Use of induced pluripotent stem cells for regenerative medicine and understanding of cell biology
Kaiana Recchia A B , Laís Vicari de Figueiredo Pessôa B , Naira Caroline Godoy Pieri B and Fabiana Fernandes Bressan A B *A
B
Abstract
Stem cells are a highly desirable tool for regenerative medicine due to unique characteristics such as immunomodulation and angiogenesis (multipotent cells) and high self-renewal potential and differentiation capability (pluripotent cells), thus being classified according to their stage of dedifferentiation and epigenetic profile. Apart from being used for in vitro disease modeling or even in vivo therapies, pluripotent stem cells are a valuable tool for animal production and breeding improvement. In particular, due to the lack of robustness and ethical concerns regarding embryonic stem cells, induced pluripotent stem cells (iPSCs) emerge as a new ‘game changer’ in veterinary and translational medicine. Herein, we present and discuss recent potential uses of stem cells in medicine and understanding cell biology, focusing on generating and using iPSCs from diverse species aiming for genetic conservation or dissemination using in vitro gametogenesis, cellular therapies, and cellular agriculture.
Keywords: cellular agriculture, genetic improvement, in vitro gametogenesis, iPSCs, PGCLCs, pluripotent stem cells, regenerative medicine, stem cells.
References
Al Tanoury Z, Rao J, Tassy O, Gobert B, Gapon S, Garnier J-M, Wagner E, Hick A, Hall A, Gussoni E, Pourquié O (2020) Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage in vitro. Development 147, dev187344.
| Crossref | Google Scholar |
Anwised P, Moorawong R, Samruan W, Somredngan S, Srisutush J, Laowtammathron C, Aksoy I, Parnpai R, Savatier P (2023) An expedition in the jungle of pluripotent stem cells of non-human primates. Stem Cell Reports 18, 2016-2037.
| Crossref | Google Scholar | PubMed |
Arai S, Miyauchi M, Kurokawa M (2015) Modeling of hematologic malignancies by iPS technology. Experimental Hematology 43, 654-660.
| Crossref | Google Scholar | PubMed |
Aramaki S, Hayashi K, Kurimoto K, Ohta H, Yabuta Y, Iwanari H, Mochizuki Y, Hamakubo T, Kato Y, Shirahige K, Saitou M (2013) A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants. Developmental Cell 27, 516-529.
| Crossref | Google Scholar | PubMed |
Arnhold S, Wenisch S (2015) Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine. American Journal of Stem Cells 4, 1-12.
| Google Scholar | PubMed |
Bessi BW, Botigelli RC, Pieri NCG, Machado LS, Cruz JB, de Moraes P, de Souza AF, Recchia K, Barbosa G, de Castro RVG, Nogueira MFG, Bressan FF (2021) Cattle in vitro induced pluripotent stem cells generated and maintained in 5 or 20% oxygen and different supplementation. Cells 10, 1531.
| Crossref | Google Scholar | PubMed |
Bharti D, Jang S-J, Lee S-Y, Lee S-L, Rho G-J (2020) In vitro generation of oocyte like cells and their in vivo efficacy: how far we have been succeeded. Cells 9, 557.
| Crossref | Google Scholar | PubMed |
Bhat ZF, Kumar S, Bhat HF (2017) In vitro meat: a future animal-free harvest. Critical Reviews in Food Science and Nutrition 57, 782-789.
| Crossref | Google Scholar | PubMed |
Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong C, Sakurai M, Sampaio RV, Suzuki K, Izpisua Belmonte JC, Ross PJ (2018) Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences 115, 2090-2095.
| Crossref | Google Scholar |
Botigelli RC, Pieri NCG, Bessi BW, Machado LS, Bridi A, de Souza AF, Recchia K, Neto PF, Ross PJ, Bressan FF, Nogueira MFG (2022) Acquisition and maintenance of pluripotency are influenced by fibroblast growth factor, leukemia inhibitory factor, and 2i in bovine-induced pluripotent stem cells. Frontiers in Cell and Developmental Biology 10, 938709.
| Crossref | Google Scholar |
Bressan FF, Lima MA, Machado LS, Pieiri NCG, Fantinato-Neto P, Therrien J, Perecin F, Smith LC, Meirelles FV (2018) 183 In vitro generation and characterization of putative primordial germ cells derived from induced pluripotent stem cells in cattle. Reproduction, Fertility and Development 30, 231-232.
| Crossref | Google Scholar |
Bressan FF, Bassanezze V, de Figueiredo Pessôa LV, Sacramento CB, Malta TM, Kashima S, Fantinato Neto P, Strefezzi RDF, Pieri NCG, Krieger JE, Covas DT, Meirelles FV (2020) Generation of induced pluripotent stem cells from large domestic animals. Stem Cell Research & Therapy 11, 247.
| Crossref | Google Scholar | PubMed |
Brevini TAL, Antonini S, Pennarossa G, Gandolfi F (2008) Recent progress in embryonic stem cell research and its application in domestic species. Reproduction in Domestic Animals 43, 193-199.
| Crossref | Google Scholar | PubMed |
Bruge C, Geoffroy M, Benabides M, Pellier E, Gicquel E, Dhiab J, Hoch L, Richard I, Nissan X (2022) Skeletal muscle cells derived from induced pluripotent stem cells: a platform for limb girdle muscular dystrophies. Biomedicines 10, 1428.
| Crossref | Google Scholar | PubMed |
Chal J, Pourquié O (2017) Making muscle: skeletal myogenesis in vivo and in vitro. Development 144, 2104-2122.
| Crossref | Google Scholar | PubMed |
Chal J, Oginuma M, Al Tanoury Z, Gobert B, Sumara O, Hick A, Bousson F, Zidouni Y, Mursch C, Moncuquet P, Tassy O, Vincent S, Miyanari A, Bera A, Garnier J-M, Guevara G, Hestin M, Kennedy L, Hayashi S, Drayton B, Cherrier T, Gayraud-Morel B, Gussoni E, Relaix F, Tajbakhsh S, Pourquié O (2015) Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nature Biotechnology 33, 962-969.
| Crossref | Google Scholar | PubMed |
Chal J, Al Tanoury Z, Hestin M, Gobert B, Aivio S, Hick A, Cherrier T, Nesmith AP, Parker KK, Pourquié O (2016) Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nature Protocols 11, 1833-1850.
| Crossref | Google Scholar | PubMed |
Chandrasekaran A, Thomsen BB, Agerholm JS, Pessôa LVdF, Godoy Pieri NC, Sabaghidarmiyan V, Langley K, Kolko M, de Andrade AFC, Bressan FF, Hyttel P, Berendt M, Freude K (2021) Neural derivates of canine induced pluripotent stem cells-like cells from a mild cognitive impairment dog. Frontiers in Veterinary Science 8, 725386.
| Crossref | Google Scholar |
Cheng Y-C, Hsieh ML, Lin C-J, Chang CMC, Huang C-Y, Puntney R, Wu Moy A, Ting C-Y, Herr Chan DZ, Nicholson MW, Lin P-J, Chen H-C, Kim GC, Zhang J, Coonen J, Basu P, Simmons HA, Liu Y-W, Hacker TA, Kamp TJ, Hsieh PCH (2023) Combined treatment of human induced pluripotent stem cell-derived cardiomyocytes and endothelial cells regenerate the infarcted heart in mice and non-human primates. Circulation 148, 1395-1409.
| Crossref | Google Scholar | PubMed |
Cherry ABC, Daley GQ (2013) Reprogrammed cells for disease modeling and regenerative medicine. Annual Review of Medicine 64, 277-290.
| Crossref | Google Scholar | PubMed |
Chow L, McGrath S, de Arruda Saldanha C, Whalen LR, Packer R, Dow S (2020) Generation of neural progenitor cells from canine induced pluripotent stem cells and preliminary safety test in dogs with spontaneous spinal cord injuries. Frontiers in Veterinary Science 7, 575938.
| Crossref | Google Scholar |
Chriki S, Hocquette J-F (2020) The myth of cultured meat: a review. Frontiers in Nutrition 7, 7.
| Crossref | Google Scholar | PubMed |
Cong X, Zhang S-M, Ellis MW, Luo J (2019) Large animal models for the clinical application of human induced pluripotent stem cells. Stem Cells and Development 28, 1288-1298.
| Crossref | Google Scholar | PubMed |
de Castro RVG, Pieri NCG, Fantinato Neto P, Grizendi BM, Dória RGS, Meirelles FV, Smith LC, Garcia JM, Bressan FF (2020) In vitro induction of pluripotency from equine fibroblasts in 20% or 5% oxygen. Stem Cells International 2020, 1-16.
| Crossref | Google Scholar |
de Souza G, Costa J, da Cunha E, Passos J, Ribeiro R, Saraiva M, van den Hurk R, Silva J (2017) Bovine ovarian stem cells differentiate into germ cells and oocyte-like structures after culture in vitro. Reproduction in Domestic Animals 52, 243-250.
| Crossref | Google Scholar | PubMed |
de Souza AF, Bressan FF, Pieri NCG, Botigelli RC, Revay T, Haddad SK, Covas DT, Ramos ES, King WA, Meirelles FV (2021) Generation of primordial germ cell-like cells from iPSCs derived from turner syndrome patients. Cells 10, 3099.
| Crossref | Google Scholar |
Du P, Wu J (2024) Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 31(3), 312-333.
| Crossref | Google Scholar |
Du Y, Liang Z, Wang S, Sun D, Wang X, Liew SY, Lu S, Wu S, Jiang Y, Wang Y, Zhang B, Yu W, Lu Z, Pu Y, Zhang Y, Long H, Xiao S, Liang R, Zhang Z, Guan J, Wang J, Ren H, Wei Y, Zhao J, Sun S, Liu T, Meng G, Wang L, Gu J, Wang T, Liu Y, Li C, Tang C, Shen Z, Peng X, Deng H (2022) Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nature Medicine 28, 272-282.
| Crossref | Google Scholar | PubMed |
Dyce PW, Liu J, Tayade C, Kidder GM, Betts DH, Li J (2011) In vitro and in vivo germ line potential of stem cells derived from newborn mouse skin. PLoS ONE 6, e20339.
| Crossref | Google Scholar | PubMed |
Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156.
| Crossref | Google Scholar | PubMed |
Fan Y, Min Z, Alsolami S, Ma Z, Zhang E, Chen W, Zhong K, Pei W, Kang X, Zhang P, Wang Y, Zhang Y, Zhan L, Zhu H, An C, Li R, Qiao J, Tan T, Li M, Yu Y (2021) Generation of human blastocyst-like structures from pluripotent stem cells. Cell Discovery 7, 81.
| Crossref | Google Scholar | PubMed |
Gandolfi F, Pennarossa G, Maffei S, Brevini TAL (2012) Why is it so difficult to derive pluripotent stem cells in domestic ungulates? Reproduction in Domestic Animals 47, 11-17.
| Crossref | Google Scholar | PubMed |
Gao X, Nowak-Imialek M, Chen X, Chen D, Herrmann D, Ruan D, Chen ACH, Eckersley-Maslin MA, Ahmad S, Lee YL, Kobayashi T, Ryan D, Zhong J, Zhu J, Wu J, Lan G, Petkov S, Yang J, Antunes L, Campos LS, Fu B, Wang S, Yong Y, Wang X, Xue S-G, Ge L, Liu Z, Huang Y, Nie T, Li P, Wu D, Pei D, Zhang Y, Lu L, Yang F, Kimber SJ, Reik W, Zou X, Shang Z, Lai L, Surani A, Tam PPL, Ahmed A, Yeung WSB, Teichmann SA, Niemann H, Liu P (2019) Establishment of porcine and human expanded potential stem cells. Nature Cell Biology 21, 687-699.
| Crossref | Google Scholar | PubMed |
Gonçalves NJN, Bressan FF, Roballo KCS, Meirelles FV, Xavier PLP, Fukumasu H, Williams C, Breen M, Koh S, Sper R, Piedrahita J, Ambrósio CE (2017) Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts. Theriogenology 92, 75-82.
| Crossref | Google Scholar | PubMed |
Guan J, Liu X, Zhang H, Yang X, Ma Y, Li Y, Gai Z, Liu Y (2020) Reprogramming of human Peripheral Blood Mononuclear Cell (PBMC) from a Chinese patient suffering Duchenne muscular dystrophy to iPSC line (SDQLCHi007-A) carrying deletion of 49–50 exons in the DMD gene. Stem Cell Research 42, 101666.
| Crossref | Google Scholar |
Guo Y, Zeng Q, Liu S, Yu Q, Wang P, Ma H, Shi S, Yan X, Cui Z, Xie M, Xue Y, Zha Q, Li Z, Zhang J, Tang S, Chen J (2018) Generation of an iPS cell line via a non-integrative method using urine-derived cells from a patient with USH2A-associated retinitis pigmentosa. Stem Cell Research 29, 139-142.
| Crossref | Google Scholar | PubMed |
Guo L, Lin L, Wang X, Gao M, Cao S, Mai Y, Wu F, Kuang J, Liu H, Yang J, Chu S, Song H, Li D, Liu Y, Wu K, Liu J, Wang J, Pan G, Hutchins AP, Liu J, Pei D, Chen J (2019) Resolving cell fate decisions during somatic cell reprogramming by single-cell RNA-seq. Molecular Cell 73, 815-829.e7.
| Crossref | Google Scholar | PubMed |
Guo H, Su Z, Yang X, Xu S, Pan H (2022) Greenhouse gas emissions from beef cattle breeding based on the ecological cycle model. International Journal of Environmental Research and Public Health 19, 9481.
| Crossref | Google Scholar | PubMed |
Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519-532.
| Crossref | Google Scholar | PubMed |
Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338, 971-975.
| Crossref | Google Scholar | PubMed |
Hayashi Y, Ohnuma K, Furue MK (2019) Pluripotent stem cell heterogeneity. In ‘Stem cells heterogeneity – novel concepts. Advances in Experimental Medicine and Biology, vol. 1123’. (Ed A. Bribair) pp. 71–94. (Springer: Cham, Switzerland) doi:10.1007/978-3-030-11096-3_6
Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539, 299-303.
| Crossref | Google Scholar | PubMed |
Hosoyama T, Mcgivern JV, Van Dyke JM, Ebert AD, Suzuki M (2014) Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture. Stem Cells Translational Medicine 3, 564-574.
| Crossref | Google Scholar | PubMed |
Hyttel P, Pessôa LVdF, Secher JB-M, Dittlau KS, Freude K, Hall VJ, Fair T, Assey RJ, Laurincik J, Callesen H, Greve T, Stroebech LB (2019) Oocytes, embryos and pluripotent stem cells from a biomedical perspective. Animal Reproduction 16, 508-523.
| Crossref | Google Scholar | PubMed |
Irie N, Weinberger L, Tang WWC, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA (2015) SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253-268.
| Crossref | Google Scholar | PubMed |
Ishikura Y, Ohta H, Sato T, Murase Y, Yabuta Y, Kojima Y, Yamashiro C, Nakamura T, Yamamoto T, Ogawa T, Saitou M (2021) In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells. Cell Stem Cell 28, 2167-2179.e9.
| Crossref | Google Scholar | PubMed |
Ishiuchi T, Sakamoto M (2023) Molecular mechanisms underlying totipotency. Life Science Alliance 6, e202302225.
| Crossref | Google Scholar | PubMed |
Ishiuchi T, Torres-Padilla M-E (2013) Towards an understanding of the regulatory mechanisms of totipotency. Current Opinion in Genetics & Development 23, 512-518.
| Crossref | Google Scholar | PubMed |
Leung CM, de Haan P, Ronaldson-Bouchard K, Kim G-A, Ko J, Rho HS, Chen Z, Habibovic P, Jeon NL, Takayama S, Shuler ML, Vunjak-Novakovic G, Frey O, Verpoorte E, Toh Y-C (2022) A guide to the organ-on-a-chip. Nature Reviews Methods Primers 2, 33.
| Crossref | Google Scholar |
Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Song H, Yang D, Zhang B, Zeng L, Lai L, Esteban MA, Pei D (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51-63.
| Crossref | Google Scholar | PubMed |
Liao Y-J, Tang P-C, Lin C-H, Chen L-R, Yang J-R (2018) Porcine-induced pluripotent stem cell-derived osteoblast-like cells ameliorate trabecular bone mass of osteoporotic rats. Regenerative Medicine 13, 659-671.
| Crossref | Google Scholar | PubMed |
Liao Y-J, Liao C-H, Chen L-R, Yang J-R (2023) Dopaminergic neurons derived from porcine induced pluripotent stem cell like cells function in the Lanyu pig model of Parkinson’s disease. Animal Biotechnology 34, 1283-1294.
| Crossref | Google Scholar | PubMed |
Linher K, Dyce P, Li J (2009) Primordial germ cell-like cells differentiated in vitro from skin-derived stem cells. PLoS ONE 4, e8263.
| Crossref | Google Scholar | PubMed |
Machado LS, Pieri NCG, Botigelli RC, de Castro RVG, de Souza AF, Bridi A, Lima MA, Fantinato Neto P, Pessôa LVdF, Martins SMMK, De Andrade AFC, Freude KK, Bressan FF (2020) Generation of neural progenitor cells from porcine-induced pluripotent stem cells. Journal of Tissue Engineering and Regenerative Medicine 14, 1880-1891.
| Crossref | Google Scholar | PubMed |
Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America 78, 7634-7638.
| Crossref | Google Scholar | PubMed |
Mizuta K, Katou Y, Nakakita B, Kishine A, Nosaka Y, Saito S, Iwatani C, Tsuchiya H, Kawamoto I, Nakaya M, Tsukiyama T, Nagano M, Kojima Y, Nakamura T, Yabuta Y, Horie A, Mandai M, Ohta H, Saitou M (2022) Ex vivo reconstitution of fetal oocyte development in humans and cynomolgus monkeys. The EMBO Journal 41, e110815.
| Crossref | Google Scholar | PubMed |
Mooyottu S, Anees C, Cherian S (2011) Ovarian stem cells and neo-oogenesis: a breakthrough in reproductive biology research. Veterinary World 4, 89-91.
| Google Scholar |
Moretti A, Fonteyne L, Giesert F, Hoppmann P, Meier AB, Bozoglu T, Baehr A, Schneider CM, Sinnecker D, Klett K, Fröhlich T, Rahman FA, Haufe T, Sun S, Jurisch V, Kessler B, Hinkel R, Dirschinger R, Martens E, Jilek C, Graf A, Krebs S, Santamaria G, Kurome M, Zakhartchenko V, Campbell B, Voelse K, Wolf A, Ziegler T, Reichert S, Lee S, Flenkenthaler F, Dorn T, Jeremias I, Blum H, Dendorfer A, Schnieke A, Krause S, Walter MC, Klymiuk N, Laugwitz KL, Wolf E, Wurst W, Kupatt C (2020) Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nature Medicine 26, 207-214.
| Crossref | Google Scholar | PubMed |
Muñoz-Ulecia E, Bernués A, Briones-Hidrovo A, Franzese PP, Buonocore E, Santagata R, Ulgiati S, Martín-Collado D (2023) An increased dependence on agricultural policies led European grazing agroecosystems to an unsustainability trap. Communications Earth & Environment 4, 269.
| Crossref | Google Scholar |
Murase Y, Yokogawa R, Yabuta Y, Nagano M, Katou Y, Mizuyama M, Kitamura A, Puangsricharoen P, Yamashiro C, Hu B, Mizuta K, Tsujimura T, Yamamoto T, Ogata K, Ishihama Y, Saitou M (2024) In vitro reconstitution of epigenetic reprogramming in the human germ line. Nature 631, 170-178.
| Crossref | Google Scholar | PubMed |
Nakamura K, Hirano K-I, Wu SM (2013) IPS cell modeling of cardiometabolic diseases. Journal of Cardiovascular Translational Research 6, 46-53.
| Crossref | Google Scholar | PubMed |
Nowak-Imialek M, Niemann H (2013) Pluripotent cells in farm animals: state of the art and future perspectives. Reproduction, Fertility and Development 25, 103-128.
| Crossref | Google Scholar |
Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M (2009) A signaling principle for the specification of the germ cell lineage in mice. Cell 137, 571-584.
| Crossref | Google Scholar | PubMed |
Oikawa M, Kobayashi H, Sanbo M, Mizuno N, Iwatsuki K, Takashima T, Yamauchi K, Yoshida F, Yamamoto T, Shinohara T, Nakauchi H, Kurimoto K, Hirabayashi M, Kobayashi T (2022) Functional primordial germ cell-like cells from pluripotent stem cells in rats. Science 376, 176-179.
| Crossref | Google Scholar | PubMed |
Peitz M, Jungverdorben J, Brustle O (2013) Disease-specific iPS cell models in neuroscience. Current Molecular Medicine 13, 832-841.
| Crossref | Google Scholar | PubMed |
Pessôa LVdF, Bressan FF, Freude KK (2019a) Induced pluripotent stem cells throughout the animal kingdom: availability and applications. World Journal of Stem Cells 11, 491-505.
| Crossref | Google Scholar | PubMed |
Pessôa LVdF, Pires PRL, del Collado M, Pieri NCG, Recchia K, Souza AF, Perecin F, da Silveira JC, de Andrade AFC, Ambrosio CE, Bressan FF, Meirelles FV (2019b) Generation and miRNA characterization of equine induced pluripotent stem cells derived from fetal and adult multipotent tissues. Stem Cells International 2019, 1393791.
| Crossref | Google Scholar |
Pieri NCG, de Souza AF, Botigelli RC, Machado LS, Ambrosio CE, dos Santos Martins D, de Andrade AFC, Meirelles FV, Hyttel P, Bressan FF (2019) Stem cells on regenerative and reproductive science in domestic animals. Veterinary Research Communications 43, 7-16.
| Crossref | Google Scholar | PubMed |
Pieri NCG, de Souza AF, Botigelli RC, Pessôa LVdF, Recchia K, Machado LS, Glória MH, de Castro RVG, Leal DF, Fantinato Neto P, Martins SMMK, dos Santos Martins D, Bressan FF, de Andrade AFC (2022) Porcine primordial germ cell-like cells generated from induced pluripotent stem cells under different culture conditions. Stem Cell Reviews and Reports 18, 1639-1656.
| Crossref | Google Scholar | PubMed |
Qi Z, Cui Y, Shi L, Luan J, Zhou X, Han J (2018) Generation of urine-derived induced pluripotent stem cells from a patient with phenylketonuria. Intractable & Rare Diseases Research 7, 87-93.
| Crossref | Google Scholar | PubMed |
Recchia K, Machado LS, Botigelli RC, Pieri NCG, Barbosa G, de Castro RVG, Marques MG, Pessôa LVdF, Fantinato Neto P, Meirelles FV, Souza AF, Martins SMMK, Bressan FF (2022) In vitro induced pluripotency from urine-derived cells in porcine. World Journal of Stem Cells 14, 231-244.
| Crossref | Google Scholar | PubMed |
Redel BK, Spate LD, Prather RS (2019) In vitro maturation, fertilization, and culture of pig oocytes and embryos. In ‘Comparative embryo culture: methods and protocols’. (Ed. JR Herrick) pp. 93–103. (Springer: New York, NY, USA) doi:10.1007/978-1-4939-9566-0_6
Saito MK (2018) Disease modeling of immunological disorders using induced pluripotent stem cells. Immunological Medicine 41, 68-74.
| Crossref | Google Scholar | PubMed |
Saitou M, Hayashi K (2021) Mammalian in vitro gametogenesis. Science 374, eaaz6830.
| Crossref | Google Scholar |
Saitou M, Yamaji M (2012) Primordial germ cells in mice. Cold Spring Harbor Perspectives in Biology 4, a008375.
| Crossref | Google Scholar | PubMed |
Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, Ohta H, Moritoki Y, Iwatani C, Tsuchiya H, Nakamura S, Sekiguchi K, Sakuma T, Yamamoto T, Mori T, Woltjen K, Nakagawa M, Yamamoto T, Takahashi K, Yamanaka S, Saitou M (2015) Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17, 178-194.
| Crossref | Google Scholar | PubMed |
Seita Y, Cheng K, McCarrey JR, Yadu N, Cheeseman IH, Bagwell A, Ross CN, Santana Toro I, Yen L-H, Vargas S, Navara CS, Hermann BP, Sasaki K (2023) Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells. eLife 12, e82263.
| Crossref | Google Scholar | PubMed |
Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, Li Y, Stoddard J, Stankewicz C, Wan Q, Zhang C, Campos MM, Miyagishima KJ, McGaughey D, Villasmil R, Mattapallil M, Stanzel B, Qian H, Wong W, Chase L, Charles S, McGill T, Miller S, Maminishkis A, Amaral J, Bharti K (2019) Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Science Translational Medicine 11, eaat5580.
| Crossref | Google Scholar |
Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada K, Shiba N, Sakamoto K, Ido D, Shiina T, Ohkura M, Nakai J, Uno N, Kazuki Y, Oshimura M, Minami I, Ikeda U (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388-391.
| Crossref | Google Scholar | PubMed |
Shirasawa A, Hayashi M, Shono M, Ideta A, Yoshino T, Hayashi K (2024) Efficient derivation of embryonic stem cells and primordial germ cell-like cells in cattle. Journal of Reproduction and Development 70, 82-95.
| Crossref | Google Scholar | PubMed |
Sjunnesson Y (2020) In vitro fertilisation in domestic mammals – a brief overview. Upsala Journal of Medical Sciences 125, 68-76.
| Crossref | Google Scholar | PubMed |
Sridharan D, Pracha N, Rana SJ, Ahmed S, Dewani AJ, Alvi SB, Mergaye M, Ahmed U, Khan M (2023) Preclinical large animal porcine models for cardiac regeneration and its clinical translation: role of hiPSC-derived cardiomyocytes. Cells 12, 1090.
| Crossref | Google Scholar | PubMed |
Stout AJ, Arnett MJ, Chai K, Guo T, Liao L, Mirliani AB, Rittenberg ML, Shub M, White EC, Yuen JSK, Jr, Zhang X, Kaplan DL (2023) Immortalized bovine satellite cells for cultured meat applications. ACS Synthetic Biology 12, 1567-1573.
| Crossref | Google Scholar | PubMed |
Surani MA, Hajkova P (2010) Epigenetic reprogramming of mouse germ cells toward totipotency. Cold Spring Harbor Symposia on Quantitative Biology 75, 211-218.
| Crossref | Google Scholar | PubMed |
Świerczek B, Ciemerych MA, Archacka K (2015) From pluripotency to myogenesis: a multistep process in the dish. Journal of Muscle Research and Cell Motility 36, 363-375.
| Crossref | Google Scholar | PubMed |
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.
| Crossref | Google Scholar | PubMed |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872.
| Crossref | Google Scholar | PubMed |
Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA (2016) Specification and epigenetic programming of the human germ line. Nature Reviews Genetics 17, 585-600.
| Crossref | Google Scholar | PubMed |
Treich N (2021) Cultured meat: promises and challenges. Environmental and Resource Economics 79, 33-61.
| Crossref | Google Scholar | PubMed |
Vu Hong A, Bourg N, Sanatine P, Poupiot J, Charton K, Gicquel E, Massourides E, Spinazzi M, Richard I, Israeli D (2023) Dlk1-Dio3 cluster miRNAs regulate mitochondrial functions in the dystrophic muscle in Duchenne muscular dystrophy. Life Science Alliance 6, e202201506.
| Crossref | Google Scholar |
Warner RD (2019) Review: analysis of the process and drivers for cellular meat production. Animal 13, 3041-3058.
| Crossref | Google Scholar | PubMed |
Yamashiro C, Sasaki K, Yabuta Y, Kojima Y, Nakamura T, Okamoto I, Yokobayashi S, Murase Y, Ishikura Y, Shirane K, Sasaki H, Yamamoto T, Saitou M (2018) Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362, 356-360.
| Crossref | Google Scholar | PubMed |
Yamashiro C, Sasaki K, Yokobayashi S, Kojima Y, Saitou M (2020) Generation of human oogonia from induced pluripotent stem cells in culture. Nature Protocols 15, 1560-1583.
| Crossref | Google Scholar | PubMed |
Yao C, Yao R, Luo H, Shuai L (2022) Germline specification from pluripotent stem cells. Stem Cell Research & Therapy 13, 74.
| Crossref | Google Scholar | PubMed |
Yeh C-Y, Huang W-H, Chen H-C, Meir Y-JJ (2021) Capturing pluripotency and beyond. Cells 10, 3558.
| Crossref | Google Scholar | PubMed |
Yoshimatsu S, Edamura K, Yoshii Y, Iguchi A, Kondo H, Shibuya H, Sato T, Shiozawa S, Okano H (2021) Non-viral derivation of a transgene-free induced pluripotent stem cell line from a male beagle dog. Stem Cell Research 53, 102375.
| Crossref | Google Scholar | PubMed |
Yoshimatsu S, Kisu I, Qian E, Noce T (2022) A new horizon in reproductive research with pluripotent stem cells: successful in vitro gametogenesis in rodents, its application to large animals, and future in vitro reconstitution of reproductive organs such as “Uteroid” and “Oviductoid”. Biology 11, 987.
| Crossref | Google Scholar | PubMed |
Zhao L, Gao X, Zheng Y, Wang Z, Zhao G, Ren J, Zhang J, Wu J, Wu B, Chen Y, Sun W, Li Y, Su J, Ding Y, Gao Y, Liu M, Bai X, Sun L, Cao G, Tang F, Bao S, Liu P, Li X (2021) Establishment of bovine expanded potential stem cells. Proceedings of the National Academy of Sciences 118, e2018505118.
| Crossref | Google Scholar |
Zhou T, Benda C, Duzinger S, Huang Y, Li X, Li Y, Guo X, Cao G, Chen S, Hao L, Chan Y-C, Ng K-M, Cy Ho J, Wieser M, Wu J, Redl H, Tse H-F, Grillari J, Grillari-Voglauer R, Pei D, Esteban MA (2011) Generation of induced pluripotent stem cells from urine. Journal of the American Society of Nephrology 22, 1221-1228.
| Crossref | Google Scholar | PubMed |
Zhu G, Gao D, Li L, Yao Y, Wang Y, Zhi M, Zhang J, Chen X, Zhu Q, Gao J, Chen T, Zhang X, Wang T, Cao S, Ma A, Feng X, Han J (2023) Generation of three-dimensional meat-like tissue from stable pig epiblast stem cells. Nature Communications 14, 8163.
| Crossref | Google Scholar | PubMed |