Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

Vascular contributions to early ovarian development: potential roles of VEGFA isoforms

Renee M. McFee A and Andrea S. Cupp A B
+ Author Affiliations
- Author Affiliations

A Department of Animal Science, University of Nebraska-Lincoln, 3940 Fair Street, Lincoln, NB 68583-0908, USA.

B Corresponding author. Email: acupp2@unl.edu

Reproduction, Fertility and Development 25(2) 333-342 https://doi.org/10.1071/RD12134
Submitted: 27 April 2012  Accepted: 21 August 2012   Published: 1 October 2012

Abstract

Vascularisation is an essential component of ovarian morphogenesis; however, little is known regarding factors regulating the establishment of vasculature in the ovary. Angiogenesis involving extensive endothelial cell migration is a critical component of vessel formation in the embryonic testis but vasculogenic mechanisms appear to play a prominent role in ovarian vascularisation. Vasculature has a strong influence on the formation of ovarian structures, and the early developmental processes of ovigerous cord formation, primordial follicle assembly and follicle activation are all initiated in regions of the ovary that are in close association with the highly vascular medulla. The principal angiogenic factor, vascular endothelial growth factor A (VEGFA), has an important role in both endothelial cell differentiation and vascular pattern development. Expression of VEGFA has been localised to ovigerous cords and follicles in developing ovaries and an increased expression of pro-angiogenic Vegfa isoform mRNA in relation to anti-angiogenic isoform mRNA occurs at the same time-point as the peak of primordial follicle assembly in perinatal rats. Elucidation of specific genes that affect vascular development within the ovary may be critical for determining not only the normal mechanisms of ovarian morphogenesis, but also for understanding certain ovarian reproductive disorders.

Additional keywords: follicle, ovary, vasculature.


References

Anthony, F. W., Wheeler, T., Elcock, C. L., Pickett, M., and Thomas, E. J. (1994). Short report: identification of a specific pattern of vascular endothelial growth factor mRNA expression in human placenta and cultured placental fibroblasts. Placenta 15, 557–561.
Short report: identification of a specific pattern of vascular endothelial growth factor mRNA expression in human placenta and cultured placental fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVKruw%3D%3D&md5=9161049117d5ce60c763e46723c02bbaCAS | 7997455PubMed |

Artac, R. A., McFee, R. M., Longfellow Smith, R. A., Baltes-Breitwisch, M. M., Clopton, D. T., and Cupp, A. S. (2009). Neutralization of vascular endothelial growth factor anti-angiogenic isoforms is more effective than treatment with pro-angiogenic isoforms in stimulating vascular development and follicle progression in the perinatal rat ovary. Biol. Reprod. 81, 978–988.
Neutralization of vascular endothelial growth factor anti-angiogenic isoforms is more effective than treatment with pro-angiogenic isoforms in stimulating vascular development and follicle progression in the perinatal rat ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWrtrzE&md5=33e7dd4627c2b7bef9ba4419fdacdaedCAS | 19605786PubMed |

Baltes-Breitwisch, M. M., Artac, R. A., Bott, R. C., McFee, R. M., Kerl, J. G., Clopton, D. T., and Cupp, A. S. (2010). Neutralization of vascular endothelial growth factor anti-angiogenic isoforms or administration of pro-angiogenic isoforms stimulates vascular development in the rat testis. Reproduction 140, 319–329.
Neutralization of vascular endothelial growth factor anti-angiogenic isoforms or administration of pro-angiogenic isoforms stimulates vascular development in the rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFensr7M&md5=e99eb73b2479c3b55758171adff1952bCAS | 20457593PubMed |

Bates, D. O., Cui, T. G., Doughty, J. M., Winkler, M., Sugiono, M., Shields, J. D., Peat, D., Gillatt, D., and Harper, S. J. (2002). VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62, 4123–4131.
| 1:CAS:528:DC%2BD38XlsV2ltrw%3D&md5=7fa1645473250bdffaed098625ccf343CAS | 12124351PubMed |

Bevan, H. S., van den Akker, N. M., Qiu, Y., Polman, J. A., Foster, R. R., Yem, J., Nishikawa, A., Satchell, S. C., Harper, S. J., Gittenberger-de Groot, A. C., and Bates, D. O. (2008). The alternatively spliced anti-angiogenic family of VEGF isoforms VEGFxxxb in human kidney development. Nephron, Physiol. 110, 57–67.
The alternatively spliced anti-angiogenic family of VEGF isoforms VEGFxxxb in human kidney development.Crossref | GoogleScholarGoogle Scholar |

Bicknell, R., and Harris, A. L. (2004). Novel angiogenic signalling pathways and vascular targets. Annu. Rev. Pharmacol. Toxicol. 44, 219–238.
Novel angiogenic signalling pathways and vascular targets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVCktL4%3D&md5=a18206200612ec438bd557bf027e02a6CAS | 14744245PubMed |

Bott, R. C., McFee, R. M., Clopton, D. T., Toombs, C., and Cupp, A. S. (2006). Vascular endothelial growth factor and kinase domain region receptor are involved in both seminiferous cord formation and vascular development during testis morphogenesis in the rat. Biol. Reprod. 75, 56–67.
Vascular endothelial growth factor and kinase domain region receptor are involved in both seminiferous cord formation and vascular development during testis morphogenesis in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlyisLk%3D&md5=a8d499859f16288888a5684dc9373a90CAS | 16672722PubMed |

Bott, R., Clopton, D., Fuller, A., McFee, R., Lu, N., McFee, R., and Cupp, A. (2010). KDR-LacZ-expressing cells are involved in ovarian and testis-specific vascular development, suggesting a role for VEGFA in the regulation of this vasculature. Cell Tissue Res. 342, 117–130.
KDR-LacZ-expressing cells are involved in ovarian and testis-specific vascular development, suggesting a role for VEGFA in the regulation of this vasculature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1elsLfJ&md5=5f72c0f120f48f6e1df4bb6215acd9a2CAS | 20848132PubMed |

Brennan, J., Karl, J., and Capel, B. (2002). Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad. Dev. Biol. 244, 418–428.
Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1ygsrc%3D&md5=b9126e495e1ef72aa646ff3cce2f24dcCAS | 11944948PubMed |

Broekmans, F. J., Visser, J. A., Laven, J. S., Broer, S. L., Themmen, A. P., and Fauser, B. C. (2008). Anti-Müllerian hormone and ovarian dysfunction. Trends Endocrinol. Metab. 19, 340–347.
Anti-Müllerian hormone and ovarian dysfunction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Klt77M&md5=6e120ef0bae8a21fa40173955b303c11CAS | 18805020PubMed |

Bruce, N. W., and Moor, R. M. (1988). Capillary blood flow to ovarian follicles, stroma and corpora lutea of anaesthetized sheep. J. Reprod. Fertil. 46, 299–304.

Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395.
Mechanisms of angiogenesis and arteriogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVOrur4%3D&md5=a5d661b913944637192c69d6f07e7b61CAS | 10742145PubMed |

Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., and Nagy, A. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439.
Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVKqtLg%3D&md5=6d07430eada82049b1ef115e464a2522CAS | 8602241PubMed |

Chandra, A., Martinez, G. M., Mosher, W. D., Abma, J. C., and Jones, J. (2005). Fertility, family planning and reproductive health of U.S. women: data from the 2002 National Survey of Family Growth. National Center for Health Statistics. Vital Health Stat. 23, 22.

Cheung, C. Y., Singh, M., Ebaugh, M. J., and Brace, R. A. (1995). Vascular endothelial growth factor gene expression in ovine placenta and fetal membranes. Am. J. Obstet. Gynecol. 173, 753–759.
Vascular endothelial growth factor gene expression in ovine placenta and fetal membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVSgsLs%3D&md5=c3789f1b4922b83a28012dcfab3efd44CAS | 7573238PubMed |

Childs, S., Chen, J. N., Garrity, D. M., and Fishman, M. C. (2002). Patterning of angiogenesis in the zebrafish embryo. Development 129, 973–982.
| 1:CAS:528:DC%2BD38XitFygtr0%3D&md5=cf0cb8b429a38f5ef1c4434e695030a8CAS | 11861480PubMed |

Coveney, D., Cool, J., Oliver, T., and Capel, B. (2008). Four-dimensional analysis of vascularization during primary development of an organ, the gonad. Proc. Natl. Acad. Sci. USA 105, 7212–7217.
Four-dimensional analysis of vascularization during primary development of an organ, the gonad.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFCrsbg%3D&md5=0b9c9ce4541e7c6c25b517caa380ea42CAS | 18480267PubMed |

Cui, T. G., Foster, R. R., Saleem, M., Mathieson, P. W., Gillatt, D. A., Bates, D. O., and Harper, S. J. (2004). Differentiated human podocytes endogenously express an inhibitory isoform of vascular endothelial growth factor (VEGF165b) mRNA and protein. Am. J. Physiol. Renal Physiol. 286, 767–773.
Differentiated human podocytes endogenously express an inhibitory isoform of vascular endothelial growth factor (VEGF165b) mRNA and protein.Crossref | GoogleScholarGoogle Scholar |

Cupp, A. S., Kim, G. H., and Skinner, M. K. (2000). Expression and action of neurotrophin-3 and nerve growth factor in embryonic and early postnatal rat testis development. Biol. Reprod. 63, 1617–1628.
Expression and action of neurotrophin-3 and nerve growth factor in embryonic and early postnatal rat testis development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKhsbY%3D&md5=1747d82f71a64c88e752b3847ffdffa6CAS | 11090428PubMed |

Cupp, A. S., Tessarollo, L., and Skinner, M. K. (2002). Testis developmental phenotypes in neurotrophin receptor trkA and trkC null mutations: role in formation of seminiferous cords and germ cell survival. Biol. Reprod. 66, 1838–1845.
Testis developmental phenotypes in neurotrophin receptor trkA and trkC null mutations: role in formation of seminiferous cords and germ cell survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFensr0%3D&md5=dc737af4fe802cf0b64d4d206c95c1aaCAS | 12021070PubMed |

Cupp, A. S., Uzumcu, M., and Skinner, M. K. (2003). Chemotactic role of neurotrophin 3 in the embryonic testis that facilitates male sex determination. Biol. Reprod. 68, 2033–2037.
Chemotactic role of neurotrophin 3 in the embryonic testis that facilitates male sex determination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Ggs7k%3D&md5=db2e2718fd1e8ebd1debcd87bec30960CAS | 12606390PubMed |

Delgado-Rosas, F., Gaytán, M., Morales, C., Gómez, R., and Gaytán, F. (2009). Superficial ovarian cortex vascularization is inversely related to the follicle reserve in normal cycling ovaries and is increased in polycystic ovary syndrome. Hum. Reprod. 24, 1142–1151.
Superficial ovarian cortex vascularization is inversely related to the follicle reserve in normal cycling ovaries and is increased in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3ntFGqsA%3D%3D&md5=71d7cba7f3d21c1a86045253c7260444CAS | 19189992PubMed |

de Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N., and Williams, L. T. (1992). The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991.
The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xit1yqsrY%3D&md5=865b0194ba329839d28d7bbef05159d8CAS | 1312256PubMed |

Dorrell, M. I., Aguilar, E., and Friedlander, M. (2002). Retinal vascular development is mediated by endothelial filopodia, a pre-existing astrocytic template and specific R-cadherin adhesion. Invest. Ophthalmol. Vis. Sci. 43, 3500–3510.
| 12407162PubMed |

Dravis, C., Yokoyama, N., Chumley, M. J., Cowan, C. A., Silvany, R. E., Shay, J., Baker, L. A., and Henkemeyer, M. (2004). Bidirectional signalling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev. Biol. 271, 272–290.
Bidirectional signalling mediated by ephrin-B2 and EphB2 controls urorectal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1ens7Y%3D&md5=e2beae4a9a662bf8df23ede09f4bef8fCAS | 15223334PubMed |

Ferlin, A., Vinanzi, C., Selice, R., Garolla, A., Frigo, A. C., and Foresta, C. (2011). Toward a pharmacogenetic approach to male infertility: polymorphism of follicle-stimulating hormone beta-subunit promoter. Fertil. Steril. 96, 1344–1349.e2.
Toward a pharmacogenetic approach to male infertility: polymorphism of follicle-stimulating hormone beta-subunit promoter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFygu7zI&md5=a1a4f6f36bf45ea3b2c3c631f0dde7aeCAS | 22000911PubMed |

Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611.
Vascular endothelial growth factor: basic science and clinical progress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Ght74%3D&md5=b348a8e0a360427b45f147aac8cd31b5CAS | 15294883PubMed |

Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., Powell-Braxton, L., Hillan, K. J., and Moore, M. W. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442.
Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVKqtLk%3D&md5=aab337ae34d2276117aad9d5b027e627CAS | 8602242PubMed |

Folkman, J., and Klagsbrun, M. (1987). Angiogenic factors. Science 235, 442–447.
Angiogenic factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXps1amsQ%3D%3D&md5=d58a562cedbbfc4beb2cf42d740992edCAS | 2432664PubMed |

Fong, G. H., Rossant, J., Gertsenstein, M., and Breitman, M. L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70.
Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvVKjsrs%3D&md5=4948cedec9decb51d98348719989cb4eCAS | 7596436PubMed |

Fong, G. H., Zhang, L., Bryce, D. M., and Peng, J. (1999). Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126, 3015–3025.
| 1:CAS:528:DyaK1MXkvFantb8%3D&md5=ba30ac567719179d557f37d3fbc82fd1CAS | 10357944PubMed |

Franks, S., Stark, J., and Hardy, K. (2008). Follicle dynamics and anovulation in polycystic ovary syndrome. Hum. Reprod. Update 14, 367–378.
Follicle dynamics and anovulation in polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1SksLo%3D&md5=26941a1892acbc8130f0c7f8a8d65fbfCAS | 18499708PubMed |

Gerety, S. S., and Anderson, D. J. (2002). Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129, 1397–1410.
| 1:CAS:528:DC%2BD38XivFShsr4%3D&md5=6e4549db1c0c551de9030c4623d7e2ddCAS | 11880349PubMed |

Gerety, S. S., Wang, H. U., Chen, Z. F., and Anderson, D. J. (1999). Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol. Cell 4, 403–414.
Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsVChsL8%3D&md5=0b975724a6d536e742963e09ba137afbCAS | 10518221PubMed |

Ginsburg, M., Snow, M. H., and McLaren, A. (1990). Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521–528.
| 1:STN:280:DyaK387lsFWjtQ%3D%3D&md5=abf7320de720e010694659170bc6135cCAS | 2133553PubMed |

Godin, I., Wylie, C., and Heasman, J. (1990). Genital ridges exert long-range effects on mouse primordial germ cell numbers and direction of migration in culture. Development 108, 357–363.
| 1:STN:280:DyaK3c3ns1amug%3D%3D&md5=19bc176c64a7898f93c7603d48f8224dCAS | 2351075PubMed |

Harper, S. J., and Bates, D. O. (2008). VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat. Rev. Cancer 8, 880–887.
VEGF-A splicing: the key to anti-angiogenic therapeutics?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yjtbnF&md5=06c8813d4008c8610b0335afc6f5fedfCAS | 18923433PubMed |

Hiratsuka, S., Minowa, O., Kuno, J., Noda, T., and Shibuya, M. (1998). Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci. USA 95, 9349–9354.
Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlCmu70%3D&md5=1be9cd6581d3a116b18469112395c460CAS | 9689083PubMed |

Hirshfield, A. N. (1992). Heterogeneity of cell populations that contribute to the formation of primordial follicles in rats. Biol. Reprod. 47, 466–472.
Heterogeneity of cell populations that contribute to the formation of primordial follicles in rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38znvFaisA%3D%3D&md5=4289877f784a81747ff50d2acc18d482CAS | 1511099PubMed |

Hirshfield, A. N., and DeSanti, A. M. (1995). Patterns of ovarian cell proliferation in rats during the embryonic period and the first three weeks postpartum. Biol. Reprod. 53, 1208–1221.
Patterns of ovarian cell proliferation in rats during the embryonic period and the first three weeks postpartum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslynu7c%3D&md5=e792d75531a1f15ba775b91e6a813a20CAS | 8527527PubMed |

Hogan, K. A., and Bautch, V. L. (2004). Blood vessel patterning at the embryonic midline. Curr. Top. Dev. Biol. 62, 55–85.
Blood vessel patterning at the embryonic midline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotFKmsw%3D%3D&md5=4c878aa6c02958dba6e0342326881febCAS | 15522739PubMed |

Hogan, B. L., and Kolodziej, P. A. (2002). Organogenesis: molecular mechanisms of tubulogenesis. Nat. Rev. Genet. 3, 513–523.
Organogenesis: molecular mechanisms of tubulogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFKmt7g%3D&md5=7adeec45d06499226ccf96758e77a495CAS | 12094229PubMed |

Houck, K. A., Ferrara, N., Winer, J., Cachianes, G., Li, B., and Leung, D. W. (1991). The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5, 1806–1814.
The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitVGrtLk%3D&md5=6a2eaf8fee4ce73b37973cf55f78d58cCAS | 1791831PubMed |

Houck, K. A., Leung, D. W., Rowland, A. M., Winer, J., and Ferrara, N. (1992). Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 267, 26 031–26 037.
| 1:CAS:528:DyaK38Xmt1OjsL8%3D&md5=d0821a566501c76f606d770a41a3eabeCAS |

Jingjing, L., Xue, Y., Agarwal, N., and Roque, R. S. (1999). Human Müller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest. Ophthalmol. Vis. Sci. 40, 752–759.
| 1:STN:280:DyaK1M7msFejsQ%3D%3D&md5=f3771f3ecb058dfb9efd1a8bc340cd1dCAS | 10067980PubMed |

Julio-Pieper, M., Lozada, P., Tapia, V., Vega, M., Miranda, C., Vantman, D., Ojeda, S. R., and Romero, C. (2009). Nerve growth factor induces vascular endothelial growth factor expression in granulosa cells via a trkA receptor/mitogen-activated protein kinase-extracellularly-regulated kinase 2-dependent pathway. J. Clin. Endocrinol. Metab. 94, 3065–3071.
Nerve growth factor induces vascular endothelial growth factor expression in granulosa cells via a trkA receptor/mitogen-activated protein kinase-extracellularly-regulated kinase 2-dependent pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFGnu74%3D&md5=f94b14e999a95d820a774e852c14f10dCAS | 19454577PubMed |

Kardon, R. H., and Kessel, R. G. (1979). SEM studies on vascular casts of the rat ovary. Scan. Electron Microsc. 3, 743–750.
| 524041PubMed |

Keyt, B. A., Nguyen, H. V., Berleau, L. T., Duarte, C. M., Park, J., Chen, H., and Ferrara, N. (1996). Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis. J. Biol. Chem. 271, 5638–5646.
| 1:CAS:528:DyaK28XhsFehtrw%3D&md5=865f34aab3ced247c4f5b16d790bae07CAS | 8621427PubMed |

Konishi, I., Fujii, S., Okamura, H., Parmley, T., and Mori, T. (1986). Development of interstitial cells and ovigerous cords in the human fetal ovary: an ultrastructural study. J. Anat. 148, 121–135.
| 1:STN:280:DyaL1c%2Fos1Cltg%3D%3D&md5=36a9adbf6a1d529fcb85814cc5c1ed3eCAS | 3693081PubMed |

Konopatskaya, O., Churchill, A. J., Harper, S. J., Bates, D. O., and Gardiner, T. A. (2006). VEGF165b, an endogenous C-terminal splice variant of VEGF, inhibits retinal neovascularization in mice. Mol. Vis. 12, 626–632.
| 1:CAS:528:DC%2BD28XntVelsrY%3D&md5=e03d74ebb6a62649dca3226738714ac2CAS | 16735996PubMed |

Lange, T., Guttmann-Raviv, N., Baruch, L., Machluf, M., and Neufeld, G. (2003). VEGF162, a new heparin-binding vascular endothelial growth factor splice form that is expressed in transformed human cells. J. Biol. Chem. 278, 17 164–17 169.
VEGF162, a new heparin-binding vascular endothelial growth factor splice form that is expressed in transformed human cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVKmsr0%3D&md5=aa5a569b59bb214249a5ecd372fa3c30CAS |

Lawson, N. D., Vogel, A. M., and Weinstein, B. M. (2002). Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3, 127–136.
Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFSmsL0%3D&md5=28f1024e777a5680555d97eaba9a0eaeCAS | 12110173PubMed |

Lei, J., Jiang, A., and Pei, D. (1998). Identification and characterization of a new splicing variant of vascular endothelial growth factor: VEGF183. Biochim. Biophys. Acta 1443, 400–406.
Identification and characterization of a new splicing variant of vascular endothelial growth factor: VEGF183.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVWgsg%3D%3D&md5=27d160c4cf8fde0303c225ee5aeaf5adCAS | 9878851PubMed |

Levine, E., Cupp, A. S., and Skinner, M. K. (2000). Role of neurotrophins in rat embryonic testis morphogenesis (cord formation). Biol. Reprod. 62, 132–142.
Role of neurotrophins in rat embryonic testis morphogenesis (cord formation).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslKksw%3D%3D&md5=a04d1ac141388cbd2d65ea88c6a5b687CAS | 10611077PubMed |

Loffler, K. A., and Koopman, P. (2002). Charting the course of ovarian development in vertebrates. Int. J. Dev. Biol. 46, 503–510.
| 1:CAS:528:DC%2BD38Xnslegtro%3D&md5=7aa16b41c9524003ffe0d064c95f3f93CAS | 12141437PubMed |

Macchiarelli, G., Nottola, S. A., Vizza, E., Kikuta, A., Murakami, T., and Motta, P. M. (1991). Ovarian microvasculature in normal and hCG-stimulated rabbits. A study of vascular corrosion casts with particular regard to the interstitium. J. Submicrosc. Cytol. Pathol. 23, 391–395.
| 1:STN:280:DyaK38%2FgsFemsw%3D%3D&md5=23e840222babc523725bd741ccb91158CAS | 1913584PubMed |

Martin, P., and Lewis, J. (1989). Origins of the neurovascular bundle: interactions between developing nerves and blood vessels in embryonic chick skin. Int. J. Dev. Biol. 33, 379–387.
| 1:STN:280:DyaK3M%2Fgt1ahtw%3D%3D&md5=54c6fe2111ff29ccb2aed863d3e57740CAS | 2702122PubMed |

Martineau, J., Nordqvist, K., Tilmann, C., Lovell-Badge, R., and Capel, B. (1997). Male-specific cell migration into the developing gonad. Curr. Biol. 7, 958–968.
Male-specific cell migration into the developing gonad.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotFSmsrs%3D&md5=4af105f904a72ead41861e7bfbe09335CAS | 9382843PubMed |

Matzuk, M. M., and Lamb, D. J. (2002). Genetic dissection of mammalian fertility pathways. Nat. Cell Biol. 4, S33–S40.
Genetic dissection of mammalian fertility pathways.Crossref | GoogleScholarGoogle Scholar |

Matzuk, M. M., and Lamb, D. J. (2008). The biology of infertility: research advances and clinical challenges. Nat. Med. 14, 1197–1213.
The biology of infertility: research advances and clinical challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCjtL%2FM&md5=1afcde9cbddd07d39c935fb4dd9de408CAS | 18989307PubMed |

McFee, R. M., Artac, R. A., McFee, R. M., Clopton, D. T., Longfellow Smith, R. A., Rozell, T. G., and Cupp, A. S. (2009). Inhibition of vascular endothelial growth factor receptor signal transduction blocks follicle progression but does not necessarily disrupt vascular development in perinatal rat ovaries. Biol. Reprod. 81, 966–977.
Inhibition of vascular endothelial growth factor receptor signal transduction blocks follicle progression but does not necessarily disrupt vascular development in perinatal rat ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWrtrzL&md5=80de960b8a0cf1af04a81dc307be04fbCAS | 19605787PubMed |

McFee, R. M., Rozell, T. G., and Cupp, A. S. (2012). The balance of pro-angiogenic and anti-angiogenic VEGFA isoforms regulate follicle development. Cell Tissue Res. , .
The balance of pro-angiogenic and anti-angiogenic VEGFA isoforms regulate follicle development.Crossref | GoogleScholarGoogle Scholar | 22322423PubMed |

Merchant-Larios, H., Moreno-Mendoza, N., and Buehr, M. (1993). The role of the mesonephros in cell differentiation and morphogenesis of the mouse fetal testis. Int. J. Dev. Biol. 37, 407–415.
| 1:STN:280:DyaK2c7it1Wjuw%3D%3D&md5=26d9445bcb88f9cf59d283017a51038bCAS | 8292535PubMed |

Mukouyama, Y. S., Shin, D., Britsch, S., Taniguchi, M., and Anderson, D. J. (2002). Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693–705.
Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2jurk%3D&md5=534c47aa487b7b9ea0e4677848cfb8d6CAS | 12086669PubMed |

Murakami, T., Ikebuchi, Y., Ohtsuka, A., Kikuta, A., Taguchi, T., and Ohtani, O. (1988). The blood vascular wreath of rat ovarian follicle, with special reference to its changes in ovulation and luteinization: a scanning electron microscopic study of corrosion casts. Arch. Histol. Cytol. 51, 299–313.
The blood vascular wreath of rat ovarian follicle, with special reference to its changes in ovulation and luteinization: a scanning electron microscopic study of corrosion casts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7ltVWiuw%3D%3D&md5=596037e8d709a511dfbb63cbf8a22f9eCAS | 3147688PubMed |

Nottola, S. A., Macchiarelli, G., and Motta, P. M. (1997). The angioarchitecture of oestrous, pseudopregnant and pregnant rabbit ovary as seen by scanning electron microscopy of vascular corrosion casts. Cell Tissue Res. 288, 353–363.
The angioarchitecture of oestrous, pseudopregnant and pregnant rabbit ovary as seen by scanning electron microscopy of vascular corrosion casts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3jvVOqsQ%3D%3D&md5=84b062f7e45c4fd1aac4c85a787b3eb4CAS | 9082971PubMed |

Pardanaud, L., Yassine, F., and Dieterlen-Lievre, F. (1989). Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105, 473–485.
| 1:STN:280:DyaK3c7is1emuw%3D%3D&md5=839fd9b808707a01ba406a1770f4f1c6CAS | 2612361PubMed |

Park, J. E., Chen, H. H., Winer, J., Houck, K. A., and Ferrara, N. (1994). Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high-affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25 646–25 654.
| 1:CAS:528:DyaK2cXlvFKksbs%3D&md5=cfefa97a1b85676b97a101dda225d5f0CAS |

Parrott, J. A., and Skinner, M. K. (1999). Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 140, 4262–4271.
Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslSru7k%3D&md5=ed3486f08df44afb76e82973c3afb3c4CAS | 10465300PubMed |

Patan, S. (2000). Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodelling. J. Neurooncol. 50, 1–15.
Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodelling.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mzmsl2lsA%3D%3D&md5=e0ac6bc53aff76c6f66eb151da37024eCAS | 11245270PubMed |

Pepling, M. E., and Spradling, A. C. (2001). Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev. Biol. 234, 339–351.
Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFKjur8%3D&md5=5c5eb9ba746ca002b9a796a1ef3daa7eCAS | 11397004PubMed |

Rajah, R., Glaser, E. M., and Hirshfield, A. N. (1992). The changing architecture of the neonatal rat ovary during histogenesis. Dev. Dyn. 194, 177–192.
The changing architecture of the neonatal rat ovary during histogenesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7gsVGmug%3D%3D&md5=1b31289067461daf3514fc562ee9fbbeCAS | 1467554PubMed |

Ramalho de Carvalho, B., Gomes Sobrinho, D. B., Vieira, A. D., Resende, M. P., Barbosa, A. C., Silva, A. A., and Nakagava, H. M. (2012). Ovarian reserve assessment for infertility investigation. ISRN Obstet. Gynecol. , .
Ovarian reserve assessment for infertility investigation.Crossref | GoogleScholarGoogle Scholar | 22474591PubMed |

Redmer, D. A., and Reynolds, L. P. (1996). Angiogenesis in the ovary. Rev. Reprod. 1, 182–192.
Angiogenesis in the ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFWqurg%3D&md5=97283ac3139837a22bb28dacdbe36939CAS | 9414456PubMed |

Ren, Y., Cowan, R. G., Migone, F. F., and Quirk, S. M. (2012). Over-activation of hedgehog signalling alters development of the ovarian vasculature in mice. Biol. Reprod. , .
Over-activation of hedgehog signalling alters development of the ovarian vasculature in mice.Crossref | GoogleScholarGoogle Scholar | 22402963PubMed |

Reynolds, L. P., Killilea, S. D., and Redmer, D. A. (1992). Angiogenesis in the female reproductive system. FASEB J. 6, 886–892.
| 1:STN:280:DyaK387lsFCrsw%3D%3D&md5=ab136bb35a8c881821437296166f38feCAS | 1371260PubMed |

Robinson, C. J., and Stringer, S. E. (2001). The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J. Cell Sci. 114, 853–865.
| 1:CAS:528:DC%2BD3MXit1eit7c%3D&md5=a3396dc66b80bd48edc98a307e770c43CAS | 11181169PubMed |

Robinson, R. S., Woad, K. J., Hammond, A. J., Laird, M., Hunter, M. G., and Mann, G. E. (2009). Angiogenesis and vascular function in the ovary. Reproduction 138, 869–881.
Angiogenesis and vascular function in the ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKlur7F&md5=2807c01ccae7bd95634b8b0d89ed94c3CAS | 19786399PubMed |

Russo, M. A., Giustizieri, M. L., Favale, A., Fantini, M. C., Campagnolo, L., Konda, D., Germano, F., Farini, D., Manna, C., and Siracusa, G. (1999). Spatiotemporal patterns of expression of neurotrophins and neurotrophin receptors in mice suggest functional roles in testicular and epididymal morphogenesis. Biol. Reprod. 61, 1123–1132.
Spatiotemporal patterns of expression of neurotrophins and neurotrophin receptors in mice suggest functional roles in testicular and epididymal morphogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlajtL0%3D&md5=02d20cd22ba40275463f48fb34664f2bCAS | 10491653PubMed |

Sawyer, H. R., Smith, P., Heath, D. A., Juengel, J. L., Wakefield, S. J., and McNatty, K. P. (2002). Formation of ovarian follicles during fetal development in sheep. Biol. Reprod. 66, 1134–1150.
Formation of ovarian follicles during fetal development in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlClu70%3D&md5=e6ed22df85bb270390bb67f37b88c686CAS | 11906935PubMed |

Seetharam, L., Gotoh, N., Maru, Y., Neufeld, G., Yamaguchi, S., and Shibuya, M. (1995). A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10, 135–147.
| 1:CAS:528:DyaK2MXjtVOqsrc%3D&md5=eee1f4729ad4eecf68857afb4edbbf25CAS | 7824266PubMed |

Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L., and Schuh, A. C. (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66.
Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvVKjsro%3D&md5=eff1cffd883c99515fa1b0ece67a9e8aCAS | 7596435PubMed |

Shimizu, T., Kawahara, M., Abe, Y., Yokoo, M., Sasada, H., and Sato, E. (2003). Follicular microvasculature and angiogenic factors in the ovaries of domestic animals. J. Reprod. Dev. 49, 181–192.
Follicular microvasculature and angiogenic factors in the ovaries of domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFSqtLk%3D&md5=51dd1b7a3ec4817f8b1bebe619360f77CAS | 14967927PubMed |

Shozu, M., Minami, N., Yokoyama, H., Inoue, M., Kurihara, H., Matsushima, K., and Kuno, K. (2005). ADAMTS-1 is involved in normal follicular development, ovulatory process and organization of the medullary vascular network in the ovary. J. Mol. Endocrinol. 35, 343–355.
ADAMTS-1 is involved in normal follicular development, ovulatory process and organization of the medullary vascular network in the ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyhsLfK&md5=671754bd896247531614dd8f8a7c32b3CAS | 16216914PubMed |

Smitz, J. E., and Cortvrindt, R. G. (2002). The earliest stages of folliculogenesis in vitro. Reproduction 123, 185–202.
The earliest stages of folliculogenesis in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFChsbo%3D&md5=4ffcbfbfabf811279ee736bc3efe43b3CAS | 11866686PubMed |

Stalmans, I., Ng, Y. S., Rohan, R., Fruttiger, M., Bouche, A., Yuce, A., Fujisawa, H., Hermans, B., Shani, M., Jansen, S., Hicklin, D., Anderson, D. J., Gardiner, T., Hammes, H. P., Moons, L., Dewerchin, M., Collen, D., Carmeliet, P., and D’Amore, P. A. (2002). Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest. 109, 327–336.
| 1:CAS:528:DC%2BD38XhtV2isLs%3D&md5=fe50e4cadb68e940761761b9f61458c6CAS | 11827992PubMed |

Stouffer, R. L., Martinez-Chequer, J. C., Molskness, T. A., Xu, F., and Hazzard, T. M. (2001). Regulation and action of angiogenic factors in the primate ovary. Arch. Med. Res. 32, 567–575.
Regulation and action of angiogenic factors in the primate ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVensA%3D%3D&md5=ba612143cfc93a644107d1612de02a3aCAS | 11750732PubMed |

Sugihara, T., Wadhwa, R., Kaul, S. C., and Mitsui, Y. (1998). A novel alternatively spliced form of murine vascular endothelial growth factor, VEGF 115. J. Biol. Chem. 273, 3033–3038.
A novel alternatively spliced form of murine vascular endothelial growth factor, VEGF 115.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFSqsA%3D%3D&md5=e9e55543b2f5e84ab929f9313e0d84fdCAS | 9446618PubMed |

Sullivan, S. D., and Castrillon, D. H. (2011). Insights into primary ovarian insufficiency through genetically engineered mouse models. Semin. Reprod. Med. 29, 283–298.
Insights into primary ovarian insufficiency through genetically engineered mouse models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Shur7F&md5=847cecdd073907a588561f5d7d84ae88CAS | 21972066PubMed |

Suzuki, T., Sasano, H., Takaya, R., Fukaya, T., Yajima, A., and Nagura, H. (1998). Cyclic changes of vasculature and vascular phenotypes in normal human ovaries. Hum. Reprod. 13, 953–959.
Cyclic changes of vasculature and vascular phenotypes in normal human ovaries.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3otVymsA%3D%3D&md5=a8d3ddd263f50ea4483a09cd9e64f6d1CAS | 9619553PubMed |

Tischer, E., Mitchell, R., Hartman, T., Silva, M., Gospodarowicz, D., Fiddes, J. C., and Abraham, J. A. (1991). The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 266, 11 947–11 954.
| 1:CAS:528:DyaK38XhtVSgtbk%3D&md5=0e8d0a7c89c98a3289ccc922f97406cdCAS |

van Wezel, I. L., and Rodgers, R. J. (1996). Morphological characterization of bovine primordial follicles and their environment in vivo. Biol. Reprod. 55, 1003–1011.
Morphological characterization of bovine primordial follicles and their environment in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmtlamu7w%3D&md5=3b2a5be5eec4452ed72159db0ced9832CAS | 8902210PubMed |

Varey, A. H., Rennel, E. S., Qiu, Y., Bevan, H. S., Perrin, R. M., Raffy, S., Dixon, A. R., Paraskeva, C., Zaccheo, O., Hassan, A. B., Harper, S. J., and Bates, D. O. (2008). VEGF 165 b, an anti-angiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and anti-angiogenic VEGF-A isoforms has implications for therapy. Br. J. Cancer 98, 1366–1379.
VEGF 165 b, an anti-angiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and anti-angiogenic VEGF-A isoforms has implications for therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks12gurs%3D&md5=c1624335f91030d5370c42ee49252669CAS | 18349829PubMed |

Visconti, R. P., Richardson, C. D., and Sato, T. N. (2002). Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc. Natl. Acad. Sci. USA 99, 8219–8224.
Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVGht7Y%3D&md5=d70a8e2effb6f4468af062f8875883afCAS | 12048246PubMed |

Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M., and Heldin, C. H. (1994). Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 269, 26 988–26 995.
| 1:CAS:528:DyaK2cXmt1artb4%3D&md5=41bad186ccfb9bab823f191e1e707718CAS |

Wang, H. U., Chen, Z. F., and Anderson, D. J. (1998). Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753.
Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsl2ktrs%3D&md5=28a46afd666f61a98caef1d799d983f5CAS | 9630219PubMed |

Woolard, J., Wang, W. Y., Bevan, H. S., Qui, Y., Morbidelli, L., Pritchard-Jones, R. O., Cui, T. G., Sugiono, M., Waine, E., Perrin, R., Foster, R., Digby-Bell, J., Shields, J. D., Whittles, C. E., Muchens, R. E., Gillatt, D. A., Ziche, M., Harper, S. J., and Bates, D. O. (2004). VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 64, 7822–7835.
VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFemu7k%3D&md5=977e72ad60df7787716e2dcd42bcd899CAS | 15520188PubMed |