Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Equine non-invasive time-lapse imaging and blastocyst development

S. Meyers https://orcid.org/0000-0002-8137-8384 A D , V. Burruel A , M. Kato A , A. de la Fuente A , D. Orellana C , C. Renaudin B and G. Dujovne B
+ Author Affiliations
- Author Affiliations

A Departments of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.

B Population Health and Reproduction, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.

C William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.

D Corresponding author. Email: smeyers@ucdavis.edu

Reproduction, Fertility and Development 31(12) 1874-1884 https://doi.org/10.1071/RD19260
Submitted: 7 July 2019  Accepted: 4 September 2019   Published: 21 October 2019

Abstract

In this study we examined the timeline of mitotic events of in vitro-produced equine embryos that progressed to blastocyst stage using non-invasive time-lapse microscopy (TLM). Intracytoplasmic sperm injection (ICSI) embryos were cultured using a self-contained imaging incubator system (Miri®TL; Esco Technologies) that captured brightfield images at 5-min intervals that were then generated into video for retrospective analysis. For all embryos that progressed to the blastocyst stage, the initial event of extrusion of acellular debris preceded all first cleavages and occurred at mean (± s.e.m.) time of 20.0 ± 1.1 h after ICSI, whereas 19 of 24 embryos that did not reach the blastocyst stage demonstrated debris extrusion that occurred at 23.8 ± 1.1 h, on average 4 h longer for this initial premitotic event (P < 0.05). Embryos that failed to reach the blastocyst stage demonstrated a 4-h delay compared with those that reached the blastocyst stage to reach the 2-cell stage (P < 0.05). All embryos that reached the blastocyst stage expressed pulsation of the blastocyst with visible expansion and contraction at approximate 10-min intervals, or five to six times per hour. Using a logit probability method, we determined that 2- and 8-cell stage embryos could reasonably predict which embryos progressed to the blastocyst stage. Together, the results indicate that TLM for equine embryo development is a dynamic tool with promise for predicting successful embryo development.

Additional keywords: embryo, mitosis.


References

Bavister, B. D. (1987). Studies on the developmental blocks in cultured hamster embryos. In ‘The Mammalian Preimplantation Embryo: Regulation of Growth and Differentiation In Vitro’. (Ed. B. D. Bavister.) pp. 219–249. (Plenum Press: New York.)

Betteridge, K. J., Eaglesome, M. D., Mitchell, D., Flood, P. F., and Beriault, R. (1982). Development of horse embryos up to twenty two days after ovulation: observations on fresh specimens. J. Anat. 135, 191–209.
| 7130052PubMed |

Bezard, J., Magistrini, M., Duchamp, G., and Palmer, E. (1989). Chronology of equine fertilisation and embryonic development in vivo and in vitro. Equine Vet. J. 21, 105–110.
Chronology of equine fertilisation and embryonic development in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar |

Bitton-Casimiri, V., and Brun, J. L. P. A. (1970). Comportement in vitro des blastocystes du 5e jour de la gestation chez la Ratte; étude microcinématographique. C. R. Acad. Sci. Paris 270, 2979–2982.

Blandau, R. J. (1971). Culture of guinea pig blastocyst. In ‘The Biology of the Blastocyst’. (Ed. R. J. Blandau.) pp. 59–70. (The University of Chicago Press: Chicago.)

Burruel, V., Klooster, K., Barker, C. M., Pera, R. R., and Meyers, S. (2014a). Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage. Sci. Rep. 4, 6598.
Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.Crossref | GoogleScholarGoogle Scholar | 25307782PubMed |

Burruel, V., Klooster, K., Barker, C. M., Pera, R. R., and Meyers, S. (2014b). Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage. Sci. Rep. 4, 6598.
Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.Crossref | GoogleScholarGoogle Scholar | 25307782PubMed |

Campos-Chillòn, L. F., Suh, T. K., Barcelo-Fimbres, M., Seidel, G. E., and Carnevale, E. M. (2009). Vitrification of early-stage bovine and equine embryos. Theriogenology 71, 349–354.
Vitrification of early-stage bovine and equine embryos.Crossref | GoogleScholarGoogle Scholar | 18789516PubMed |

Carnevale, E. M., and Sessions, D. R. (2012). In vitro production of equine embryos. J. Equine Vet. Sci. 32, 367–371.
In vitro production of equine embryos.Crossref | GoogleScholarGoogle Scholar |

Chavez, S. L., Loewke, K. E., Han, J., Moussavi, F., Colls, P., Munne, S., Behr, B., and Reijo Pera, R. A. (2012). Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat. Commun. 3, 1251.
Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage.Crossref | GoogleScholarGoogle Scholar | 23212380PubMed |

Choi, Y. H., Velez, I. C., Riera, F. L., Roldán, J. E., Hartman, D. L., Bliss, S. B., Blanchard, T. L., Hayden, S. S., and Hinrichs, K. (2011). Successful cryopreservation of expanded equine blastocysts. Theriogenology 76, 143–152.
Successful cryopreservation of expanded equine blastocysts.Crossref | GoogleScholarGoogle Scholar | 21458049PubMed |

Choi, Y. H., Ross, P., Velez, I. C., Macías-García, B., Riera, F. L., and Hinrichs, K. (2015). Cell lineage allocation in equine blastocysts produced in vitro under varying glucose concentrations. Reproduction 150, 31–41.
Cell lineage allocation in equine blastocysts produced in vitro under varying glucose concentrations.Crossref | GoogleScholarGoogle Scholar | 25852156PubMed |

Cole, R. J. (1967). Cinematographic observations on the trophoblast and zona pellucida of the mouse blastocyst. J. Embryol. Exp. Morphol. 17, 481–490.
| 6069181PubMed |

Cummins, J. M., Breen, T. M., Harrison, K. L., Shaw, J. M., Wilson, L. M., and Hennessey, J. F. (1986). A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J. In Vitro Fert. Embryo Transf. 3, 284–295.
A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality.Crossref | GoogleScholarGoogle Scholar | 3783014PubMed |

Daughtry, B. L., Chavez, S. L., Biology, C., Health, O., Sciences, D., National, O., Health, O., and Health, O. (2016a). Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res. 363, 201–225.
Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences.Crossref | GoogleScholarGoogle Scholar | 26590822PubMed |

Daughtry, B. L., Masterson, K. R., Metcalf, E. S., Battaglia, D., Fei, S. S., Carbone, L., Beck, R., Cook, N., and Chavez, S. L. (2016b). Combining time-lapse imaging and next generation RNA-sequencing to assess equine embryo developmental potential. J. Equine Vet. Sci. 41, 80–81.
Combining time-lapse imaging and next generation RNA-sequencing to assess equine embryo developmental potential.Crossref | GoogleScholarGoogle Scholar |

De Neubourg, D., Gerris, J., Mangelschots, K., Van Royen, E., Vercruyssen, M., and Elseviers, M. (2004). Single top quality embryo transfer as a model for prediction of early pregnancy outcome. Hum. Reprod. 19, 1476–1479.
Single top quality embryo transfer as a model for prediction of early pregnancy outcome.Crossref | GoogleScholarGoogle Scholar | 15117893PubMed |

Diaw, M., Salgado, R. M., Canesin, H. S., Gridley, N., and Hinrichs, K. (2018). Effect of different shipping temperatures (~22°C vs. ~7°C) and holding media on blastocyst development after overnight holding of immature equine cumulus-oocyte complexes. Theriogenology 111, 62–68.
Effect of different shipping temperatures (~22°C vs. ~7°C) and holding media on blastocyst development after overnight holding of immature equine cumulus-oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 29428846PubMed |

Foss, R., Ortis, H., and Hinrichs, K. (2013). Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse. Equine Vet. J. 45, 39–43.
Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse.Crossref | GoogleScholarGoogle Scholar |

Gardner, D. K., and Balaban, B. (2016). Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and ‘OMICS’: is looking good still important? Mol. Hum. Reprod. 22, 704–718.
Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and ‘OMICS’: is looking good still important?Crossref | GoogleScholarGoogle Scholar | 27578774PubMed |

Hinrichs, K. (2010). In vitro production of equine embryos: state of the art. Reprod. Domest. Anim. 45, 3–8.
In vitro production of equine embryos: state of the art.Crossref | GoogleScholarGoogle Scholar | 20591059PubMed |

Hinrichs, K., Choi, Y. H., Walckenaer, B. E., Varner, D. D., and Hartman, D. L. (2007). In vitro-produced equine embryos: production of foals after transfer, assessment by differential staining and effect of medium calcium concentrations during culture. Theriogenology 68, 521–529.
In vitro-produced equine embryos: production of foals after transfer, assessment by differential staining and effect of medium calcium concentrations during culture.Crossref | GoogleScholarGoogle Scholar | 17586036PubMed |

Iqbal, K., Chitwood, J. L., Meyers-Brown, G. A., Roser, J. F., and Ross, P. J. (2014). RNA-Seq transcriptome profiling of equine inner cell mass and trophectoderm. Biol. Reprod. 90, 1–9.
RNA-Seq transcriptome profiling of equine inner cell mass and trophectoderm.Crossref | GoogleScholarGoogle Scholar |

Kuhl, W., and Friedrich-Freksa, H. (1936). Richtungskörperbildung und Furchung des Eies sowie das Verhalten des Trophoblasten der weißen Maus. Verh. Dtsch Zool. Ges. 38, 187–195.

Leemans, B., Gadella, B. M., Stout, T. A. E., De Schauwer, C., Nelis, H., Hoogewijs, M., and Van Soom, A. (2016). Why doesn’t conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization. Reproduction 152, R233–R245.
Why doesn’t conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization.Crossref | GoogleScholarGoogle Scholar | 27651517PubMed |

Lewis, W., and Gregory, P. (1929). Cinematographs of living developing rabbit–eggs. Science 69, 226–229.
| 17789322PubMed |

Marzano, G., Mastrorocco, A., Zianni, R., Mangiacotti, M., Chiaravalle, A. E., Lacalandra, G. M., Minervini, F., Cardinali, A., Macciocca, M., Vicenti, R., Fabbri, R., Hinrichs, K., Dell’Aquila, M. E., and Martino, N. A. (2019). Altered morphokinetics in equine embryos from oocytes exposed to DEHP during IVM. Mol. Reprod. Dev. , .
Altered morphokinetics in equine embryos from oocytes exposed to DEHP during IVM.Crossref | GoogleScholarGoogle Scholar | 31410935PubMed |

Massip, A., Mulnard, J., Vanderzwalmen, P., Hanzen, C., and Ectors, F. (1982). The behaviour of cow blastocyst in vitro: cinematographic and morphometric analysis. J. Anat. 134, 399–405.
| 7076563PubMed |

Meseguer, M., Herrero, J., Tejera, A., Hilligsøe, K. M., Ramsing, N. B., and Remoh, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 26, 2658–2671.
The use of morphokinetics as a predictor of embryo implantation.Crossref | GoogleScholarGoogle Scholar | 21828117PubMed |

Motato, Y., de los Santos, M. J., Escriba, M. J., Ruiz, B. A., Remohí, J., and Meseguer, M. (2016). Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertil. Steril. 105, 376–384.e9.
Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system.Crossref | GoogleScholarGoogle Scholar | 26598211PubMed |

Niimura, S., Ogata, T., Okimura, A., Sato, T., Uchiyama, Y., Seta, T., Nakagawa, H., Nakagawa, K., and Tamura, Y. (2010). Time-lapse videomicrographic observations of blastocyst hatching in cattle. J. Reprod. Dev. 56, 649–654.
Time-lapse videomicrographic observations of blastocyst hatching in cattle.Crossref | GoogleScholarGoogle Scholar | 20814168PubMed |

Ottosen, L. D. M., Hindkjær, J., and Ingerslev, J. (2007). Light exposure of the ovum and preimplantation embryo during ART procedures. J. Assist. Reprod. Genet. 24, 99–103.
Light exposure of the ovum and preimplantation embryo during ART procedures.Crossref | GoogleScholarGoogle Scholar |

Rader, K., Choi, Y.-H., and Hinrichs, K. (2016). Intracytoplasmic sperm injection, embryo culture, and transfer of in vitro-produced blastocysts. Vet. Clin. North Am. Equine Pract. 32, 401–413.
Intracytoplasmic sperm injection, embryo culture, and transfer of in vitro-produced blastocysts.Crossref | GoogleScholarGoogle Scholar | 27726990PubMed |

Schultz, R. M. (2007). Of light and mouse embryos: less is more. Proc. Natl Acad. Sci. USA 104, 14547–14548.
Of light and mouse embryos: less is more.Crossref | GoogleScholarGoogle Scholar | 17785409PubMed |

Sugimura, S., Akai, T., and Imai, K. (2017). Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J. Reprod. Dev. 63, 353–357.
Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes.Crossref | GoogleScholarGoogle Scholar | 28552887PubMed |

Squires, E. L. (2016). Breakthroughs in equine embryo cryopreservation. Vet. Clin. North Am. Equine Pract. 32, 415–424.
Breakthroughs in equine embryo cryopreservation.Crossref | GoogleScholarGoogle Scholar | 27726986PubMed |

Squires, E. L., and McCue, P. M. (2016). Cryopreservation of equine embryos. J. Equine Vet. Sci. 41, 7–12.
Cryopreservation of equine embryos.Crossref | GoogleScholarGoogle Scholar |

Stringfellow, D., and Givens, M. (2001). ‘Manual of the International Embryo Transfer Society: a Procedural Guide and General Information for the Use of Embryo Transfer Technology Emphasizing Sanitary Procedures.’ (International Embryo Transfer Society: Champaign, IL.)

Herrero, J., Tejera, A., Albert, C., Vidal, C., de los Santos, M. J., and Meseguer, M. (2013). A time to look back: analysis of morphokinetic characteristics of human embryo development. Fertil. Steril. 100, 1602–1609.e4.
A time to look back: analysis of morphokinetic characteristics of human embryo development.Crossref | GoogleScholarGoogle Scholar | 24083877PubMed |

Wong, C. C., Loewke, K. E., Bossert, N. L., Behr, B., De Jonge, C. J., Baer, T. M., and Pera, R. A. R. (2010). Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 28, 1115–1121.
Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 20890283PubMed |

Wong, C., Chen, A. A., Behr, B., and Shen, S. (2013). Time-lapse microscopy and image analysis in basic and clinical embryo development research. Reprod. Biomed. Online 26, 120–129.
Time-lapse microscopy and image analysis in basic and clinical embryo development research.Crossref | GoogleScholarGoogle Scholar | 23273754PubMed |