Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Maternal food restriction in rats of the F0 generation increases retroperitoneal fat, the number and size of adipocytes and induces periventricular astrogliosis in female F1 and male F2 generations

A. O. Joaquim A , C. P. Coelho A B , P. Dias Motta A , L. F. Felício C , E. F. Bondan A , E. Teodorov D , M. F. M. Martins A , T. B. Kirsten A , L. V. Bonamin A and M. M. Bernardi A D E
+ Author Affiliations
- Author Affiliations

A Environmental and Experimental Pathology, Paulista University, UNIP, Rua Dr Bacelar, 1212, São Paulo, SP, 04026-002, Brazil.

B Graduate Program of Animal Medicine and Welfare, University of Santo Amaro, Rua Enéas de Siqueira Neto, 340, São Paulo, SP, 04829-900, Brazil.

C Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr Orlando Marques de Paiva, 87, Sao Paulo, SP, 05508-270, Brazil.

D Mathematics, Computing and Cognition Center, Federal University of ABC, Av. dos Estados, 5001, Santo André, SP, 09210-971, Brazil.

E Corresponding author. Email: marthabernardi@gmail.com

Reproduction, Fertility and Development 29(7) 1340-1348 https://doi.org/10.1071/RD15309
Submitted: 30 July 2015  Accepted: 25 April 2016   Published: 31 May 2016

Abstract

The present study investigated whether male offspring (F2 generation) from female rats (F1 generation) whose mothers (F0 generation) were food restricted during gestation inherit a phenotypic transgenerational tendency towards being overweight and obese in the juvenile period, in the absence of food restriction in the F1/F2 generations. Dams of the F0 generation were 40% food restricted during pregnancy. Bodyweight, the number and size of larger and small hypodermal adipocytes (HAs), total retroperitoneal fat (RPF) weight and the expression of glial fibrillary acidic protein (GFAP) in periventricular hypothalamic astrocytes (PHAs), as determined by immunohistochemistry, were evaluated in both generations. In the female F1 generation, there was low bodyweight gain only during the juvenile period (30–65 days of age), a decrease in the size of small adipocytes, an increase in the number of small adipocytes, an increase in RPF weight and an increase in GFAP expression in PHAs at 90–95 days of age. In males of the F2 generation at 50 days of age, there was increased bodyweight and RPF weight, and a small number of adipocytes and GFAP expression in PHAs. These data indicate that the phenotypic transgenerational tendency towards being overweight and obese was observed in females (F1) from mothers (F0) that were prenatally food restricted was transmitted to their male offspring.

Additional keywords: adipose tissue, development, growth, hypothalamus, reprogramming.


References

Argente-Arizón, P., Freire-Regatillo, A., Argente, J., and Chowen, J. A. (2015). Role of non-neuronal cells in body weight and appetite control. Front. Endocrinol. 6, 42.
Role of non-neuronal cells in body weight and appetite control.Crossref | GoogleScholarGoogle Scholar |

Buckman, L. B., Thompson, M. M., Moreno, H. N., and Ellacott, K. L. J. (2013). Regional astrogliosis in the mouse hypothalamus in response to obesity. J. Comp. Neurol. 521, 1322–1333.
Regional astrogliosis in the mouse hypothalamus in response to obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtFSjsLk%3D&md5=99857a4e1a4556e57ea07ef30166d4a2CAS | 23047490PubMed |

Calabro, P., and Yeh, E. T. (2007). Obesity, inflammation, and vascular disease: the role of the adipose tissue as an endocrine organ. Subcell. Biochem. 42, 63–91.
Obesity, inflammation, and vascular disease: the role of the adipose tissue as an endocrine organ.Crossref | GoogleScholarGoogle Scholar | 17612046PubMed |

Chen, H., Simar, D., Lambert, K., Mercier, J., and Morris, M. J. (2008). Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 149, 5348–5356.
Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWnsr3F&md5=ed432812bbb36b5a9c3ebf3f7147c498CAS | 18635655PubMed |

Chiavegatto, S., and Bernardi, M. M. (1991). Prenatal versus postnatal effects on offspring weight gain of rats exposed to diphenhydramine: a critical evaluation of fostering procedures in rats. Comp. Biochem. Physiol. A 99, 219–221.
Prenatal versus postnatal effects on offspring weight gain of rats exposed to diphenhydramine: a critical evaluation of fostering procedures in rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3nsFCnsw%3D%3D&md5=07a12fd2b1f79cc1ccbda5595863666aCAS | 1675949PubMed |

De Souza, C. T., Araujo, E. P., Bordin, S., Ashimine, R., Zollner, R. L., Boschero, A. C., Saad, M. J. A., and Velloso, L. A. (2005). Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 4192–4199.
Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGmurjK&md5=7c127606605668eaa7bb9799d765f1e4CAS | 16002529PubMed |

DeSantis, D. T., and Schmaltz, L. W. (1984). The mother–litter relationship in developmental rat studies: cannibalism vs caring. Dev. Psychobiol. 17, 255–262.
The mother–litter relationship in developmental rat studies: cannibalism vs caring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3gvFCiuw%3D%3D&md5=97587fc018868636c291f50b653398f3CAS | 6539261PubMed |

Gamber, K. M., Huo, L., Ha, S., Hairston, J. E., Greeley, S., and Bjørbæk, C. (2012). Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity. PLoS One 7, e30485.
Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFeis7g%3D&md5=92ac355e28647a8d6b99587950090c7bCAS | 22276206PubMed |

García-Cáceres, C., Yi, C. X., and Tschöp, M. H. (2013). Hypothalamic astrocytes in obesity. Endocrinol. Metab. Clin. North Am. 42, 57–66.
Hypothalamic astrocytes in obesity.Crossref | GoogleScholarGoogle Scholar | 23391239PubMed |

Hajer, G. R., Van Haeften, T. W., and Visseren, F. L. J. (2008). Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 29, 2959–2971.
Adipose tissue dysfunction in obesity, diabetes, and vascular diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1enu7s%3D&md5=6e51754d237142ac98419784bb4611c7CAS | 18775919PubMed |

Hales, C. N., and Barker, D. J. P. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35, 595–601.
Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zlsVyhuw%3D%3D&md5=6f1236ea94dd3aed02124b0f182db57fCAS | 1644236PubMed |

Hales, C. N., and Barker, D. J. P. (2013). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Int. J. Epidemiol. 42, 1215–1222.
Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c%2FpvVKmtw%3D%3D&md5=2436d6250987f7816712e94239012c35CAS | 24159065PubMed |

Holemans, K., Aerts, L., and Van Assche, F. A. (2003). Fetal growth restriction and consequences for the offspring in animal models. J. Soc. Gynecol. Investig. 10, 392–399.
Fetal growth restriction and consequences for the offspring in animal models.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svlvVGguw%3D%3D&md5=31ac2c5265519312df3f725efd9be886CAS | 14519479PubMed |

Horvath, T. L., Sarman, B., García-Cáceres, C., Enriori, P. J., Sotonyi, P., Shanabrough, M., Borok, E., Argente, J., Chowen, J. A., Perez-Tilve, D., Pfluger, P. T., Brönneke, H. S., Levin, B. E., Diano, S., Cowley, M. A., and Tschöp, M. H. (2010). Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl Acad. Sci. USA 107, 14 875–14 880.
Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKqu7zI&md5=9fb851401d46fde88ee758786bc973d6CAS |

Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L., and Spiegelman, B. M. (1995). Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415.
Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltlWru70%3D&md5=5c5ee821d2b648368302cbd29f68c55aCAS | 7738205PubMed |

Hsuchou, H., He, Y., Kastin, A. J., Tu, H., Markadakis, E. N., Rogers, R. C., Fossier, P. B., and Pan, W. (2009). Obesity induces functional astrocytic leptin receptors in hypothalamus. Brain 132, 889–902.
Obesity induces functional astrocytic leptin receptors in hypothalamus.Crossref | GoogleScholarGoogle Scholar | 19293246PubMed |

Joaquim, A. O., Coelho, C. P., Motta, P. D., Bondan, E. F., Teodorov, E., Martins, M. F., Kirsten, T. B., Casarin, R. C., Bonamin, L. V., and Bernardi, M. M. (2015). Transgenerational effects of a hypercaloric diet. Reprod. Fertil. Dev. , .
Transgenerational effects of a hypercaloric diet.Crossref | GoogleScholarGoogle Scholar | 26304066PubMed |

Laforest, S., Labrecque, J., Michaud, A., Cianflone, K., and Tchernof, A. (2015). Adipocyte sizes as a determinant of metabolic disease and adipose tissue dysfunction. Crit. Rev. Clin. Lab. Sci. 52, 301–313.
Adipocyte sizes as a determinant of metabolic disease and adipose tissue dysfunction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsl2nur%2FN&md5=5ebe4254610ef429a472d9547d7adcd5CAS | 26292076PubMed |

Lechan, R. M., and Fekete, C. (2006). The TRH neuron: a hypothalamic integrator of energy metabolism. Prog. Brain Res. 153, 209–235.
| 1:CAS:528:DC%2BD28XhtFyru7bN&md5=1832a46070920d58866933c0a5dcf2f7CAS | 16876577PubMed |

Levine, J. B., Kong, J., Nadler, M., and Xu, Z. (1999). Astrocytes interact intimately with degenerating motor neurons in mouse amyotrophic lateral sclerosis (ALS). Glia 28, 215–224.
Astrocytes interact intimately with degenerating motor neurons in mouse amyotrophic lateral sclerosis (ALS).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2Fis1ajsg%3D%3D&md5=00698b87381d2135d959036be76bd17eCAS | 10559780PubMed |

Michaud, A., Laforest, S., Pelletier, M., Nadeau, M., Simard, S., Daris, M., Lebœuf, M., Vidal, H., Géloën, A., and Tchernof, A. (2016). Abdominal adipocyte populations in women with visceral obesity. Eur. J. Endocrinol. 174, 227–239.
Abdominal adipocyte populations in women with visceral obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XksFagtbk%3D&md5=fea0cbb3a5447c3b4ec8986f9582de18CAS | 26578637PubMed |

Middeldorp, J., and Hol, E. M. (2011). GFAP in health and disease. Prog. Neurobiol. 93, 421–443.
GFAP in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFWisrw%3D&md5=206e032293574c47009dbeab963e23ffCAS | 21219963PubMed |

Morag, M., Popliker, F., and Yagil, R. (1975). Effect of litter size on milk yeld in the rat. Lab. Anim. 9, 43–47.
Effect of litter size on milk yeld in the rat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M7hslKnsQ%3D%3D&md5=f99c255415c375e0cb3b356b54c07db0CAS | 1117695PubMed |

Pan, W., Hsuchou, H., He, Y., Sakharkar, A., Cain, C., Yu, C., and Kastin, A. J. (2008). Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice. Endocrinology 149, 2798–2806.
Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1entrc%3D&md5=b05f09b54974713577504f069f4dacc6CAS | 18292187PubMed |

Parlee, S. D., and MacDougald, O. A. (2014). Maternal nutrition and risk of obesity in offspring: the Trojan horse of developmental plasticity. Biochim. Biophys. Acta 1842, 495–506.
Maternal nutrition and risk of obesity in offspring: the Trojan horse of developmental plasticity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Gms7bL&md5=27697c9eb246fc7b2e2900794ebf8609CAS | 23871838PubMed |

Pennington, K. A., Harper, J. L., Sigafoos, A. N., Beffa, L. M., Carleton, S. M., Phillips, C. L., and Schulz, L. C. (2012). Effect of food restriction and leptin supplementation on fetal programming in mice. Endocrinology 153, 4556–4567.
Effect of food restriction and leptin supplementation on fetal programming in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlagtbzO&md5=03bea6842c44d0e635cc67e0bbe79903CAS | 22778222PubMed |

Reynolds, C. M., Gray, C., Li, M., Segovia, S. A., and Vickers, M. H. (2015). Early life nutrition and energy balance disorders in offspring in later life. Nutrients 7, 8090–8111.
Early life nutrition and energy balance disorders in offspring in later life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xls1WjtLc%3D&md5=45939bdebac5e525a02db007ff1438f6CAS | 26402696PubMed |

Ridet, J. L., Alonso, G., Chauvet, N., Chapron, J., Koenig, J., and Privat, A. (1995). Immunocytochemical characterization of a new marker of fibrous and reactive astrocytes. Cell Tissue Res. 283, 39–49.
Immunocytochemical characterization of a new marker of fibrous and reactive astrocytes.Crossref | GoogleScholarGoogle Scholar |

Schäffler, A., Binart, N., Schölmerich, J., and Büchler, C. (2005). Brain talks with fat: evidence for a hypothalamic–pituitary–adipose axis? Neuropeptides 39, 363–367.
Brain talks with fat: evidence for a hypothalamic–pituitary–adipose axis?Crossref | GoogleScholarGoogle Scholar | 16040119PubMed |

Sébert, S. P., Hyatt, M. A., Chan, L. L. Y., Patel, N., Bell, R. C., Keisler, D., Stephenson, T., Budge, H., Symonds, M. E., and Gardner, D. S. (2009). Maternal nutrient restriction between early and midgestation and its impact upon appetite regulation after juvenile obesity. Endocrinology 150, 634–641.
Maternal nutrient restriction between early and midgestation and its impact upon appetite regulation after juvenile obesity.Crossref | GoogleScholarGoogle Scholar | 18818297PubMed |

Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647.
Molecular dissection of reactive astrogliosis and glial scar formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKgs7bP&md5=162aea3b3b611f14730823d6bbcd4947CAS | 19782411PubMed |

Sofroniew, M. V., and Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35.
Astrocytes: biology and pathology.Crossref | GoogleScholarGoogle Scholar | 20012068PubMed |

Tchernof, A. (2006). Regional differences in adipose tissue metabolism in women: minor effect of obesity and body fat distribution. Diabetes 55, 1353–1360.
Regional differences in adipose tissue metabolism in women: minor effect of obesity and body fat distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFahtLo%3D&md5=9137508b94d435d321f8eb24a10caf07CAS | 16644692PubMed |

Tchernof, A., and Després, J.-P. (2013). Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404.
Pathophysiology of human visceral obesity: an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKns7c%3D&md5=489393687d0e0bb5c8d8ce5d5813426dCAS | 23303913PubMed |

Thaler, J. P., Yi, C. X., Schur, E. A., Guyenet, S. J., Hwang, B. H., Dietrich, M. O., et al. (2012). Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162.
Obesity is associated with hypothalamic injury in rodents and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFCltw%3D%3D&md5=df5414be2343e2a08242c2672af5d1edCAS | 22201683PubMed |

Velloso, L. A., Araújo, E. P., and De Souza, C. T. (2008). Diet-induced inflammation of the hypothalamus in obesity. Neuroimmunomodulation 15, 189–193.
Diet-induced inflammation of the hypothalamus in obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFyqtrbK&md5=7f4ac76c7892f45f068d1b8f04933eb3CAS | 18781083PubMed |

Vrang, N., Larsen, P. J., Clausen, J. T., and Kristensen, P. (1999). Neurochemical characterization of hypothalamic cocaine- amphetamine-regulated transcript neurons. J. Neurosci. 19, RC5.
| 1:STN:280:DC%2BD3c3ns1ehsQ%3D%3D&md5=3e0cd007f1b98bd4288beaf0d4b3a9baCAS | 10234051PubMed |

Williams, L., Seki, Y., Vuguin, P. M., and Charron, M. J. (2014). Animal models of in utero exposure to a high fat diet: a review. Biochim. Biophys. Acta 1842, 507–519.
Animal models of in utero exposure to a high fat diet: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1emtr7N&md5=6740f06431aa5fd5ebbb692fa60a3d42CAS | 23872578PubMed |

Yang, Z., and Huffman, S. L. (2013). Nutrition in pregnancy and early childhood and associations with obesity in developing countries. Matern. Child Nutr. 9, 105–119.
Nutrition in pregnancy and early childhood and associations with obesity in developing countries.Crossref | GoogleScholarGoogle Scholar | 23167588PubMed |

Yi, C.-X., and Tschop, M. H. (2012). Brain–gut–adipose-tissue communication pathways at a glance. Dis. Model. Mech. 5, 583–587.
Brain–gut–adipose-tissue communication pathways at a glance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVGqsrnL&md5=8e7f882296a4edd9d9f4e52fe241acf8CAS | 22915019PubMed |