Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

The critical importance of ovarian angiogenesis

Robert S. Robinson
+ Author Affiliations
- Author Affiliations

School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington campus, Loughborough, Leicestershire LE12 5RD, UK. Email: bob.robinson@nottingham.ac.uk

Reproduction, Fertility and Development 25(2) iii-v https://doi.org/10.1071/RDv25n2_ED
Published: 29 January 2013


References

Anderson, R. A., Robinson, L. L. L., Brooks, J., and Spears, N. (2002). Neurotropins and their receptors are expressed in the human fetal ovary. J. Clin. Endocrinol. Metab. 87, 890–897.
Neurotropins and their receptors are expressed in the human fetal ovary.Crossref | GoogleScholarGoogle Scholar |

Duncan, W. C., and Nio-Kobayashi, J. (2012). Targeting angiogenesis in the pathological ovary. Reprod. Fertil. Dev. 25, 362–371.
Targeting angiogenesis in the pathological ovary.Crossref | GoogleScholarGoogle Scholar |

Fraser, H. M., Dickson, S. E., Lunn, S. F., Wulff, C., Morris, K. D., Carroll, V. A., and Bicknell, R. (2000). Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology 141, 995–1000.
Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor.Crossref | GoogleScholarGoogle Scholar |

Fraser, H. M., Hastings, J. M., Allan, D., Morris, K. D., Rudge, J. S., and Wiegand, S. J. (2012). Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary. Endocrinology 153, 1972–1983.
Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary.Crossref | GoogleScholarGoogle Scholar |

Friedman, O., Orvieto, R., Fisch, B., Felz, C., Freud, E., Ben-Haroush, A., and Abir, R. (2012). Possible improvements in human ovarian grafting by various host and graft treatments. Hum. Reprod. 27, 474–482.
Possible improvements in human ovarian grafting by various host and graft treatments.Crossref | GoogleScholarGoogle Scholar |

Gabhann, F. M., and Popel, A. S. (2008). Systems Biology of Vascular Endothelial Growth Factors. Microcirculation 15, 715–738.
Systems Biology of Vascular Endothelial Growth Factors.Crossref | GoogleScholarGoogle Scholar |

Garside, S. A., Henkin, J., Morris, K. D., Norvell, S. M., Thomas, F. H., and Fraser, H. M. (2010). A thrombospondin-mimetic peptide, ABT-898, suppresses angiogenesis and promotes follicular atresia in pre- and early-antral follicles in vivo. Endocrinology 151, 5905–5915.
A thrombospondin-mimetic peptide, ABT-898, suppresses angiogenesis and promotes follicular atresia in pre- and early-antral follicles in vivo.Crossref | GoogleScholarGoogle Scholar |

Ginther, O. J., Gastal, E. L., Gastal, M. O., and Beg, M. A. (2005). In vivo effects of pregnancy-associated plasma protein-A, activin-A and vascular endothelial growth factor on other follicular-fluid factors during follicle deviation in mares. Reproduction 129, 489–496.
In vivo effects of pregnancy-associated plasma protein-A, activin-A and vascular endothelial growth factor on other follicular-fluid factors during follicle deviation in mares.Crossref | GoogleScholarGoogle Scholar |

Jiemtaweeboon, S., Shirasuna, K., Nitta, A., Kobayashi, A., Schuberth, H. J., Shimizu, T., and Miyamoto, A. (2011). Evidence that polymorphonuclear neutrophils infiltrate into the developing corpus luteum and promote angiogenesis with interleukin-8 in the cow. Reprod. Biol. Endocrinol. 9, 79.
Evidence that polymorphonuclear neutrophils infiltrate into the developing corpus luteum and promote angiogenesis with interleukin-8 in the cow.Crossref | GoogleScholarGoogle Scholar |

Käßmeyer, S., Plendl, J., Custodis, P., and Bahramsoltani, M. (2009). New insights in vascular development: Vasculogenesis and endothelial progenitor cells. Anat. Histol. Embryol. 38, 1–11.
New insights in vascular development: Vasculogenesis and endothelial progenitor cells.Crossref | GoogleScholarGoogle Scholar |

Kim, J., Bagchi, I., and Bagchi, M. (2009). Signaling by hypoxia-inducible factors is critical for ovulation in mice. Endocrinology 150, 3392–3400.
Signaling by hypoxia-inducible factors is critical for ovulation in mice.Crossref | GoogleScholarGoogle Scholar |

Kizuka, F., Tokuda, N., Takagi, K., Adachi, Y., Lee, L., Tamura, I., Maekawa, R., Taketani, T., Tamura, H., Suzuki, T., Owada, Y., and Sugino, N. (2012). Involvement of bone marrow-derived vascular progenitor cells in neovascularization during formation of the corpus luteum in mice. Biol. Reprod. 87, 55.
Involvement of bone marrow-derived vascular progenitor cells in neovascularization during formation of the corpus luteum in mice.Crossref | GoogleScholarGoogle Scholar |

Laird, M., Woad, K. J., Hunter, M. G., Mann, G. E., and Robinson, R. S. (2012). Fibroblast growth factor 2 induces the precocious development of endothelial cell networks in bovine luteinising follicular cells. Reprod. Fertil. Dev. 25, 372–386.
Fibroblast growth factor 2 induces the precocious development of endothelial cell networks in bovine luteinising follicular cells.Crossref | GoogleScholarGoogle Scholar |

McFee, R. M., and Cupp, A. S. (2012). Vascular development in the ovary: potential roles of VEGFA isoforms. Reprod. Fertil. Dev. 25, 333–342.
Vascular development in the ovary: potential roles of VEGFA isoforms.Crossref | GoogleScholarGoogle Scholar |

Meidan, R., Klipper, E., Zalman, Y., and Yalu, R. (2012). The role of hypoxia in ovarian angiogenesis. Reprod. Fertil. Dev. 25, 343–350.
The role of hypoxia in ovarian angiogenesis.Crossref | GoogleScholarGoogle Scholar |

Mendichovszky, I., and Jackson, A. (2011). Imaging hypoxia in gliomas. Br. J. Radiol. 84, S145–S158.
Imaging hypoxia in gliomas.Crossref | GoogleScholarGoogle Scholar |

Nishimura, R., and Okuda, K. (2010). Hypoxia is important for establishing vascularization during corpus luteum formation in cattle. J. Reprod. Dev. 56, 110–116.
Hypoxia is important for establishing vascularization during corpus luteum formation in cattle.Crossref | GoogleScholarGoogle Scholar |

Qiu, Y., Seager, M., Osman, A., Castle-Miller, J., Bevan, H., Tortonese, D. J., Murphy, D., Harper, S. J., Fraser, H. M., Donaldson, L. F., and Bates, D. O. (2012). Ovarian VEGF(165)b expression regulates follicular development, corpus luteum function and fertility. Reproduction 143, 501–511.
Ovarian VEGF(165)b expression regulates follicular development, corpus luteum function and fertility.Crossref | GoogleScholarGoogle Scholar |

Robinson, R. S., Nicklin, L. T., Hammond, A. J., Schams, D., Hunter, M. G., and Mann, G. E. (2007). Fibroblast growth factor 2 is more dynamic than vascular endothelial growth factor A during the follicle-luteal transition in the cow. Biol. Reprod. 77, 28–36.
Fibroblast growth factor 2 is more dynamic than vascular endothelial growth factor A during the follicle-luteal transition in the cow.Crossref | GoogleScholarGoogle Scholar |

Robinson, R. S., Woad, K. J., Hammond, A. J., Laird, M., Hunter, M. G., and Mann, G. E. (2009). Angiogenesis and vascular function in the ovary. Reproduction 138, 869–881.
Angiogenesis and vascular function in the ovary.Crossref | GoogleScholarGoogle Scholar |

Sawyer, H. R., Smith, P., Heath, D. A., Juengel, J. L., Wakefield, S. J., and McNatty, K. P. (2002). Formation of ovarian follicles during fetal development in sheep. Biol. Reprod. 66, 1134–1150.
Formation of ovarian follicles during fetal development in sheep.Crossref | GoogleScholarGoogle Scholar |

Shirasuna, K., Shimizu, T., Matsui, M., and Miyamoto, A. (2012). Emerging roles of immune cells in luteal angiogenesis. Reprod. Fertil. Dev. 25, 351–361.
Emerging roles of immune cells in luteal angiogenesis.Crossref | GoogleScholarGoogle Scholar |

Turner, E. C., Hughes, J., Wilson, H., Clay, M., Mylonas, K. J., Kipari, T., Duncan, W. C., and Fraser, H. M. (2011). Conditional ablation of macrophages disrupts ovarian vasculature. Reproduction 141, 821–831.
Conditional ablation of macrophages disrupts ovarian vasculature.Crossref | GoogleScholarGoogle Scholar |

van den Driesche, S., Myers, M., Gay, E., Thong, K. J., and Duncan, W. C. (2008). HCG up-regulates hypoxia inducible factor-1 alpha in luteinized granulosa cells: implications for the hormonal regulation of vascular endothelial growth factor A in the human corpus luteum. Mol. Hum. Reprod. 14, 455–464.
HCG up-regulates hypoxia inducible factor-1 alpha in luteinized granulosa cells: implications for the hormonal regulation of vascular endothelial growth factor A in the human corpus luteum.Crossref | GoogleScholarGoogle Scholar |

Xu, F. H., and Stouffer, R. L. (2005). Local delivery of angiopoietin-2 into the preovulatory follicle terminates the menstrual cycle in rhesus monkeys. Biol. Reprod. 72, 1352–1358.
Local delivery of angiopoietin-2 into the preovulatory follicle terminates the menstrual cycle in rhesus monkeys.Crossref | GoogleScholarGoogle Scholar |

Zhang, Z. H., Yin, D. Z., and Wang, Z. C. (2011). Contribution of hypoxia-inducible factor-1 alpha to transcriptional regulation of vascular endothelial growth factor in bovine developing luteal cells. Anim. Sci. J. 82, 244–250.
Contribution of hypoxia-inducible factor-1 alpha to transcriptional regulation of vascular endothelial growth factor in bovine developing luteal cells.Crossref | GoogleScholarGoogle Scholar |