Dynamic proteome signatures in gametes, embryos and their maternal environment
Georg J. Arnold A B C and T. Frohlich AA Laboratory for Functional Genome Analysis LAFUGA, GENE Center, Ludwig-Maximilians-Universitaet, München, Germany.
B Present address: Feodor-Lynen-Straße 25, D-81377 München, Germany.
C Corresponding author. Email: arnold@genzentrum.uni-muenchen.de
Reproduction, Fertility and Development 23(1) 81-93 https://doi.org/10.1071/RD10223
Published: 7 December 2010
Abstract
Comprehensive molecular analysis at the level of proteins represents a technically demanding, but indispensable, task since several post-transcriptional regulation mechanisms disable a valid prediction of quantitative protein expression profiles from transcriptome analysis. In crucial steps of gamete and early embryo development, de novo transcription is silenced, meaning that almost all macromolecular events take place at the level of proteins. In this review, we describe selected examples of dynamic proteome signatures addressing capacitation of spermatozoa, in vitro maturation of oocytes, effect of oestrous cycle on oviduct epithelial cells and embryo-induced alterations to the maternal environment. We also present details of the experimental strategies applied and the experiments performed to verify quantitative proteomic data. Far from being comprehensive, examples were selected to cover several mammalian species as well as the most powerful proteomic techniques currently applied. To enable non-experts in the field of proteomics to appraise published proteomic data, our examples are preceded by a customised description of quantitative proteomic methods, covering 2D difference gel electrophoresis (2D-DIGE), nano-liquid chromatography combined with tandem mass spectrometry, and label-free as well as stable-isotope labelling strategies for mass spectrometry-based quantifications.
Additional keywords: 2D-DIGE, 2D-PAGE, mass spectrometry, nano-chromatography, proteomics, stable-isotope labelling, tandem mass spectrometry.
References
Baker, M. A., Reeves, G., Hetherington, L., and Aitken, R. J. (2010). Analysis of proteomic changes associated with sperm capacitation through the combined use of IPG-strip pre-fractionation followed by RP chromatography LC–MS/MS analysis. Proteomics 10, 482–495.| Analysis of proteomic changes associated with sperm capacitation through the combined use of IPG-strip pre-fractionation followed by RP chromatography LC–MS/MS analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFGhsbs%3D&md5=65e938325649fbfab503b8cc6d5a0a8bCAS | 19943266PubMed |
Bauersachs, S., Ulbrich, S. E., Gross, K., Schmidt, S. E., Meyer, H. H., Wenigerkind, H., Vermehren, M., Sinowatz, F., Blum, H., and Wolf, E. (2006). Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction 132, 319–331.
| Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjs7s%3D&md5=a969acf5bd68d9d4f32966a6cb5e5152CAS | 16885540PubMed |
Bauersachs, S., Ulbrich, S. E., Zakhartchenko, V., Minten, M., Reichenbach, M., Reichenbach, H. D., Blum, H., Spencer, T. E., and Wolf, E. (2009). The endometrium responds differently to cloned versus fertilized embryos. Proc. Natl. Acad. Sci. USA 106, 5681–5686.
| The endometrium responds differently to cloned versus fertilized embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGhurk%3D&md5=0c762300fd441d93a8cbea94aede0852CAS |
Berendt, F. J., Frohlich, T., Schmidt, S. E., Reichenbach, H. D., Wolf, E., and Arnold, G. J. (2005). Holistic differential analysis of embryo-induced alterations in the proteome of bovine endometrium in the preattachment period. Proteomics 5, 2551–2560.
| Holistic differential analysis of embryo-induced alterations in the proteome of bovine endometrium in the preattachment period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtF2gt7k%3D&md5=1bfce0cd3825be753cb4c822a17c188aCAS | 15912510PubMed |
Berendt, F. J., Frohlich, T., Bolbrinker, P., Boelhauve, M., Gungor, T., Habermann, F. A., Wolf, E., and Arnold, G. J. (2009). Highly sensitive saturation labelling reveals changes in abundance of cell cycle-associated proteins and redox enzyme variants during oocyte maturation in vitro. Proteomics 9, 550–564.
| Highly sensitive saturation labelling reveals changes in abundance of cell cycle-associated proteins and redox enzyme variants during oocyte maturation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Whsbc%3D&md5=42056afa2e57da93dddad4aea23851ebCAS | 19137544PubMed |
Berggren, K., Steinberg, T. H., Lauber, W. M., Carroll, J. A., Lopez, M. F., Chernokalskaya, E., Zieske, L., Diwu, Z., Haugland, R. P., and Patton, W. F. (1999). A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal. Biochem. 276, 129–143.
| A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvF2qt74%3D&md5=7a589572916a2454951b3343785a0381CAS | 10603235PubMed |
Bjellqvist, B., Ek, K., Righetti, P. G., Gianazza, E., Gorg, A., Westermeier, R., and Postel, W. (1982). Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J. Biochem. Biophys. Methods 6, 317–339.
| Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtl2rtg%3D%3D&md5=98b258603fccba1473874ebc049b0567CAS | 7142660PubMed |
Blum, H., Beier, H., and Gross, H. J. (1987). Improved silver staining of plant-proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99.
| Improved silver staining of plant-proteins, RNA and DNA in polyacrylamide gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhsFagtLc%3D&md5=021c3d915cb0d45eba18c75d0559661eCAS |
Bragg, P. W., and Handel, M. A. (1979). Protein synthesis in mouse spermatozoa. Biol. Reprod. 20, 333–337.
| Protein synthesis in mouse spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXitVWit7w%3D&md5=26604cfa688da0c015a49c989912bb72CAS | 454740PubMed |
Byrjalsen, I., Larsen, P. M., Fey, S. J., and Christiansen, C. (1995a). Human endometrial proteins with cyclic changes in the expression during the normal menstrual cycle: characterization by protein sequence analysis. Hum. Reprod. 10, 2760–2766.
| 1:CAS:528:DyaK28XktV2mtw%3D%3D&md5=56ed82dc0187623bdf61f97cfcb159d1CAS | 8567810PubMed |
Byrjalsen, I., Larsen, P. M., Fey, S. J., Thormann, L., Pedersen, B. J., and Christiansen, C. (1995b). Two-dimensional gel analysis of human endometrial proteins: cyclic changes in the expression of specific proteins during the normal menstrual cycle. Hum. Reprod. 10, 13–18.
| Two-dimensional gel analysis of human endometrial proteins: cyclic changes in the expression of specific proteins during the normal menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktlars74%3D&md5=25562a925f6607985865afbb1f9192d8CAS | 7745041PubMed |
Carvalho, P. C., Hewel, J., Barbosa, V. C., and Yates, J. R. (2008). Identifying differences in protein expression levels by spectral counting and feature selection. Genet. Mol. Res. 7, 342–356.
| Identifying differences in protein expression levels by spectral counting and feature selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVyht7s%3D&md5=f4f269af2ac3249647313e4b3b28522cCAS | 18551400PubMed |
Chen, J. I., Hannan, N. J., Mak, Y., Nicholls, P. K., Zhang, J., Rainczuk, A., Stanton, P. G., Robertson, D. M., Salamonsen, L. A., and Stephens, A. N. (2009). Proteomic characterization of midproliferative and midsecretory human endometrium. J. Proteome Res. 8, 2032–2044.
| Proteomic characterization of midproliferative and midsecretory human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1aiurY%3D&md5=1c8484c76a22a66a643aec043d3c1e09CAS | 19714818PubMed |
Choe, L., D’Ascenzo, M., Relkin, N. R., Pappin, D., Ross, P., Williamson, B., Guertin, S., Pribil, P., and Lee, K. H. (2007). 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics 7, 3651–3660.
| 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlShsbrO&md5=3f80179b01b78772880e8e2a3e308c49CAS | 17880003PubMed |
Cui, X. S., Li, X. Y., and Kim, N. H. (2007). Global gene transcription patterns in in vitro-cultured fertilized embryos and diploid and haploid murine parthenotes. Biochem. Biophys. Res. Commun. 352, 709–715.
| Global gene transcription patterns in in vitro-cultured fertilized embryos and diploid and haploid murine parthenotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtleis73P&md5=d1efb8d48beab22260fdef28dc723eadCAS | 17141201PubMed |
DeSouza, L., Diehl, G., Yang, E. C., Guo, J., Rodrigues, M. J., Romaschin, A. D., Colgan, T. J., and Siu, K. W. (2005). Proteomic analysis of the proliferative and secretory phases of the human endometrium: protein identification and differential protein expression. Proteomics 5, 270–281.
| Proteomic analysis of the proliferative and secretory phases of the human endometrium: protein identification and differential protein expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtleisLo%3D&md5=1d429d5732d135c76d7cf09dc73653bbCAS | 15602768PubMed |
Domínguez, F., Garrido-Gómez, T., López, J. A., Camafeita, E., Quiñonero, A., Pellicer, A., and Simón, C. (2009). Proteomic analysis of the human receptive versus non-receptive endometrium using differential in-gel electrophoresis and MALDI–MS unveils stathmin 1 and annexin A2 as differentially regulated. Hum. Reprod. 24, 2607–2617.
| Proteomic analysis of the human receptive versus non-receptive endometrium using differential in-gel electrophoresis and MALDI–MS unveils stathmin 1 and annexin A2 as differentially regulated.Crossref | GoogleScholarGoogle Scholar | 19556289PubMed |
Duncan, M. W., Yergey, A. L., and Patterson, S. D. (2009). Quantifying proteins by mass spectrometry: the selectivity of SRM is only part of the problem. Proteomics 9, 1124–1127.
| Quantifying proteins by mass spectrometry: the selectivity of SRM is only part of the problem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWlt7k%3D&md5=25567866141b2db600da35ac28fc365eCAS | 19253279PubMed |
Dunphy, W. G., Brizuela, L., Beach, D., and Newport, J. (1988). The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54, 423–431.
| The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltVKktb4%3D&md5=22613d53308ba96c7245db9a815af09cCAS | 3293802PubMed |
Edman, P. (1970). Sequence determination. Mol. Biol. Biochem. Biophys. 8, 211–255.
| 1:CAS:528:DyaE38XksVCru7o%3D&md5=01486987d81259fe5c1bc7ed2048ed34CAS | 4950190PubMed |
Edman, P., and Begg, G. (1967). A protein sequenator. Eur. J. Biochem. 1, 80–91.
| A protein sequenator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXptFKktw%3D%3D&md5=c48dde2e32d0abd864fae9dcf7ea7e39CAS | 6059350PubMed |
Fazekas de St Groth, S., Webster, R. G., and Datyner, A. (1963). Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochim. Biophys. Acta 71, 377–391.
| Two new staining procedures for quantitative estimation of proteins on electrophoretic strips.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c3mtVGjsA%3D%3D&md5=1dd0f36d2317d58ce587471dc2eff155CAS | 18421828PubMed |
Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.
| Electrospray ionization for mass spectrometry of large biomolecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFWhs7w%3D&md5=47deef78262c2799cf0d3fc0a01702d4CAS | 2675315PubMed |
Fröhlich, T., and Arnold, G. J. (2006). Proteome research based on modern liquid chromatography – tandem mass spectrometry: separation, identification and quantification. J. Neural Transm. 113, 973–994.
| Proteome research based on modern liquid chromatography – tandem mass spectrometry: separation, identification and quantification.Crossref | GoogleScholarGoogle Scholar | 16835695PubMed |
Georgiou, A. S., Sostaric, E., Wong, C. H., Snijders, A. P., Wright, P. C., Moore, H. D., and Fazeli, A. (2005). Gametes alter the oviductal secretory proteome. Mol. Cell. Proteomics 4, 1785–1796.
| Gametes alter the oviductal secretory proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cgtb%2FK&md5=2499814af7cd0f39365d5bfa30617332CAS | 16105986PubMed |
Gupta, M. K., Jang, J. M., Jung, J. W., Uhm, S. J., Kim, K. P., and Lee, H. T. (2009). Proteomic analysis of parthenogenetic and in vitro-fertilized porcine embryos. Proteomics 9, 2846–2860.
| Proteomic analysis of parthenogenetic and in vitro-fertilized porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlOmtbo%3D&md5=b4a87533e64b95ea47c0fe46c1986d8bCAS | 19405025PubMed |
Gur, Y., and Breitbart, H. (2006). Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev. 20, 411–416.
| Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhslaqurk%3D&md5=37293b077d75809e28042a9119d8dcbfCAS | 16449571PubMed |
Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.
| Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVelsLs%3D&md5=327212a408003209f8a06f64d0a79479CAS | 10504701PubMed |
Hayes, R. N., and Gross, M. L. (1990). Collision-induced dissociation. Methods Enzymol. 193, 237–263.
| Collision-induced dissociation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXls12jt7c%3D&md5=67a9fcbad8656ed0d5aa5683b5543903CAS | 1706059PubMed |
Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. (1993). Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 90, 5011–5015.
| Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Oiu7s%3D&md5=9181fd8eabde042fd1d7cee69d47b6c5CAS |
Henzel, W. J., Watanabe, C., and Stults, J. T. (2003). Protein identification: the origins of peptide mass fingerprinting. J. Am. Soc. Mass Spectrom. 14, 931–942.
| Protein identification: the origins of peptide mass fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvV2rs7k%3D&md5=6fc0ffe85e1e125bd790aa536c4607d0CAS | 12954162PubMed |
Ibrahim, N. M., Gilbert, G. R., Loseth, K. J., and Crabo, B. G. (2000). Correlation between clusterin-positive spermatozoa determined by flow cytometry in bull semen and fertility. J. Androl. 21, 887–894.
| 1:STN:280:DC%2BD3MzgtlyqtQ%3D%3D&md5=71d9c97f33494a748add4cce7287bb2fCAS | 11105915PubMed |
Jarrell, V. L., Day, B. N., and Prather, R. S. (1991). The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus scrofa: quantitative and qualitative aspects of protein synthesis. Biol. Reprod. 44, 62–68.
| The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, Sus scrofa: quantitative and qualitative aspects of protein synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvFCrsw%3D%3D&md5=78e3910e72d36cf1bc8cc05712875a1eCAS | 2015352PubMed |
Karas, M., and Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal. Chem. 60, 2299–2301.
| Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsVGmu7g%3D&md5=6e4225f72ea7575031f417dcf488f589CAS | 3239801PubMed |
Karp, N. A., and Lilley, K. S. (2007). Design and analysis issues in quantitative proteomics studies. Proteomics 7, 42–50.
| Design and analysis issues in quantitative proteomics studies.Crossref | GoogleScholarGoogle Scholar | 17893850PubMed |
Kayser, J. P., Kim, J. G., Cerny, R. L., and Vallet, J. L. (2006). Global characterization of porcine intrauterine proteins during early pregnancy. Reproduction 131, 379–388.
| Global characterization of porcine intrauterine proteins during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFalsbo%3D&md5=97e3c66163adf24cdde24ad35cea36caCAS | 16452731PubMed |
Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392.
| Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVyktL4%3D&md5=77ee9057f3085ebcedb05a36e9ab13beCAS | 12403597PubMed |
Klein, C., Bauersachs, S., Ulbrich, S. E., Einspanier, R., Meyer, H. H., Schmidt, S. E., Reichenbach, H. D., Vermehren, M., Sinowatz, F., Blum, H., and Wolf, E. (2006). Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the pre-attachment period. Biol. Reprod. 74, 253–264.
| Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the pre-attachment period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kmuw%3D%3D&md5=329b18baa04740599fce179beebe86e4CAS | 16207835PubMed |
Klose, J. (1975). Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–243.
| 1:CAS:528:DyaE28Xltl2gtro%3D&md5=31a55e57364649ec662c8668b67db678CAS | 1093965PubMed |
Koch, J. M., Ramadoss, J., and Magness, R. R. (2010). Proteomic profile of uterine luminal fluid from early pregnant ewes. J. Proteome Res. 9, 3878–3885.
| Proteomic profile of uterine luminal fluid from early pregnant ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVCitrs%3D&md5=23387db2221e2ed18e6d088643139730CAS | 20578732PubMed |
Kondo, T., Seike, M., Mori, Y., Fujii, K., Yamada, T., and Hirohashi, S. (2003). Application of sensitive fluorescent dyes in linkage of laser microdissection and two-dimensional gel electrophoresis as a cancer proteomic study tool. Proteomics 3, 1758–1766.
| Application of sensitive fluorescent dyes in linkage of laser microdissection and two-dimensional gel electrophoresis as a cancer proteomic study tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFKks78%3D&md5=3e4cdf265d68df00ce5884c4be013cf1CAS | 12973736PubMed |
Kono, T., Obata, Y., Wu, Q., Niwa, K., Ono, Y., Yamamoto, Y., Park, E. S., Seo, J. S., and Ogawa, H. (2004). Birth of parthenogenetic mice that can develop to adulthood. Nature 428, 860–864.
| Birth of parthenogenetic mice that can develop to adulthood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Crtrc%3D&md5=a87b8d5d835859c00919ae7d8714ec48CAS | 15103378PubMed |
Lacapère, J. J., and Papadopoulos, V. (2003). Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids 68, 569–585.
| Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis.Crossref | GoogleScholarGoogle Scholar | 12957662PubMed |
Ledgard, A. M., Lee, R. S., and Peterson, A. J. (2009). Bovine endometrial legumain and TIMP-2 regulation in response to presence of a conceptus. Mol. Reprod. Dev. 76, 65–74.
| Bovine endometrial legumain and TIMP-2 regulation in response to presence of a conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFemtL3P&md5=dd5d1c913aba69262e9a6f22727014cbCAS | 18449874PubMed |
Lee, R. S., Wheeler, T. T., and Peterson, A. J. (1998). Large-format, two-dimensional polyacrylamide gel electrophoresis of ovine periimplantation uterine luminal fluid proteins: identification of aldose reductase, cytoplasmic actin, and transferrin as conceptus-synthesized proteins. Biol. Reprod. 59, 743–752.
| Large-format, two-dimensional polyacrylamide gel electrophoresis of ovine periimplantation uterine luminal fluid proteins: identification of aldose reductase, cytoplasmic actin, and transferrin as conceptus-synthesized proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVGrsL4%3D&md5=62a6af2555fbb36820ccfaafa18b5982CAS | 9746721PubMed |
Lopez, M. F., Berggren, K., Chernokalskaya, E., Lazarev, A., Robinson, M., and Patton, W. F. (2000). A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis 21, 3673–3683.
| A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1SntLw%3D&md5=0fb0ec549dc322f101e501e7e4a45c37CAS | 11271486PubMed |
Madore, E., Harvey, N., Parent, J., Chapdelaine, P., Arosh, J. A., and Fortier, M. A. (2003). An aldose reductase with 20 α-hydroxysteroid dehydrogenase activity is most likely the enzyme responsible for the production of prostaglandin f2 α in the bovine endometrium. J. Biol. Chem. 278, 11 205–11 212.
| An aldose reductase with 20 α-hydroxysteroid dehydrogenase activity is most likely the enzyme responsible for the production of prostaglandin f2 α in the bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1KgsLk%3D&md5=3d4df0e5a0bbf0d4c3093ba9e1d8bdfbCAS |
Massicotte, L., Coenen, K., Mourot, M., and Sirard, M. A. (2006). Maternal housekeeping proteins translated during bovine oocyte maturation and early embryo development. Proteomics 6, 3811–3820.
| Maternal housekeeping proteins translated during bovine oocyte maturation and early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlCjsbw%3D&md5=9acbd833110fc8bef1eab00dd4b8a007CAS | 16739132PubMed |
McLuckey, S. A. (1992). Principles of collisional activation in analytical mass spectrometry. J. Am. Soc. Mass Spectrom. 3, 599–614.
| Principles of collisional activation in analytical mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlCktbk%3D&md5=7f7994f369d3a34893f0a9edb57e8395CAS |
Merril, C. R., Switzer, R. C., and Vankeuren, M. L. (1979). Trace polypeptides in cellular-extracts and human body fluids detected by 2-dimensional electrophoresis and a highly sensitive silver stain. Proc. Natl. Acad. Sci. USA 76, 4335–4339.
| Trace polypeptides in cellular-extracts and human body fluids detected by 2-dimensional electrophoresis and a highly sensitive silver stain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtVKltL8%3D&md5=93003a41bb080027da951ce60933bd57CAS |
Miki, K., Willis, W. D., Brown, P. R., Goulding, E. H., Fulcher, K. D., and Eddy, E. M. (2002). Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. Dev. Biol. 248, 331–342.
| Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFSqtLo%3D&md5=fce96b0ec91d8511194eeea5ebf8b3beCAS | 12167408PubMed |
Miller, D., Briggs, D., Snowden, H., Hamlington, J., Rollinson, S., Lilford, R., and Krawetz, S. A. (1999). A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis. Gene 237, 385–392.
| A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVWlt7o%3D&md5=7d3d3ad84c3c9d6c05615cc3774df4bbCAS | 10521662PubMed |
Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262.
| Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksFWisro%3D&md5=17b9f39ff8ccf18329e78fe03c9c5029CAS | 2466658PubMed |
Nurse, P. (1990). Universal control mechanism regulating onset of M-phase. Nature 344, 503–508.
| Universal control mechanism regulating onset of M-phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFamtrs%3D&md5=6711e25e0ac9f53325bcad31d5efd67bCAS | 2138713PubMed |
O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.
| 1:CAS:528:DyaE2MXktl2ltro%3D&md5=f3d7573f7f7b155419fdc90c74d64d0eCAS | 236308PubMed |
Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002). Stable isotope labelling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386.
| Stable isotope labelling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslWhsrk%3D&md5=68523f804570c4fdb8683a638c06baa1CAS | 12118079PubMed |
Ostermeier, G. C., Dix, D. J., Miller, D., Khatri, P., and Krawetz, S. A. (2002). Spermatozoal RNA profiles of normal fertile men. Lancet 360, 772–777.
| Spermatozoal RNA profiles of normal fertile men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmsl2nsLg%3D&md5=85cb8c18ad06cdcac1cc70857909f3e8CAS | 12241836PubMed |
Parmar, T., Sachdeva, G., Savardekar, L., Katkam, R. R., Nimbkar-Joshi, S., Gadkar-Sable, S., Salvi, V., Manjramkar, D. D., Meherji, P., and Puri, C. P. (2008). Protein repertoire of human uterine fluid during the mid-secretory phase of the menstrual cycle. Hum. Reprod. 23, 379–386.
| Protein repertoire of human uterine fluid during the mid-secretory phase of the menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlCltg%3D%3D&md5=3012c2a2b8929ec48b90376f840c8062CAS | 18033938PubMed |
Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., et al. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169.
| Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvFartg%3D%3D&md5=f54c108628f73bcd9e85fbfe34041e5fCAS | 15385600PubMed |
Schmidt, A., Kellermann, J., and Lottspeich, F. (2005). A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5, 4–15.
| A novel strategy for quantitative proteomics using isotope-coded protein labels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtleju7Y%3D&md5=6d82384b1383b41d8a27d20cdf816206CAS | 15602776PubMed |
Schoenbeck, R. A., Peters, M. S., Rickords, L. F., Stumpf, T. T., and Prather, R. S. (1992). Characterization of deoxyribonucleic acid synthesis and the transition from maternal to embryonic control in the 4-cell porcine embryo. Biol. Reprod. 47, 1118–1125.
| Characterization of deoxyribonucleic acid synthesis and the transition from maternal to embryonic control in the 4-cell porcine embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjs1GitQ%3D%3D&md5=47dead5b3f168cf77d5b9f472c9f7f83CAS | 1493177PubMed |
Scotchie, J. G., Fritz, M. A., Mocanu, M., Lessey, B. A., and Young, S. L. (2009). Proteomic analysis of the luteal endometrial secretome. Reprod. Sci. 16, 883–893.
| Proteomic analysis of the luteal endometrial secretome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFagu7fK&md5=174c2db776173dc00be9f700c5544994CAS | 19494364PubMed |
Secciani, F., Bianchi, L., Ermini, L., Cianti, R., Armini, A., La Sala, G. B., Focarelli, R., Bini, L., and Rosati, F. (2009). Protein profile of capacitated versus ejaculated human sperm. J. Proteome Res. 8, 3377–3389.
| Protein profile of capacitated versus ejaculated human sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVemur4%3D&md5=177f7f92fcec3897f30bb7c2ab736024CAS | 19408963PubMed |
Seytanoglu, A., Georgiou, A. S., Sostaric, E., Watson, P. F., Holt, W. V., and Fazeli, A. (2008). Oviductal cell proteome alterations during the reproductive cycle in pigs. J. Proteome Res. 7, 2825–2833.
| Oviductal cell proteome alterations during the reproductive cycle in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFCit7s%3D&md5=4ed8f55e46649b3849ec9fe7a5b4fc8fCAS | 18540664PubMed |
Sherman, J., McKay, M. J., Ashman, K., and Molloy, M. P. (2009). How specific is my SRM?: the issue of precursor and product ion redundancy. Proteomics 9, 1120–1123.
| How specific is my SRM?: the issue of precursor and product ion redundancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWlt7g%3D&md5=4a85d4566fd4b7038410610f5f27ad38CAS | 19253278PubMed |
Shiokawa, S., Sakai, K., Akimoto, Y., Suzuki, N., Hanashi, H., Nagamatsu, S., Iwashita, M., Nakamura, Y., Hirano, H., and Yoshimura, Y. (2000). Function of the small guanosine triphosphate-binding protein RhoA in the process of implantation. J. Clin. Endocrinol. Metab. 85, 4742–4749.
| Function of the small guanosine triphosphate-binding protein RhoA in the process of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Cqsw%3D%3D&md5=3280ab7cf53f5092bdf2324a60128934CAS | 11134137PubMed |
Susor, A., Ellederova, Z., Jelinkova, L., Halada, P., Kavan, D., Kubelka, M., and Kovarova, H. (2007). Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1. Reproduction 134, 559–568.
| Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Knur3K&md5=9418729cbba113178b5850385977f7beCAS | 17890291PubMed |
Tanaka, K., Waki, H., Ido, Y., Atika, S., Yoshida, Y., Yoshida, T., and Matsuo, T. (1988). Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153.
| Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjtVSgug%3D%3D&md5=384ad3260a80904b9a4f35527e4fc9d7CAS |
Ünlü, M., Morgan, M. E., and Minden, J. S. (1997). Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077.
| Difference gel electrophoresis: a single gel method for detecting changes in protein extracts.Crossref | GoogleScholarGoogle Scholar | 9420172PubMed |
Vassena, R., Han, Z., Gao, S., Baldwin, D. A., Schultz, R. M., and Latham, K. E. (2007). Tough beginnings: alterations in the transcriptome of cloned embryos during the first two cell cycles. Dev. Biol. 304, 75–89.
| Tough beginnings: alterations in the transcriptome of cloned embryos during the first two cell cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1SktLY%3D&md5=7bc0db4846ca415ff4ace913a02be885CAS | 17234177PubMed |
Wolf, E., Arnold, G. J., Bauersachs, S., Beier, H. M., Blum, H., et al. (2003). Embryo–maternal communication in bovine – strategies for deciphering a complex cross-talk. Reprod. Domest. Anim. 38, 276–289.
| Embryo–maternal communication in bovine – strategies for deciphering a complex cross-talk.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svis1Srtg%3D%3D&md5=293012248878c8dcbb638bdd36dd9373CAS | 12887567PubMed |
Yanagimachi, R. (2005). Male gamete contributions to the embryo. Ann. N. Y. Acad. Sci. 1061, 203–207.
| Male gamete contributions to the embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvValsr0%3D&md5=2edf4886d04e00b0a9ea2c7ff49233fdCAS | 16467269PubMed |
Yang, J., Winkler, K., Yoshida, M., and Kornbluth, S. (1999). Maintenance of G2 arrest in the Xenopus oocyte: a role for 14–3–3-mediated inhibition of Cdc25 nuclear import. EMBO J. 18, 2174–2183.
| Maintenance of G2 arrest in the Xenopus oocyte: a role for 14–3–3-mediated inhibition of Cdc25 nuclear import.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVOmsr4%3D&md5=0cd67e8847d45f456d179a2dc63b531cCAS | 10205171PubMed |
Yurttas, P., Morency, E., and Coonrod, S. A. (2010). Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition. Reproduction 139, 809–823.
| Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsLw%3D&md5=b7da67075641330bd82573ef9ff925a9CAS | 20106898PubMed |