Drummen, G. P., and Mathivanan, S. (2016). Focus on extracellular vesicles: introducing the next small big thing. Int. J. Mol. Sci. 17, 170–200.
Focus on extracellular vesicles: introducing the next small big thing.Crossref | GoogleScholarGoogle Scholar |

Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257.
Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2FgsFSksw%3D%3D&md5=1857d28d7f439cd3c0c63b432372812cCAS |

Kesimer, M., Scull, M., Brighton, B., DeMaria, G., Burns, K., O’Neal, W., Pickles, R. J., and Sheehan, J. K. (2009). Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J. 23, 1858–1868.
Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFKkt7k%3D&md5=063fa83670a55d6e7cecbdd91d2eb309CAS |

Killian, G. (2011). Physiology and endocrinology symposium: evidence that oviduct secretions influence sperm function: a retrospective view for livestock. J. Anim. Sci. 89, 1315–1322.
Physiology and endocrinology symposium: evidence that oviduct secretions influence sperm function: a retrospective view for livestock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1Oitbs%3D&md5=5b73e3c2aeba5e85832ba8fbe903f1c9CAS |

Kim, M., Cho, A., Lim, H. S., Hong, S. G., Kim, J. H., Lee, J., Choi, T., Ahn, T. S., and Kim, O. S. (2015). Highly heterogeneous soil bacterial communities around Terra Nova Bay of Northern Victoria Land, Antarctica. PLoS One 10, e0119966.
Highly heterogeneous soil bacterial communities around Terra Nova Bay of Northern Victoria Land, Antarctica.Crossref | GoogleScholarGoogle Scholar |

Kropp, J., and Khatib, H. (2015a). Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J. Dairy Sci. 98, 6552–6563.
Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFehsL7P&md5=8ba33dce67938c37af37c51541d4d11bCAS |

Kropp, J., and Khatib, H. (2015b). mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development. Front. Genet. 6, 273.
mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development.Crossref | GoogleScholarGoogle Scholar |

Kropp, J., Salih, S. M., and Khatib, H. (2014). Expression of microRNAs in bovine and human pre-implantation embryo culture media. Front. Genet. 5, 91.
Expression of microRNAs in bovine and human pre-implantation embryo culture media.Crossref | GoogleScholarGoogle Scholar |

Lai, R. C., Chen, T. S., and Lim, S. K. (2011). Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen. Med. 6, 481–492.
Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease.Crossref | GoogleScholarGoogle Scholar |

Lazzari, G., Colleoni, S., Lagutina, I., Crotti, G., Turini, P., Tessaro, I., Brunetti, D., Duchi, R., and Galli, C. (2010). Short-term and long-term effects of embryo culture in the surrogate sheep oviduct versus in vitro culture for different domestic species. Theriogenology 73, 748–757.
Short-term and long-term effects of embryo culture in the surrogate sheep oviduct versus in vitro culture for different domestic species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c7ot1aksw%3D%3D&md5=f56371678ea4028ff5dff82b3e0b7e9fCAS |

Lee, K. F., and Yeung, W. S. (2006). Gamete/embryo – oviduct interactions: implications on in vitro culture. Hum. Fertil. (Camb.) 9, 137–143.
Gamete/embryo – oviduct interactions: implications on in vitro culture.Crossref | GoogleScholarGoogle Scholar |

Lee, Y. L., Lee, K. F., Xu, J. S., Wang, Y. L., Tsao, S. W., and Yeung, W. S. (2001). Establishment and characterization of an immortalized human oviductal cell line. Mol. Reprod. Dev. 59, 400–409.
Establishment and characterization of an immortalized human oviductal cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVWmsLo%3D&md5=4b2bd34c3edfca60672b5fe1999146b3CAS |

Lee, Y. L., Lee, K. F., Xu, J. S., He, Q. Y., Chiu, J. F., Lee, W. M., Luk, J. M., and Yeung, W. S. (2004). The embryotrophic activity of oviductal cell-derived complement C3b and iC3b, a novel function of complement protein in reproduction. J. Biol. Chem. 279, 12763–12768.
The embryotrophic activity of oviductal cell-derived complement C3b and iC3b, a novel function of complement protein in reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitl2gt7c%3D&md5=05d88587262296577156c9ac176227b9CAS |

Leese, H. J. (1988). The formation and function of oviduct fluid. J. Reprod. Fertil. 82, 843–856.
The formation and function of oviduct fluid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3gtVWitA%3D%3D&md5=84fc6944f81c3f63ef1ef0571e91939cCAS |

Leese, H. J., Hugentobler, S. A., Gray, S. M., Morris, D. G., Sturmey, R. G., Whitear, S. L., and Sreenan, J. M. (2008). Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod. Fertil. Dev. 20, 1–8.
Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFCis7g%3D&md5=57ec679bcb9e910c0ef752948a7cdd8eCAS |

Legge, M. (1995). Oocyte and zygote zona pellucida permeability to macromolecules. J. Exp. Zool. 271, 145–150.
Oocyte and zygote zona pellucida permeability to macromolecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslaju70%3D&md5=1b33955c8412556a32790838c89a4639CAS |

Lenassi, M., Cagney, G., Liao, M., Vaupotic, T., Bartholomeeusen, K., Cheng, Y., Krogan, N. J., Plemenitas, A., and Peterlin, B. M. (2010). HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4 T cells. Traffic 11, 110–122.
HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4 T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVGq&md5=b1b8c30a8102f2b89ecf470caa23a4cdCAS |

Li, G. P., Bunch, T. D., White, K. L., Aston, K. I., Meerdo, L. N., Pate, B. J., and Sessions, B. R. (2004a). Development, chromosomal composition, and cell allocation of bovine cloned blastocyst derived from chemically assisted enucleation and cultured in conditioned media. Mol. Reprod. Dev. 68, 189–197.
Development, chromosomal composition, and cell allocation of bovine cloned blastocyst derived from chemically assisted enucleation and cultured in conditioned media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVyjsrg%3D&md5=cad637fdb811418848bbf1ad13e49088CAS |

Li, G. P., White, K. L., Aston, K. I., Meerdo, L. N., and Bunch, T. D. (2004b). Conditioned medium increases the polyploid cell composition of bovine somatic cell nuclear-transferred blastocysts. Reproduction 127, 221–228.
Conditioned medium increases the polyploid cell composition of bovine somatic cell nuclear-transferred blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVWrt7c%3D&md5=b20dd54333e48512be7cb694dce9bcf8CAS |

Liu, J. L., Wang, M. K., Sun, Q. Y., Zhang, X. R., Jiang, L. K., and Chen, D. Y. (2001). Refrigeration of donor cells in preparation for bovine somatic nuclear transfer. Reproduction 122, 801–808.
Refrigeration of donor cells in preparation for bovine somatic nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Ohu7k%3D&md5=991ad23281d1c0216ba9593c69b90505CAS |

Lloyd, A., Pratt, K., Siebrasse, E., Moran, M. D., and Duina, A. A. (2009). Uncoupling of the patterns of chromatin association of different transcription elongation factors by a histone H3 mutant in Saccharomyces cerevisiae. Eukaryot. Cell 8, 257–260.
Uncoupling of the patterns of chromatin association of different transcription elongation factors by a histone H3 mutant in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFWgurs%3D&md5=545a440d002226979648ff02a126ad43CAS |

Lobb, R. J., Becker, M., Wen, S. W., Wong, C. S., Wiegmans, A. P., Leimgruber, A., and Möller, A. (2015). Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 4, 27 031–27 042.
Optimized exosome isolation protocol for cell culture supernatant and human plasma.Crossref | GoogleScholarGoogle Scholar |

Lopera-Vasquez, R., Hamdi, M., Maillo, V., Lloreda, V., Coy, P., Gutierrez-Adan, A., Bermejo-Alvarez, P., and Rizos, D. (2015). Effect of bovine oviductal fluid on development and quality of bovine embryos produced in vitro. Reprod. Fertil. Dev. , .
Effect of bovine oviductal fluid on development and quality of bovine embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar |

Lopera-Vásquez, R., Hamdi, M., Fernandez-Fuertes, B., Maillo, V., Beltrán-Breña, P., Calle, A., Redruello, A., López-Martín, S., Gutierrez-Adán, A., Yañez-Mó, M., Ramirez, M. Á., and Rizos, D. (2016a). Extracellular vesicles from BOEC in in vitro embryo development and quality. PLoS One 11, e0148083.
Extracellular vesicles from BOEC in in vitro embryo development and quality.Crossref | GoogleScholarGoogle Scholar |

Lopera-Vasquez, R., Hamdi, M., Maillo, V., Nunez, C., Yanez-Mo, M., Ramirez, M. A., Gutierrez-Adan, A., Bermejo-Alvarez, P., and Rizos, D. (2016b). Extracellular vesicles of bovine oviductal fluid modify the gene expression on bovine in vitro-derived embryos. Reprod. Fertil. Dev. 28, 179.
Extracellular vesicles of bovine oviductal fluid modify the gene expression on bovine in vitro-derived embryos.Crossref | GoogleScholarGoogle Scholar |

Machtinger, R., Laurent, L. C., and Baccarelli, A. A. (2016). Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 22, 182–193.

Mallat, Z., Benamer, H., Hugel, B., Benessiano, J., Steg, P. G., Freyssinet, J. M., and Tedgui, A. (2000). Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 101, 841–843.
Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7mtVKntA%3D%3D&md5=e05cc0f06f8f3a786058bbf35c91c3a8CAS |

Mantel, P. Y., and Marti, M. (2014). The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cell. Microbiol. 16, 344–354.
The role of extracellular vesicles in Plasmodium and other protozoan parasites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVagsrY%3D&md5=e38af13588f34f4d1963a6658577a1fdCAS |

Marzesco, A. M., Janich, P., Wilsch-Bräuninger, M., Dubreuil, V., Langenfeld, K., Corbeil, D., and Huttner, W. B. (2005). Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J. Cell Sci. 118, 2849–2858.
Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnsVCjtrk%3D&md5=92f2dbab9967079771eb77f5e1b264caCAS |

Ménézo, Y., Veiga, A., and Benkhalifa, M. (1998). Improved methods for blastocyst formation and culture. Hum. Reprod. 13, 256–265.
Improved methods for blastocyst formation and culture.Crossref | GoogleScholarGoogle Scholar |

Mermillod, P., Vansteenbrugge, A., Wils, C., Mourmeaux, J. L., Massip, A., and Dessy, F. (1993). Characterization of the embryotrophic activity of exogenous protein-free oviduct-conditioned medium used in culture of cattle embryos. Biol. Reprod. 49, 582–587.
Characterization of the embryotrophic activity of exogenous protein-free oviduct-conditioned medium used in culture of cattle embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2Fgt1Omuw%3D%3D&md5=892ac7e0124d332a24986ad2d73f1bd5CAS |

Mondéjar, I., Martínez-Martínez, I., Avilés, M., and Coy, P. (2013). Identification of potential oviductal factors responsible for zona pellucida hardening and monospermy during fertilization in mammals. Biol. Reprod. 89, 67–75.
Identification of potential oviductal factors responsible for zona pellucida hardening and monospermy during fertilization in mammals.Crossref | GoogleScholarGoogle Scholar |

Morel, O., Jesel, L., Freyssinet, J. M., and Toti, F. (2011). Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler. Thromb. Vasc. Biol. 31, 15–26.
Cellular mechanisms underlying the formation of circulating microparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGrur3M&md5=ab6be8aa892897d0c4f550b5159d52b1CAS |

Moskovich, O., and Fishelson, Z. (2007). Live cell imaging of outward and inward vesiculation induced by the complement c5b-9 complex. J. Biol. Chem. 282, 29977–29986.
Live cell imaging of outward and inward vesiculation induced by the complement c5b-9 complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFagtbvP&md5=58f153e1dc2deb3bc29945472b02c587CAS |

Müller, G. (2012). Novel tools study cell type-specific exosomes microvesicles. J. Bioanal. Biomed. 4, 46–60.
Novel tools study cell type-specific exosomes microvesicles.Crossref | GoogleScholarGoogle Scholar |

Ng, Y. H., Rome, S., Jalabert, A., Forterre, A., Singh, H., Hincks, C. L., and Salamonsen, L. A. (2013). Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One 8, e58502.
Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXks1Wnsb0%3D&md5=c3b1e4a87a94bf068a5cce777fb94333CAS |

O’Doherty, E. M., Wade, M. G., Hill, J. L., and Boland, M. P. (1997). Effects of culturing bovine oocytes either singly or in groups on development to blastocysts. Theriogenology 48, 161–169.
Effects of culturing bovine oocytes either singly or in groups on development to blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVyltQ%3D%3D&md5=c6de2fcde62f5e6d699d6fe541351342CAS |

O’Neill, C. (2008). The potential roles for embryotrophic ligands in preimplantation embryo development. Hum. Reprod. Update 14, 275–288.
The potential roles for embryotrophic ligands in preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFOqtbw%3D&md5=2fb246dd3263095ea2e1ceedc1e49ef7CAS |

Oliveira, D. L., Freire-De-Lima, C. G., Nosanchuk, J. D., Casadevall, A., Rodrigues, M. L., and Nimrichter, L. (2010a). Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect. Immun. 78, 1601–1609.
Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt12gt7c%3D&md5=4ac8cdf2c4dea8d24f834f2351e22975CAS |

Pan, B. T., Teng, K., Wu, C., Adam, M., and Johnstone, R. M. (1985). Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948.
Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M3ovFGhsw%3D%3D&md5=2b9fb2b06cdd46f007f5a49494924099CAS |

Paria, B. C., and Dey, S. K. (1990). Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc. Natl. Acad. Sci. USA 87, 4756–4760.
Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkslWrsbw%3D&md5=dc62a3cd817cbec57c6630c0b81219d7CAS |

Parolini, I., Federici, C., Raggi, C., Lugini, L., Palleschi, S., De Milito, A., Coscia, C., Iessi, E., Logozzi, M., Molinari, A., Colone, M., Tatti, M., Sargiacomo, M., and Fais, S. (2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 284, 34 211–34 222.
Microenvironmental pH is a key factor for exosome traffic in tumor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVymu7fN&md5=aed8944485bb5acfd3a9effd2b35ea8aCAS |

Potolicchio, I., Carven, G. J., Xu, X., Stipp, C., Riese, R. J., Stern, L. J., and Santambrogio, L. (2005). Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol. 175, 2237–2243.
Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVSrtbk%3D&md5=2f10805980feacc0f368073260b7f85aCAS |

Raposo, G., and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383.
Extracellular vesicles: exosomes, microvesicles, and friends.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtFCnsbk%3D&md5=2fdf32cd99427a432acc8e2ef4020d44CAS |

Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J., and Geuze, H. J. (1996). B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172.
B lymphocytes secrete antigen-presenting vesicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvV2qsLs%3D&md5=197ddffcef4dafd7535e9449c24ea115CAS |

Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., and Ratajczak, M. Z. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20, 847–856.
Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslOhsbs%3D&md5=c91bcfeab94c8fb5053b9bf1eefed1b2CAS |

Rebollar-Lazaro, I., and Matson, P. (2010). The culture of human cleavage stage embryos alone or in groups: effect upon blastocyst utilization rates and implantation. Reprod. Biol. 10, 227–234.
The culture of human cleavage stage embryos alone or in groups: effect upon blastocyst utilization rates and implantation.Crossref | GoogleScholarGoogle Scholar |

Regente, M., Corti-Monzón, G., Maldonado, A. M., Pinedo, M., Jorrín, J., and de la Canal, L. (2009). Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. FEBS Lett. 583, 3363–3366.
Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ons7jL&md5=4a6ba4a45e5de50096ee396046e92181CAS |

Restelli, L., Paffoni, A., Corti, L., Rabellotti, E., Mangiarini, A., Viganò, P., Somigliana, E., and Papaleo, E. (2014). The strategy of group embryo culture based on pronuclear pattern on blastocyst development: a two center analysis. J. Assist. Reprod. Genet. 31, 1629–1634.
The strategy of group embryo culture based on pronuclear pattern on blastocyst development: a two center analysis.Crossref | GoogleScholarGoogle Scholar |

Rijnders, P. M., and Jansen, C. A. (1999). Influence of group culture and culture volume on the formation of human blastocysts: a prospective randomized study. Hum. Reprod. 14, 2333–2337.
Influence of group culture and culture volume on the formation of human blastocysts: a prospective randomized study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MvgtVOiuw%3D%3D&md5=2c97b950ebd2594bba71e90d4aa74debCAS |

Rizos, D., Fair, T., Papadopoulos, S., Boland, M. P., and Lonergan, P. (2002). Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol. Reprod. Dev. 62, 320–327.
Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlWku7w%3D&md5=772bd7dd491e297ae39852a9beb62f52CAS |

Rizos, D., Clemente, M., Bermejo-Alvarez, P., de La Fuente, J., Lonergan, P., and Gutiérrez-Adán, A. (2008). Consequences of in vitro culture conditions on embryo development and quality. Reprod. Domest. Anim. 43, 44–50.
Consequences of in vitro culture conditions on embryo development and quality.Crossref | GoogleScholarGoogle Scholar |

Rizos, D., Carter, F., Besenfelder, U., Havlicek, V., and Lonergan, P. (2010). Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows. J. Dairy Sci. 93, 1022–1029.
Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlOjurc%3D&md5=05a8b48ae2feb59cc87eaae67649ec86CAS |

Rosenbluth, E. M., Shelton, D. N., Wells, L. M., Sparks, A. E., and Van Voorhis, B. J. (2014). Human embryos secrete microRNAs into culture media–a potential biomarker for implantation. Fertil. Steril. 101, 1493–1500.
Human embryos secrete microRNAs into culture media–a potential biomarker for implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksFWgurs%3D&md5=2ebfae343916492955cea19747f52860CAS |

Rottmayer, R., Ulbrich, S. E., Kölle, S., Prelle, K., Neumueller, C., Sinowatz, F., Meyer, H. H., Wolf, E., and Hiendleder, S. (2006). A bovine oviduct epithelial cell suspension culture system suitable for studying embryo-maternal interactions: morphological and functional characterization. Reproduction 132, 637–648.
A bovine oviduct epithelial cell suspension culture system suitable for studying embryo-maternal interactions: morphological and functional characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ahs7rJ&md5=3ce85ce3853b50de825949a05c415831CAS |

Ruiz-González, I., Xu, J., Wang, X., Burghardt, R. C., Dunlap, K. A., and Bazer, F. W. (2015). Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes. Reproduction 149, 281–291.
Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes.Crossref | GoogleScholarGoogle Scholar |

Saadeldin, I. M., Kim, S. J., Choi, Y. B., and Lee, B. C. (2014). Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication. Cell. Reprogram. 16, 223–234.
Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosVWisbc%3D&md5=0d83d91f8df516c77e3cc37fb9844b41CAS |

Saadeldin, I. M., Oh, H. J., and Lee, B. C. (2015). Embryonic-maternal cross-talk via exosomes: potential implications. Stem Cells Cloning 8, 103–107.
Embryonic-maternal cross-talk via exosomes: potential implications.Crossref | GoogleScholarGoogle Scholar |

Sagirkaya, H., Misirlioglu, M., Kaya, A., First, N. L., Parrish, J. J., and Memili, E. (2007). Developmental potential of bovine oocytes cultured in different maturation and culture conditions. Anim. Reprod. Sci. 101, 225–240.
Developmental potential of bovine oocytes cultured in different maturation and culture conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1yjt7w%3D&md5=db33aa01f649312b26abc35062e099d3CAS |

Savina, A., Fader, C. M., Damiani, M. T., and Colombo, M. I. (2005). Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143.
Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWmsr4%3D&md5=5a1ba82ab645ed1f867a5f3c651480c2CAS |

Schmaltz-Panneau, B., Cordova, A., Dhorne-Pollet, S., Hennequet-Antier, C., Uzbekova, S., Martinot, E., Doret, S., Martin, P., Mermillod, P., and Locatelli, Y. (2014). Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture. Anim. Reprod. Sci. 149, 103–116.
Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlartbrI&md5=4c5575cc1d148a7475fdbd52e9fb01f0CAS |

Schmaltz-Panneau, B., Locatelli, Y., Uzbekova, S., Perreau, C., and Mermillod, P. (2015). Bovine oviduct epithelial cells dedifferentiate partly in culture, while maintaining their ability to improve early embryo development rate and quality. Reprod. Domest. Anim. 50, 719–729.
Bovine oviduct epithelial cells dedifferentiate partly in culture, while maintaining their ability to improve early embryo development rate and quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFGitbnK&md5=04bdaf126e8e589732c6bd7d9bb94822CAS |

Skog, J., Wurdinger, T., van Rijn, S., Meijer, D., Gainche, L., Sena-Esteves, M., and Breakefield, X. O. (2008). Glioblastoma microvesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476.
Glioblastoma microvesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVentbfI&md5=1edeafdc3ea6d0caad34f8b6e0ac7fd0CAS |

Spyropoulou, I., Karamalegos, C., and Bolton, V. N. (1999). A prospective randomized study comparing the outcome of in-vitro fertilization and embryo transfer following culture of human embryos individually or in groups before embryo transfer on Day 2. Hum. Reprod. 14, 76–79.
A prospective randomized study comparing the outcome of in-vitro fertilization and embryo transfer following culture of human embryos individually or in groups before embryo transfer on Day 2.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1Mzgt1ehug%3D%3D&md5=8e32b0c802f1f4ab5398f1cce2133576CAS |

Sunkara, V., Woo, H. K., and Cho, Y. K. (2016). Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics. Analyst 141, 371–381.
Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslWhtb3L&md5=ba4fcb35db72f0a2b5bd99a23e3a9129CAS |

Tao, T., Robichaud, A., Mercier, J., and Ouellette, R. (2013). Influence of group embryo culture strategies on the blastocyst development and pregnancy outcome. J. Assist. Reprod. Genet. 30, 63–68.
Influence of group embryo culture strategies on the blastocyst development and pregnancy outcome.Crossref | GoogleScholarGoogle Scholar |

Tauro, B. J., Greening, D. W., Mathias, R. A., Ji, H., Mathivanan, S., Scott, A. M., and Simpson, R. J. (2012). Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56, 293–304.
Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVWgtLo%3D&md5=0d9e67968995dbdcc57d8580f57dee3eCAS |

Taylor, D. D., and Gerçel-Taylor, C. (2005). Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br. J. Cancer 92, 305–311.
| 1:CAS:528:DC%2BD2MXhtFWgsro%3D&md5=26c2fec037e3bc39134f6942559f3081CAS |

Taylor, D. D., Lyons, K. S., and Gerçel-Taylor, C. (2002). Shed membrane fragment-associated markers for endometrial and ovarian cancers. Gynecol. Oncol. 84, 443–448.
Shed membrane fragment-associated markers for endometrial and ovarian cancers.Crossref | GoogleScholarGoogle Scholar |

Théry, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., Raposo, G., and Amigorena, S. (1999). Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610.
Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73.Crossref | GoogleScholarGoogle Scholar |

Théry, C., Boussac, M., Véron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J., and Amigorena, S. (2001). Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318.
Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles.Crossref | GoogleScholarGoogle Scholar |

Théry, C., Amigorena, S., Raposo, G., and Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 30, 3.22.1–3.22.29.

Théry, C., Ostrowski, M., and Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593.
Membrane vesicles as conveyors of immune responses.Crossref | GoogleScholarGoogle Scholar |

Thibodeaux, J. K., Myers, M. W., Goodeaux, L. L., Menezo, Y., Roussel, J. D., Broussard, J. R., and Godke, R. A. (1992). Evaluating an in vitro culture system of bovine utenne and oviduct epithelial cells for subsequent embryo co-culture Reprod. Fertil. Dev. 4, 573–583.
Evaluating an in vitro culture system of bovine utenne and oviduct epithelial cells for subsequent embryo co-cultureCrossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3jsVyhsA%3D%3D&md5=d7966d7f8912f06e696b6bb89d78dbc5CAS |

Timmers, L., Lim, S. K., Hoefer, I. E., Arslan, F., Lai, R. C., van Oorschot, A. A., Goumans, M. J., Strijder, C., Sze, S. K., Choo, A., Piek, J. J., Doevendans, P. A., Pasterkamp, G., and de Kleijn, D. P. (2011). Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 6, 206–214.
Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction.Crossref | GoogleScholarGoogle Scholar |

Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brügger, B., and Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247.
Ceramide triggers budding of exosome vesicles into multivesicular endosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVSksLY%3D&md5=fef7d8650d3f153dff5faa1ac3858fb3CAS |

Trams, E. G., Lauter, C. J., Salem, N., and Heine, U. (1981). Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645, 63–70.
Exfoliation of membrane ecto-enzymes in the form of micro-vesicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksFyrtrc%3D&md5=a48400b1556c7d31ff9afca485fd00f0CAS |

Turiák, L., Misják, P., Szabó, T. G., Aradi, B., Pálóczi, K., Ozohanics, O., Drahos, L., Kittel, A., Falus, A., Buzás, E. I., and Vékey, K. (2011). Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/c mice. J. Proteomics 74, 2025–2033.
Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/c mice.Crossref | GoogleScholarGoogle Scholar |

Turner, K., and Horobin, R. W. (1997). Permeability of the mouse zona pellucida: a structure-staining-correlation model using coloured probes. J. Reprod. Fertil. 111, 259–265.
Permeability of the mouse zona pellucida: a structure-staining-correlation model using coloured probes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFersA%3D%3D&md5=2744c0431afa62f047eff01c75eb8a67CAS |

Ulbrich, S. E., Zitta, K., Hiendleder, S., and Wolf, E. (2010). In vitro systems for intercepting early embryo-maternal cross-talk in the bovine oviduct. Theriogenology 73, 802–816.
In vitro systems for intercepting early embryo-maternal cross-talk in the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFGltr0%3D&md5=37a1d4974a601a0cb46c2bfadb0de222CAS |

Vajta, G., Peura, T. T., Holm, P., Páldi, A., Greve, T., Trounson, A. O., and Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system. Mol. Reprod. Dev. 55, 256–264.
New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFelsbY%3D&md5=618772b6e2135a670723396ad1534e0bCAS |

van der Pol, E., Böing, A. N., Harrison, P., Sturk, A., and Nieuwland, R. (2012). Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64, 676–705.
Classification, functions, and clinical relevance of extracellular vesicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslarsg%3D%3D&md5=b6f438de923e28390372f9d9ad037b1bCAS |

Van Deun, J., Mestdagh, P., Sormunen, R., Cocquyt, V., Vermaelen, K., Vandesompele, J., Bracke, M., De Wever, O., and Hendrix, A. (2014). The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles 3, 24858.
The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling.Crossref | GoogleScholarGoogle Scholar |

Van Langendonckt, A., Vansteenbrugge, A., Donnay, I., Van Soom, A., Berg, U., Semple, E., Grisart, B., Mermillod, P., Brem, G., Massip, A., and Dessy, F. (1996). Three year results of in vitro production of bovine embryos in serum-poor bovine oviduct conditioned medium. An overview. Reprod. Nutr. Dev. 36, 493–502.
Three year results of in vitro production of bovine embryos in serum-poor bovine oviduct conditioned medium. An overview.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7ktVKgsg%3D%3D&md5=e3b12240a5d18e27ca6366d6dba38881CAS |

Van Soom, A., Ysebaert, M. T., Vanhoucke De Medts, A., Vande Velde, A., Merton, S., Delval, A., Van Langendonckt, A., Donnay, I., Vanroose, G., Bols, P. E. J., and de Kruif, A. (1996). Sucrose-induced shrinkage of in vitro produced bovine morulae: effect on viability, morphology and ease of evaluation. Theriogenology 46, 1131–1147.
Sucrose-induced shrinkage of in vitro produced bovine morulae: effect on viability, morphology and ease of evaluation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVOgsw%3D%3D&md5=1a22c9f726a06a30877209f6ac119639CAS |

Van Soom, A., Ysebaert, M. T., and de Kruif, A. (1997). Relationship between timing of development, morula morphology and cell allocation to inner cell mass and trophectoderm in in vitro produced bovine embryos. Mol. Reprod. Dev. 47, 47–56.
Relationship between timing of development, morula morphology and cell allocation to inner cell mass and trophectoderm in in vitro produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislGnurw%3D&md5=870287d0ff9def9d42eabad07be24bbeCAS |

Van Soom, A., Wrathall, A. E., Herrler, A., and Nauwynck, H. J. (2010). Is the zona pellucida an efficient barrier to viral infection? Reprod. Fertil. Dev. 22, 21–31.
Is the zona pellucida an efficient barrier to viral infection?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MfitlGjsQ%3D%3D&md5=800fd5f1a02c1c507393231670bde449CAS |

Vanroose, G., de Kruif, A., and Van Soom, A. (2000). Embryonic mortality and embryo-pathogen interactions. Anim. Reprod. Sci. 60–61, 131–143.
Embryonic mortality and embryo-pathogen interactions.Crossref | GoogleScholarGoogle Scholar |

Vlassov, A. V., Magdaleno, S., Setterquist, R., and Conrad, R. (2012). Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820, 940–948.
Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslSjt7c%3D&md5=0ab21371ac8f0598c3d22a7e4e630963CAS |

Walker, S. K., Hill, J. L., Kleemann, D. O., and Nancarrow, C. D. (1996). Development of ovine embryos in synthetic oviductal fluid containing amino acids at oviductal fluid concentrations. Biol. Reprod. 55, 703–708.
Development of ovine embryos in synthetic oviductal fluid containing amino acids at oviductal fluid concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltlKgurw%3D&md5=f14fd50c65ab56f051d9d1153171127fCAS |

Witwer, K. W., Sarbanes, S. L., Liu, J., and Clements, J. E. (2011). A plasma microRNA signature of acute lentiviral infection: biomarkers of CNS disease. AIDS 25, 2057–2067.
A plasma microRNA signature of acute lentiviral infection: biomarkers of CNS disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGltrvF&md5=11f714f310e02e6e7ec390784f966523CAS |

Witwer, K. W., Buzás, E. I., Bemis, L. T., Bora, A., Lässer, C., Lötvall, J., Nolte-’t Hoen, E. N., Piper, M. G., Sivaraman, S., Skog, J., Théry, C., Wauben, M. H., and Hochberg, F. (2013). Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360.
Standardization of sample collection, isolation and analysis methods in extracellular vesicle research.Crossref | GoogleScholarGoogle Scholar |

Wolf, P. (1967). The nature and significance of platelet products in human plasma. Br. J. Haematol. 13, 269–288.
The nature and significance of platelet products in human plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXksVWmtbg%3D&md5=f7518397840b320dce9a6fc5f1d314adCAS |

Wydooghe, E., Vandaele, L., and Van Soom, A. (2014a). Autocrine communication between bovine embryos cultured in Primo Vision dishes® outweighs possible negative influences of bad embryos. Reprod. Fertil. Dev. 26, 11.
Autocrine communication between bovine embryos cultured in Primo Vision dishes® outweighs possible negative influences of bad embryos.Crossref | GoogleScholarGoogle Scholar |

Wydooghe, E., Vandaele, L., Piepers, S., Dewulf, J., Van den Abbeel, E., De Sutter, P., and Van Soom, A. (2014b). Individual commitment to a group effect: strengths and weaknesses of bovine embryo group culture. Reproduction 148, 519–529.
Individual commitment to a group effect: strengths and weaknesses of bovine embryo group culture.Crossref | GoogleScholarGoogle Scholar |

Wydooghe, E., Vandaele, L., Heras, S., De Sutter, P., Deforce, D., Peelman, L., De Schauwer, C., and Van Soom, A. (2015). Autocrine embryotropins revisited: how do embryos communicate with each other in vitro when cultured in groups? Biol. Rev. Camb. Philos. Soc. , .
Autocrine embryotropins revisited: how do embryos communicate with each other in vitro when cultured in groups?Crossref | GoogleScholarGoogle Scholar |

Xu, J. S., Cheung, T. M., Chan, S. T. H., Ho, P. C., and Yeung, W. S. B. (2001). Temporal effect of human oviductal cell and its derived embryotrophic factors on mouse embryo development. Biol. Reprod. 65, 1481–1488.
Temporal effect of human oviductal cell and its derived embryotrophic factors on mouse embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVers7g%3D&md5=7ba6768109c311356752d123cc7d40b6CAS |

Yáñez-Mó, M., Siljander, P. R., Andreu, Z., Zavec, A. B., Borràs, F. E., Buzas, E. I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colás, E., ordeiro-da Silva, A., Fais, S., Falcon-Perez, J. M., Ghobrial, I. M., Giebel, B., Gimona, M., Graner, M., Gursel, I., Gursel, M., Heegaard, N. H., Hendrix, A., Kierulf, P., Kokubun, K., Kosanovic, M., Kralj-Iglic, V., Krämer-Albers, E. M., Laitinen, S., Lässer, C., Lener, T., Ligeti, E., Linē, A., Lipps, G., Llorente, A., Lötvall, J., Manček-Keber, M., Marcilla, A., Mittelbrunn, M., Nazarenko, I., Nolte-’t Hoen, E. N., Nyman, T. A., O’Driscoll, L., Olivan, M., Oliveira, C., Pállinger, É., Del Portillo, H. A., Reventós, J., Rigau, M., Rohde, E., Sammar, M., Sánchez-Madrid, F., Santarém, N., Schallmoser, K., Ostenfeld, M. S., Stoorvogel, W., Stukelj, R., Van der Grein, S., Vasconcelos, M. H., Wauben, M. H., and De Wever, O. (2015). Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066.
Biological properties of extracellular vesicles and their physiological functions.Crossref | GoogleScholarGoogle Scholar |

Yuana, Y., Sturk, A., and Nieuwland, R. (2013). Extracellular vesicles in physiological and pathological conditions. Blood Rev. 27, 31–39.
Extracellular vesicles in physiological and pathological conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFWhtrnF&md5=39e8b4c9a14c356cf10ab325619935dfCAS |