Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Nuclear architecture in developmental biology and cell specialisation

Thomas Cremer A B D and Valeri Zakhartchenko C
+ Author Affiliations
- Author Affiliations

A LMU Biocenter, Grosshadernerstr. 2, D‐82152 Martinsried, Germany.

B Munich Center for Integrated Protein Science Munich (CIPSM), D‐81377 Munich, Germany.

C Division of Molecular Animal Breeding and Biotechnology, LMU Munich, Hackerstr. 27, D‐85764 Oberschleissheim, Germany.

D Corresponding author. Email: thomas.cremer@lrz.uni-muenchen.de

Reproduction, Fertility and Development 23(1) 94-106 https://doi.org/10.1071/RD10249
Published: 7 December 2010

Abstract

Epigenetic changes, including DNA methylation patterns, histone modifications and histone variants, as well as chromatin remodelling play a fundamental role in the regulation of pre‐ and postimplantation mammalian development. Recent studies have indicated that nuclear architecture provides an additional level of regulation, which needs to be explored in order to understand how a fertilised egg is able to develop into a full organism. Studies of 3D preserved nuclei of IVF preimplantation embryos from different mammalian species, such as mouse, rabbit and cow, have demonstrated that nuclear architecture undergoes major changes during early development. Both similarities and species‐specific differences were observed. Nuclear transfer experiments demonstrated changes of nuclear phenotypes, which to some extent reflect changes seen in IVF preimplantation embryos albeit with a different timing compared with IVF embryos. The dynamics of nuclear architecture is further substantiated by major changes during postmitotic terminal cell differentiation. Recent breakthroughs of 3D fluorescence microscopy with resolution beyond the conventional Abbe limit in combination with 3D electron microscopy provide the potential to explore the topography of nuclear structure with unprecedented resolution and detail.

Additional keywords: 3D electron microscopy, chromosome territory, in vitro fertilisation, nuclear organisation, preimplantation embryos, spatially assigned localisation microscopy, structured illumination microscopy.


References

Ahmed, K., Dehghani, H., Rugg‐Gunn, P., Fussner, E., Rossant, J., and Bazett‐Jones, D. P. (2010). Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS ONE 5, e10531.
Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 20479880PubMed |

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2008). ‘Molecular Biology of the Cell.’ 5th edn. (Taylor & Francis: Garland Science.)

Ammermann, D., Hellmer, K. H., Zassoukhina, I., and Skovorodkin, I. (2003). Response to X‐ray‐ and cis Pt‐induced DNA damage in Stylonychia lemnae (Ciliata, Protozoa). Eur. J. Protistol. 39, 223–230.
Response to X‐ray‐ and cis Pt‐induced DNA damage in Stylonychia lemnae (Ciliata, Protozoa).Crossref | GoogleScholarGoogle Scholar |

Augui, S., Filion, G. J., Huart, S., Nora, E., Guggiari, M., Maresca, M., Stewart, A. F., and Heard, E. (2007). Sensing X chromosome pairs before X inactivation via a novel X‐pairing region of the Xic. Science 318, 1632–1636.
Sensing X chromosome pairs before X inactivation via a novel X‐pairing region of the Xic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlyrsrrL&md5=c801be10ca5ed15c74e8e7ef8a3dbeb5CAS | 18063799PubMed |

Bártová, E., Krejčí, J., Harničarová, A., Galiova, G., and Kozubek, S. (2008). Histone modifications and nuclear architecture: a review. J. Histochem. Cytochem. 56, 711–721.
Histone modifications and nuclear architecture: a review.Crossref | GoogleScholarGoogle Scholar | 18474937PubMed |

Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature 447, 407–412.
The complex language of chromatin regulation during transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFOgsrc%3D&md5=84643964b937b1cbb6e73f50c135b6ebCAS | 17522673PubMed |

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott‐Schwartz, J., and Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645.
Imaging intracellular fluorescent proteins at nanometer resolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVOktL0%3D&md5=d0d1a55ad78aace10fb514955d5e8353CAS | 16902090PubMed |

Branco, M. R., and Pombo, A. (2006). Intermingling of chromosome territories in interphase suggests role in translocations and transcription‐dependent associations. PLoS Biol. 4, e138.
Intermingling of chromosome territories in interphase suggests role in translocations and transcription‐dependent associations.Crossref | GoogleScholarGoogle Scholar | 16623600PubMed |

Brianna Caddle, L., Grant, J. L., Szatkiewicz, J., van Hase, J., Shirley, B. J., Bewersdorf, J., Cremer, C., Arneodo, A., Khalil, A., and Mills, K. D. (2007). Chromosome neighbourhood composition determines translocation outcomes after exposure to high‐dose radiation in primary cells. Chromosome Res. 15, 1061–1073.
Chromosome neighbourhood composition determines translocation outcomes after exposure to high‐dose radiation in primary cells.Crossref | GoogleScholarGoogle Scholar | 18060570PubMed |

Chambeyron, S., and Bickmore, W. A. (2004). Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130.
Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlCqsrc%3D&md5=9200487133c2f1b854d87a904d701b0aCAS | 15155579PubMed |

Chambeyron, S., Da Silva, N. R., Lawson, K. A., and Bickmore, W. A. (2005). Nuclear re‐organisation of the Hoxb complex during mouse embryonic development. Development 132, 2215–2223.
Nuclear re‐organisation of the Hoxb complex during mouse embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFagtrg%3D&md5=6eb3a523d1931d80704716874f98ea7fCAS | 15829525PubMed |

Chuang, C. H., and Belmont, A. S. (2007). Moving chromatin within the interphase nucleus – controlled transitions? Semin. Cell Dev. Biol. 18, 698–706.
Moving chromatin within the interphase nucleus – controlled transitions?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Kjtr7P&md5=69d6976dc20d59b43c1756e56a43e0f3CAS | 17905613PubMed |

Chuang, C. H., Carpenter, A. E., Fuchsova, B., Johnson, T., de Lanerolle, P., and Belmont, A. S. (2006). Long‐range directional movement of an interphase chromosome site. Curr. Biol. 16, 825–831.
Long‐range directional movement of an interphase chromosome site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFWmtLY%3D&md5=7241e166a008b5d58728b5877741169bCAS | 16631592PubMed |

Chubb, J. R., and Bickmore, W. A. (2003). Considering nuclear compartmentalization in the light of nuclear dynamics. Cell 112, 403–406.
Considering nuclear compartmentalization in the light of nuclear dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Sns7c%3D&md5=9fe847b494d3769733719d8013052b37CAS | 12600306PubMed |

Combes, A. N., and Whitelaw, E. (2010). Epigenetic reprogramming: enforcer or enabler of developmental fate? Dev. Growth Differ. 52, 483–491.
Epigenetic reprogramming: enforcer or enabler of developmental fate?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCgur%2FJ&md5=0dbebaa62cd416005f87e3980002d03cCAS | 20608951PubMed |

Corry, G. N., Tanasijevic, B., Barry, E. R., Krueger, W., and Rasmussen, T. P. (2009). Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res. C Embryo Today 87, 297–313.
Epigenetic regulatory mechanisms during preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFaksLbK&md5=9a7b4b548a3effe727483e16c7db029fCAS | 19960551PubMed |

Cremer, C., and Cremer, T. (1978). Considerations on a laser‐scanning microscope with high resolution and depth of field. Microsc. Acta 81, 31–44.
| 1:STN:280:DyaE1M%2Flt1Glsg%3D%3D&md5=d18d67261e5ab299183bf15bb126cf2aCAS | 713859PubMed |

Cremer, T., and Cremer, C. (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301.
Chromosome territories, nuclear architecture and gene regulation in mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVCqurc%3D&md5=0d084a58df8e6344987973b808303f89CAS | 11283701PubMed |

Cremer, T., and Cremer, C. (2006). Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from the 1990s to the present. Eur. J. Histochem. 50, 223–272.
| 1:STN:280:DC%2BD2s%2Fhs12qtA%3D%3D&md5=41a449c4a9136eaed6c29b2171868ed9CAS | 17213034PubMed |

Cremer, T., and Cremer, M. (2010). Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889.
Chromosome territories.Crossref | GoogleScholarGoogle Scholar | 20300217PubMed |

Cremer, T., Kreth, G., Koester, H., Fink, R. H., Heintzmann, R., Cremer, M., Solovei, I., Zink, D., and Cremer, C. (2000). Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit. Rev. Eukaryot. Gene Expr. 10, 179–212.
| 1:STN:280:DC%2BD3M7ns1SgtQ%3D%3D&md5=6b32f84f85d2433a4d324bb2ad15ec02CAS | 11186332PubMed |

Cvačková, Z., Mašata, M., Staněk, D., Fidlerová, H., and Raška, I. (2009). Chromatin position in human HepG2 cells: although being non‐random, significantly changed in daughter cells. J. Struct. Biol. 165, 107–117.
Chromatin position in human HepG2 cells: although being non‐random, significantly changed in daughter cells.Crossref | GoogleScholarGoogle Scholar | 19056497PubMed |

De Boni, U. (1988). Chromatin motion in interphase nuclei, its modulation and its potential role in gene expression. Anticancer Res. 8, 885–898.
| 1:STN:280:DyaL1M%2FisVGjtQ%3D%3D&md5=798c582be48ae87ccbf2002112265b70CAS | 3052261PubMed |

De Boni, U., and Mintz, A. H. (1986). Curvilinear, three‐dimensional motion of chromatin domains and nucleoli in neuronal interphase nuclei. Science 234, 863–866.
Curvilinear, three‐dimensional motion of chromatin domains and nucleoli in neuronal interphase nuclei.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2Fkt1Oktg%3D%3D&md5=407662add44353ecd506da9b6c48f7f7CAS | 3775367PubMed |

Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306–1311.
Capturing chromosome conformation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVGhsbk%3D&md5=57be5cae4ab08df6ce80c69e74901dc6CAS | 11847345PubMed |

Dietzel, S., Jauch, A., Kienle, D., Qu, G., Holtgreve‐Grez, H., et al. (1998). Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei. Chromosome Res. 6, 25–33.
Separate and variably shaped chromosome arm domains are disclosed by chromosome arm painting in human cell nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFSnsLk%3D&md5=7916e6becc23448bc94921d771c82cbdCAS | 9510507PubMed |

Durante, M., Pignalosa, D., Jansen, J. A., Walboomers, X. F., and Ritter, S. (2010). Influence of nuclear geometry on the formation of genetic rearrangements in human cells. Radiat. Res. 174, 20–26.
Influence of nuclear geometry on the formation of genetic rearrangements in human cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps12ksL0%3D&md5=8d1bb60541e730fa73a1e47d5a194e05CAS | 20681795PubMed |

Fakan, S. (2004). The functional architecture of the nucleus as analysed by ultrastructural cytochemistry. Histochem. Cell Biol. 122, 83–93.
The functional architecture of the nucleus as analysed by ultrastructural cytochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVOnsb4%3D&md5=5b0742ca209b80156bfb77ead315ddcdCAS | 15300441PubMed |

Fakan, S., and van Driel, R. (2007). The perichromatin region: a functional compartment in the nucleus that determines large‐scale chromatin folding. Semin. Cell Dev. Biol. 18, 676–681.
The perichromatin region: a functional compartment in the nucleus that determines large‐scale chromatin folding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Kjtr7M&md5=215ee25bd9fa606430584f163a4bb7bfCAS | 17920313PubMed |

Ferrai, C., de Castro, I. J., Lavitas, L., Chotalia, M., and Pombo, A. (2010). Gene positioning. Cold Spring Harb. Perspect. Biol. 2, a000588.
Gene positioning.Crossref | GoogleScholarGoogle Scholar | 20484389PubMed |

Fraser, P., and Bickmore, W. (2007). Nuclear organization of the genome and the potential for gene regulation. Nature 447, 413–417.
Nuclear organization of the genome and the potential for gene regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFOgs74%3D&md5=bdb5662da096a6789ca17d514170bbfbCAS | 17522674PubMed |

Gasser, S. M. (2002). Visualizing chromatin dynamics in interphase nuclei. Science 296, 1412–1416.
Visualizing chromatin dynamics in interphase nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFantLw%3D&md5=f6b3d679282ef4e158d12de6e81de2abCAS | 12029120PubMed |

Göndör, A., and Ohlsson, R. (2009). Chromosome crosstalk in three dimensions. Nature 461, 212–217.
Chromosome crosstalk in three dimensions.Crossref | GoogleScholarGoogle Scholar | 19741702PubMed |

Göndör, A., Rougier, C., and Ohlsson, R. (2008). High‐resolution circular chromosome conformation capture assay. Nat. Protoc. 3, 303–313.
High‐resolution circular chromosome conformation capture assay.Crossref | GoogleScholarGoogle Scholar | 18274532PubMed |

Gorovsky, M. A., and Woodard, J. (1969). Studies on nuclear structure and function in Tetrahymena pyriformis: I. RNA synthesis in macro‐ and micro‐nuclei. J. Cell Biol. 42, 673–682.
Studies on nuclear structure and function in Tetrahymena pyriformis: I. RNA synthesis in macro‐ and micro‐nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXltV2qtLc%3D&md5=1c77667d85c5b3ec854c255a6d63d913CAS | 19866732PubMed |

Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., et al. (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951.
Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVCqur4%3D&md5=58285024f1220de47325ceda48fa60b0CAS | 18463634PubMed |

Guil, S., and Esteller, M. (2009). DNA methylomes, histone codes and miRNAs: tying it all together. Int. J. Biochem. Cell Biol. 41, 87–95.
DNA methylomes, histone codes and miRNAs: tying it all together.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWnu73E&md5=6c2f329c275ad6906877cddbaf11d7c0CAS | 18834952PubMed |

Gunkel, M., Erdel, F., Rippe, K., Lemmer, P., Kaufmann, R., Hormann, C., Amberger, R., and Cremer, C. (2009). Dual colour localization microscopy of cellular nanostructures. Biotechnol. J. 4, 927–938.
Dual colour localization microscopy of cellular nanostructures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1aqsbo%3D&md5=7200adb3eb39051bd1a7494c5d725e3dCAS | 19548231PubMed |

Hajkova, P. (2010). Epigenetic reprogramming – taking a lesson from the embryo. Curr. Opin. Cell Biol. 22, 342–350.
Epigenetic reprogramming – taking a lesson from the embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVygu7g%3D&md5=4266a3b30f4d9fe92aa48a543500d698CAS | 20537882PubMed |

Hell, S. W. (2007). Far‐field optical nanoscopy. Science 316, 1153–1158.
Far‐field optical nanoscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1KitL4%3D&md5=927f91f9ca2904926e4385fbd3eee0cfCAS | 17525330PubMed |

Hu, Q., Kwon, Y. S., Nunez, E., Cardamone, M. D., Hutt, K. R., et al. (2008). Enhancing nuclear receptor‐induced transcription requires nuclear motor and LSD1‐dependent gene networking in interchromatin granules. Proc. Natl. Acad. Sci. USA 105, 19 199–19 204.
Enhancing nuclear receptor‐induced transcription requires nuclear motor and LSD1‐dependent gene networking in interchromatin granules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamu7%2FE&md5=16ee788f9db22b806f9ba1e2ac500d85CAS |

Hübner, M. R., and Spector, D. L. (2010). Chromatin dynamics. Annu. Rev. Biophys. 39, 471–489.
Chromatin dynamics.Crossref | GoogleScholarGoogle Scholar | 20462379PubMed |

Jenuwein, T., and Allis, C. D. (2001). Translating the histone code. Science 293, 1074–1080.
Translating the histone code.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVWltro%3D&md5=a4fbef0f2e9878054ea08cefd3db01bfCAS | 11498575PubMed |

Jiang, C., and Pugh, B. F. (2009). Nucleosome positioning and gene regulation: advances through genomics. Nat. Rev. Genet. 10, 161–172.
Nucleosome positioning and gene regulation: advances through genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGlu7Y%3D&md5=2b52ac36c506950370898b7a5a3bf238CAS | 19204718PubMed |

Kocanova, S., Kerr, E. A., Rafique, S., Boyle, S., Katz, E., Caze‐Subra, S., Bickmore, W. A., and Bystricky, K. (2010). Activation of oestrogen‐responsive genes does not require their nuclear co‐localization. PLoS Genet. 6, e1000922.
Activation of oestrogen‐responsive genes does not require their nuclear co‐localization.Crossref | GoogleScholarGoogle Scholar | 20421946PubMed |

Koehler, D., Zakhartchenko, V., Froenicke, L., Stone, G., Stanyon, R., Wolf, E., Cremer, T., and Brero, A. (2009). Changes of higher‐order chromatin arrangements during major genome activation in bovine preimplantation embryos. Exp. Cell Res. 315, 2053–2063.
Changes of higher‐order chromatin arrangements during major genome activation in bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVKjtbg%3D&md5=0ebadfa9c0824109b7bdbf1f823c436bCAS | 19254712PubMed |

Kosak, S. T., and Groudine, M. (2004a). Form follows function: the genomic organization of cellular differentiation. Genes Dev. 18, 1371–1384.
Form follows function: the genomic organization of cellular differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKrtL0%3D&md5=e2355d69dad1450dd90a5a1541f3610dCAS | 15198979PubMed |

Kosak, S. T., and Groudine, M. (2004b). Gene order and dynamic domains. Science 306, 644–647.
Gene order and dynamic domains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Kqtb4%3D&md5=cedbccafe1954a09fc71878e3d8f0b40CAS | 15499009PubMed |

Kreth, G., Pazhanisamy, S. K., Hausmann, M., and Cremer, C. (2007). Cell type‐specific quantitative predictions of radiation‐induced chromosome aberrations: a computer model approach. Radiat. Res. 167, 515–525.
Cell type‐specific quantitative predictions of radiation‐induced chromosome aberrations: a computer model approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVWns70%3D&md5=add75838c34c8c38dbd6ea9ebf60c698CAS | 17474788PubMed |

Lanctôt, C., Cheutin, T., Cremer, M., Cavalli, G., and Cremer, T. (2007a). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8, 104–115.
Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions.Crossref | GoogleScholarGoogle Scholar | 17230197PubMed |

Lanctôt, C., Kaspar, C., and Cremer, T. (2007b). Positioning of the mouse Hox gene clusters in the nuclei of developing embryos and differentiating embryoid bodies. Exp. Cell Res. 313, 1449–1459.
Positioning of the mouse Hox gene clusters in the nuclei of developing embryos and differentiating embryoid bodies.Crossref | GoogleScholarGoogle Scholar | 17346703PubMed |

LaSalle, J. M., and Lalande, M. (1996). Homologous association of oppositely imprinted chromosomal domains. Science 272, 725–728.
Homologous association of oppositely imprinted chromosomal domains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xislamtrk%3D&md5=6fee6b9c80d6ded105587c93591ac98aCAS | 8614834PubMed |

Lemmer, P., Gunkel, M., Baddeley, D., Kaufmann, R., Urich, A., Weiland, Y., Reymann, J., Müller, P., Hausmann, M., and Cremer, C. (2008). SPDM: light microscopy with single‐molecule resolution at the nanoscale. Appl. Phys. B 93, 1–12.
SPDM: light microscopy with single‐molecule resolution at the nanoscale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFajt7bN&md5=23e76d28ded8a2cf386790f87dd839c0CAS |

Lieberman‐Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., et al. (2009). Comprehensive mapping of long‐range interactions reveals folding principles of the human genome. Science 326, 289–293.
Comprehensive mapping of long‐range interactions reveals folding principles of the human genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1agsbjM&md5=b6d331879857e17f252b211b3da2f0c5CAS | 19815776PubMed |

Manuelidis, L. (1984). Different central nervous system cell types display distinct and non‐random arrangements of satellite DNA sequences. Proc. Natl. Acad. Sci. USA 81, 3123–3127.
Different central nervous system cell types display distinct and non‐random arrangements of satellite DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXksV2ntbg%3D&md5=c75928e83d7207c36ed6b29cb650dbaeCAS |

Martin, C., Brochard, V., Migne, C., Zink, D., Debey, P., and Beaujean, N. (2006). Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming. Mol. Reprod. Dev. 73, 1102–1111.
Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvFahsbo%3D&md5=c75c5e7c1da5855484563efb6a201ca1CAS | 16736527PubMed |

Martou, G., and De Boni, U. (2000). Nuclear topology of murine, cerebellar Purkinje neurons: changes as a function of development. Exp. Cell Res. 256, 131–139.
Nuclear topology of murine, cerebellar Purkinje neurons: changes as a function of development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVajtr8%3D&md5=342d27f9628260af5a3ad6e2aeeede40CAS | 10739660PubMed |

Masui, O., Le Baccon, P., Bonnet, I., Murphy, N., Guggiari, M., Belmont, A., and Heard, E. (2010). Live cell imaging of XIC homologous pairing in mouse ES cells. In ‘LXXV Cold Spring Harbor Laboratory Symposium on Quantitative Biology: Nuclear Organization & Function’. p. 148. (Cold Spring Harbour Press: Cold Spring Harbour, NY.)

Mateos‐Langerak, J., Bohn, M., de Leeuw, W., Giromus, O., Manders, E. M., et al. (2009). Spatially confined folding of chromatin in the interphase nucleus. Proc. Natl. Acad. Sci. USA 106, 3812–3817.
Spatially confined folding of chromatin in the interphase nucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1GksLs%3D&md5=3f2993e8a67d8466ebe02f5322775749CAS |

Mattout, A., and Meshorer, E. (2010). Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr. Opin. Cell Biol. 22, 334–341.
Chromatin plasticity and genome organization in pluripotent embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVygu7o%3D&md5=c547a9747adcb24d34dd8b3697655b39CAS | 20226651PubMed |

Meister, P., Towbin, B. D., Pike, B. L., Ponti, A., and Gasser, S. M. (2010). The spatial dynamics of tissue‐specific promoters during C. elegans development. Genes Dev. 24, 766–782.
The spatial dynamics of tissue‐specific promoters during C. elegans development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVaiu7c%3D&md5=98edac561aae6c6c2df26798e4621c5cCAS | 20395364PubMed |

Merico, V., Barbieri, J., Zuccotti, M., Joffe, B., Cremer, T., Redi, C. A., Solovei, I., and Garagna, S. (2007). Epigenomic differentiation in mouse preimplantation nuclei of biparental, parthenote and cloned embryos. Chromosome Res. 15, 341–360.
| 1:CAS:528:DC%2BD2sXmsV2jtrw%3D&md5=daa291a8954a9d0ed27535dc5cf3454eCAS | 17447149PubMed |

Misteli, T. (2007). Beyond the sequence: cellular organization of genome function. Cell 128, 787–800.
Beyond the sequence: cellular organization of genome function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12isrs%3D&md5=180c8b78829a992b63b9422190262084CAS | 17320514PubMed |

Morey, C., Da Silva, N. R., Perry, P., and Bickmore, W. A. (2007). Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 134, 909–919.
Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1OgsLY%3D&md5=2a3413bac9289ba7e77fc3d537412056CAS | 17251268PubMed |

Morey, C., Kress, C., and Bickmore, W. A. (2009). Lack of bystander activation shows that localization exterior to chromosome territories is not sufficient to up‐regulate gene expression. Genome Res. 19, 1184–1194.
Lack of bystander activation shows that localization exterior to chromosome territories is not sufficient to up‐regulate gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVCktLs%3D&md5=594a41fd5264d83ac6992ef2e29f5939CAS | 19389823PubMed |

Müller, I., Boyle, S., Singer, R. H., Bickmore, W. A., and Chubb, J. R. (2010). Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells. PLoS ONE 5, e11560.
Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells.Crossref | GoogleScholarGoogle Scholar | 20644634PubMed |

Münkel, C., Eils, R., Dietzel, S., Zink, D., Mehring, C., Wedemann, G., Cremer, T., and Langowski, J. (1999). Compartmentalization of interphase chromosomes observed in simulation and experiment. J. Mol. Biol. 285, 1053–1065.
Compartmentalization of interphase chromosomes observed in simulation and experiment.Crossref | GoogleScholarGoogle Scholar | 9887267PubMed |

Munshi, A., Shafi, G., Aliya, N., and Jyothy, A. (2009). Histone modifications dictate specific biological readouts. J. Genet. Genomics 36, 75–88.
Histone modifications dictate specific biological readouts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFygsLc%3D&md5=5dcc6fe79297366f879127f2cb4f4384CAS | 19232306PubMed |

Osborne, C. S., Chakalova, L., Brown, K. E., Carter, D., Horton, A., Debrand, E., Goyenechea, B., Mitchell, J. A., Lopes, S., Reik, W., and Fraser, P. (2004). Active genes dynamically co‐localize to shared sites of ongoing transcription. Nat. Genet. 36, 1065–1071.
Active genes dynamically co‐localize to shared sites of ongoing transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFamtL8%3D&md5=d28c47e4ba999090074b26a7fbf6c541CAS | 15361872PubMed |

Osborne, C. S., Chakalova, L., Mitchell, J. A., Horton, A., et al. (2007). Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 5, e192.
Myc dynamically and preferentially relocates to a transcription factory occupied by Igh.Crossref | GoogleScholarGoogle Scholar | 17622196PubMed |

Pederson, T., and Singer, R. H. (2006). Nucleus and gene regulation. Curr. Opin. Cell Biol. 18, 229–230.
Nucleus and gene regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1eqs78%3D&md5=ca66dd8a177eaa0064b1304ff864f29fCAS |

Pichugin, A., Le Bourhis, D., Adenot, P., Lehmann, G., Audouard, C., Renard, J. P., Vignon, X., and Beaujean, N. (2010). Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos. Reproduction 139, 129–137.
Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWmtg%3D%3D&md5=2422c28d4314ff97418ca753838be524CAS | 19778997PubMed |

Pickersgill, H., Kalverda, B., de Wit, E., Talhout, W., Fornerod, M., and van Steensel, B. (2006). Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38, 1005–1014.
Characterization of the Drosophila melanogaster genome at the nuclear lamina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVWjsbs%3D&md5=8be296c93d6100705ede174cddc756a3CAS | 16878134PubMed |

Popp, C., Dean, W., Feng, S., Cokus, S. J., Andrews, S., Pellegrini, M., Jacobsen, S. E., and Reik, W. (2010). Genome‐wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105.
Genome‐wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitl2gs7Y%3D&md5=f69fb2d78be58dd8657a5b963b153e9bCAS | 20098412PubMed |

Postberg, J., Alexandrova, O., Cremer, T., and Lipps, H. J. (2005). Exploiting nuclear duality of ciliates to analyse topological requirements for DNA replication and transcription. J. Cell Sci. 118, 3973–3983.
Exploiting nuclear duality of ciliates to analyse topological requirements for DNA replication and transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOqtr%2FJ&md5=3b46c287753afd525dee45fb61e3e44dCAS | 16129882PubMed |

Postberg, J., Heyse, K., Cremer, M., Cremer, T., and Lipps, H. J. (2008). Spatial and temporal plasticity of chromatin during programmed DNA reorganization in Stylonychia macronuclear development. Epigenetics Chromatin 1, 3.
Spatial and temporal plasticity of chromatin during programmed DNA reorganization in Stylonychia macronuclear development.Crossref | GoogleScholarGoogle Scholar | 19014664PubMed |

Postberg, J., Lipps, H. J., and Cremer, T. (2010). Evolutionary origin of the cell nucleus and its functional architecture. Essays Biochem. 48, 1–24.
Evolutionary origin of the cell nucleus and its functional architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKgsb%2FJ&md5=bf15abdbabc98aa9fea45e6e4ceacd0cCAS | 20822483PubMed |

Rajapakse, I., Scalzo, D., Tapscott, S. J., Kosak, S. T., and Groudine, M. (2010). Networking the nucleus. Mol. Syst. Biol. 6, 395.
Networking the nucleus.Crossref | GoogleScholarGoogle Scholar | 20664641PubMed |

Rippe, K. (2007). Dynamic organization of the cell nucleus. Curr. Opin. Genet. Dev. 17, 373–380.
Dynamic organization of the cell nucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Kku7%2FF&md5=e14a0051a7c80f11f7be664e8b0cdacfCAS | 17913491PubMed |

Ronneberger, O., Baddeley, D., Scheipl, F., Verveer, P. J., Burkhardt, H., Cremer, C., Fahrmeir, L., Cremer, T., and Joffe, B. (2008). Spatial quantitative analysis of fluorescently labelled nuclear structures: problems, methods, pitfalls. Chromosome Res. 16, 523–562.
Spatial quantitative analysis of fluorescently labelled nuclear structures: problems, methods, pitfalls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFert7c%3D&md5=6161947ec92663ba6d2909ba6ae03b32CAS | 18461488PubMed |

Rosa, A., Becker, N. B., and Everaers, R. (2010). Looping probabilities in model interphase chromosomes. Biophys. J. 98, 2410–2419.
Looping probabilities in model interphase chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVOjtrk%3D&md5=2de391aea43eceb7c72481a48dd518c2CAS | 20513384PubMed |

Rouquette, J., Genoud, C., Vazquez‐Nin, G. H., Kraus, B., Cremer, T., and Fakan, S. (2009). Revealing the high‐resolution three‐dimensional network of chromatin and interchromatin space: a novel electron‐microscopic approach to reconstructing nuclear architecture. Chromosome Res. 17, 801–810.
Revealing the high‐resolution three‐dimensional network of chromatin and interchromatin space: a novel electron‐microscopic approach to reconstructing nuclear architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ektrrM&md5=fcf07136431ce66a834cc6a44eea781cCAS | 19731052PubMed |

Rouquette, J., Cremer, C., Cremer, T., and Fakan, S. (2010). Functional nuclear architecture studied by microscopy: present and future. Int. Rev. Cell Mol. Biol. 282, 1–90.
Functional nuclear architecture studied by microscopy: present and future.Crossref | GoogleScholarGoogle Scholar | 20630466PubMed |

Sachs, R. K., van den Engh, G., Trask, B., Yokota, H., and Hearst, J. E. (1995). A random‐walk/giant‐loop model for interphase chromosomes. Proc. Natl. Acad. Sci. USA 92, 2710–2714.
A random‐walk/giant‐loop model for interphase chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksl2rsLk%3D&md5=5bcd9deb96c0d1ff96f0577a7d5c72e8CAS |

Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., et al. (2008). Subdiffraction multicolour imaging of the nuclear periphery with 3D structured‐illumination microscopy. Science 320, 1332–1336.
Subdiffraction multicolour imaging of the nuclear periphery with 3D structured‐illumination microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslWgtbw%3D&md5=5ccbdf744d12f6e3a8c8c10a30e709aaCAS | 18535242PubMed |

Schermelleh, L., Heintzmann, R., and Leonhardt, H. (2010). A guide to super‐resolution fluorescence microscopy. J. Cell Biol. 190, 165–175.
A guide to super‐resolution fluorescence microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGlur%2FK&md5=821f25aef7eaddec5cd7e7df71c115f4CAS | 20643879PubMed |

Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., et al. (2010a). Preferential associations between co‐regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42, 53–61.
Preferential associations between co‐regulated genes reveal a transcriptional interactome in erythroid cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGjtrjI&md5=ad7d6e9fc6e8deb1ea1297c227b578a7CAS | 20010836PubMed |

Schoenfelder, S., Clay, I., and Fraser, P. (2010b). The transcriptional interactome: gene expression in 3D. Curr. Opin. Genet. Dev. 20, 127–133.
The transcriptional interactome: gene expression in 3D.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltF2gsrs%3D&md5=b3dd8a5fcfa549021d7a9b6aa54e9990CAS | 20211559PubMed |

Shopland, L. S., Johnson, C. V., Byron, M., McNeil, J., and Lawrence, J. B. (2003). Clustering of multiple specific genes and gene‐rich R‐bands around SC‐35 domains: evidence for local euchromatic neighbourhoods. J. Cell Biol. 162, 981–990.
Clustering of multiple specific genes and gene‐rich R‐bands around SC‐35 domains: evidence for local euchromatic neighbourhoods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVWjsL4%3D&md5=457095f8199dffd1f7f6eb14478814faCAS | 12975345PubMed |

Solovei, I., Cavallo, A., Schermelleh, L., Jaunin, F., Scasselati, C., Cmarko, D., Cremer, C., Fakan, S., and Cremer, T. (2002). Spatial preservation of nuclear chromatin architecture during three‐dimensional fluorescence in situ hybridization (3D‐FISH). Exp. Cell Res. 276, 10–23.
Spatial preservation of nuclear chromatin architecture during three‐dimensional fluorescence in situ hybridization (3D‐FISH).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFyis74%3D&md5=d71bdc4575e7176dac014da8e7551991CAS | 11978004PubMed |

Solovei, I., Schermelleh, L., Düring, K., Engelhardt, A., Stein, S., Cremer, C., and Cremer, T. (2004). Differences in centromere positioning of cycling and postmitotic human cell types. Chromosoma 112, 410–423.
Differences in centromere positioning of cycling and postmitotic human cell types.Crossref | GoogleScholarGoogle Scholar | 15197559PubMed |

Solovei, I., Kreysing, M., Lanctôt, C., Kösem, S., Peichl, L., Cremer, T., Guck, J., and Joffe, B. (2009). Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356–368.
Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVahsrk%3D&md5=569903051fe857e37e53b6d06aff6f8aCAS | 19379699PubMed |

Spector, D. L. (2003). The dynamics of chromosome organization and gene regulation. Annu. Rev. Biochem. 72, 573–608.
The dynamics of chromosome organization and gene regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSgtb0%3D&md5=0ae85486ef64f8a4bcfa2648d0b4a8b9CAS | 14527325PubMed |

Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R., and Flavell, R. A. (2005). Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645.
Interchromosomal associations between alternatively expressed loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Ogtb4%3D&md5=97bca33e579ddb55a48b0fde21d5fdf8CAS | 15880101PubMed |

Strahl, B. D., and Allis, C. D. (2000). The language of covalent histone modifications. Nature 403, 41–45.
The language of covalent histone modifications.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7gt1arsQ%3D%3D&md5=f9d7c815f03971de4e7622e017fb0065CAS | 10638745PubMed |

Strickfaden, H., Zunhammer, A., van Koningsbruggen, S., Köhler, D., and Cremer, T. (2010). 4D chromatin dynamics in cycling cells: Theodor Boveri’s hypotheses revisited. Nucleus 1, 284–297.
4D chromatin dynamics in cycling cells: Theodor Boveri’s hypotheses revisited.Crossref | GoogleScholarGoogle Scholar |

Taddei, A., Hediger, F., Neumann, F. R., and Gasser, S. M. (2004). The function of nuclear architecture: a genetic approach. Annu. Rev. Genet. 38, 305–345.
The function of nuclear architecture: a genetic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlOqug%3D%3D&md5=65c2b78e9d3a89f79906d73a5c451590CAS | 15568979PubMed |

Takizawa, T., Meaburn, K. J., and Misteli, T. (2008). The meaning of gene positioning. Cell 135, 9–13.
The meaning of gene positioning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Gkt7jJ&md5=c5aabd66532356619c12379065620b6dCAS | 18854147PubMed |

Teller, K., Solovei, I., Buiting, K., Horsthemke, B., and Cremer, T. (2007). Maintenance of imprinting and nuclear architecture in cycling cells. Proc. Natl. Acad. Sci. USA 104, 14 970–14 975.
Maintenance of imprinting and nuclear architecture in cycling cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2hsL%2FJ&md5=3b08f30ba3faad9d2c80ad9e1e9d54ebCAS |

Thomson, I., Gilchrist, S., Bickmore, W. A., and Chubb, J. R. (2004). The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr. Biol. 14, 166–172.
The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvV2htw%3D%3D&md5=a40a699c9dcc69e62f2d3f287dc3f9adCAS | 14738741PubMed |

Trinkle‐Mulcahy, L., and Lamond, A. I. (2008). Nuclear functions in space and time: gene expression in a dynamic, constrained environment. FEBS Lett. 582, 1960–1970.
Nuclear functions in space and time: gene expression in a dynamic, constrained environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1Wgsbg%3D&md5=38c8dc5b634aade405b586c498eada63CAS | 18442480PubMed |

van Steensel, B., and Henikoff, S. (2000). Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 18, 424–428.
Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1GmtL4%3D&md5=bbd60acffc22abf8720d9a34140f9c6fCAS | 10748524PubMed |

Varga‐Weisz, P. D., and Becker, P. B. (2006). Regulation of higher‐order chromatin structures by nucleosome‐remodelling factors. Curr. Opin. Genet. Dev. 16, 151–156.
Regulation of higher‐order chromatin structures by nucleosome‐remodelling factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1eht74%3D&md5=0cfe8d1adf4fe1bc5899ed02c85b75ffCAS | 16503135PubMed |

Walter, J., Schermelleh, L., Cremer, M., Tashiro, S., and Cremer, T. (2003). Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J. Cell Biol. 160, 685–697.
Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFWls78%3D&md5=5f06dcb8ce9f0cd8ae810ceb30e9b27bCAS | 12604593PubMed |

Xu, M., and Cook, P. R. (2008). Similar active genes cluster in specialized transcription factories. J. Cell Biol. 181, 615–623.
Similar active genes cluster in specialized transcription factories.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVWksLs%3D&md5=cfa889e8d60bbf6999215a423683c2dfCAS | 18490511PubMed |

Zeitz, M. J., Mukherjee, L., Bhattacharya, S., Xu, J., and Berezney, R. (2009). A probabilistic model for the arrangement of a subset of human chromosome territories in WI38 human fibroblasts. J. Cell. Physiol. 221, 120–129.
A probabilistic model for the arrangement of a subset of human chromosome territories in WI38 human fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlOntro%3D&md5=39953bb30ab2382d8a3df6045b011b63CAS | 19507193PubMed |

Zhou, Q., Jouneau, A., Brochard, V., Adenot, P., and Renard, J. P. (2001). Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei. Biol. Reprod. 65, 412–419.
| 1:CAS:528:DC%2BD3MXls1Wgu7o%3D&md5=9a207c17f75d640af035d60f13d5d5fcCAS | 11466208PubMed |