Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Targeting epigenetic nuclear reprogramming in aggregated cloned equine embryos

Thiago V. Damasceno Teixeira A , Richard C. Fry A , Angus McKinnon B , Kerri L. Fry A , Jennifer M. Kelly C , Paul J. Verma C , Chelsie Burden B , Daniel F. Salamone https://orcid.org/0000-0003-0858-0313 D E and Andrés Gambini https://orcid.org/0000-0002-3652-2068 D E F
+ Author Affiliations
- Author Affiliations

A Laboratory of Animal and Meat Sciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia.

B Goulburn Valley Equine Hospital, 905 Goulburn Valley Highway, Congupna, Victoria 3633, Australia.

C South Australian Research and Development Institute (SARDI), Turretfield Research Centre, Holland Road, Rosedale, 5350, South Australia, Australia.

D Laboratorio de Biotecnología Animal, Facultad de Agronomia, Universidad de Buenos Aires, Av. San Martin 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.

E Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autónoma de Buenos Aires, Argentina.

F Corresponding author. Email: gambini@agro.uba.ar

Reproduction, Fertility and Development 31(12) 1885-1893 https://doi.org/10.1071/RD19239
Submitted: 27 June 2019  Accepted: 10 August 2019   Published: 4 October 2019

Abstract

Epigenetic perturbations during the reprogramming process have been described as the primary cause of the low efficiency of somatic cell nuclear transfer (SCNT). In this study, we tested three strategies targeting nuclear reprogramming to investigate effects on equine SCNT. First, we evaluated the effect of treating somatic cells with chetomin, a fungal secondary metabolite reported to inhibit the trimethylation on histone 3 lysine 9 (H3K9 me3). Second, caffeine was added to the culture medium during the enucleation of oocytes and before activation of reconstructed embryos as a protein phosphatase inhibitor to improve nuclear reprogramming. Third, we tested the effects of the histone deacetylase inhibitor trichostatin A (TSA) added during both activation and early embryo culture. Although none of these treatments significantly improved the developmental rates of the in vitro aggregated cloned equine embryos, the first equine cloned foal born in Australia was produced with somatic cells treated with chetomin. The present study describes the use of chetomin, caffeine and TSA for the first time in horses, serving as a starting point for the establishment of future protocols to target epigenetic reprogramming for improving the efficiency of equine cloning. Cloning is an expensive and inefficient process, but has gained particular interest in the equine industry. In this study we explored different strategies to improve cloning efficiency and produced the first cloned foal born in Australia. Our data serve as a starting point for the establishment of future protocols for improving equine cloning efficiency.


References

Akagi, S., Matsukawa, K., Mizutani, E., Fukunari, K., Kaneda, M., Watanabe, S., and Takahashi, S. (2011). Treatment with a histone deacetylase inhibitor after nuclear transfer improves the preimplantation development of cloned bovine embryos. J. Reprod. Dev. 57, 120–126.
Treatment with a histone deacetylase inhibitor after nuclear transfer improves the preimplantation development of cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 20962457PubMed |

Armstrong, L., Lako, M., Dean, W., and Stojkovic, M. (2006). Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells 24, 805–814.
Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 16282443PubMed |

Boiani, M., Eckardt, S., Leu, N. A., Schöler, H. R., and McLaughlin, K. J. (2003). Pluripotency deficit in clones overcome by clone–clone aggregation: epigenetic complementation? EMBO J. 22, 5304–5312.
Pluripotency deficit in clones overcome by clone–clone aggregation: epigenetic complementation?Crossref | GoogleScholarGoogle Scholar | 14517267PubMed |

Carafa, V., Miceli, M., Altucci, L., and Nebbioso, A. (2013). Histone deacetylase inhibitors: a patent review (2009–2011). Expert Opin. Ther. Pat. 23, 1–17.
Histone deacetylase inhibitors: a patent review (2009–2011).Crossref | GoogleScholarGoogle Scholar | 23094822PubMed |

Choi, Y. H., Norris, J. D., Velez, I. C., Jacobson, C. C., Hartman, D. L., and Hinrichs, K. (2013). A viable foal obtained by equine somatic cell nuclear transfer using oocytes recovered from immature follicles of live mares. Theriogenology 79, 791–796.e1.
A viable foal obtained by equine somatic cell nuclear transfer using oocytes recovered from immature follicles of live mares.Crossref | GoogleScholarGoogle Scholar | 23312717PubMed |

Ding, X., Wang, Y., Zhang, D., Wang, Y., Guo, Z., and Zhang, Y. (2008). Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2′-deoxycytidine and trichostatin A. Theriogenology 70, 622–630.
Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2′-deoxycytidine and trichostatin A.Crossref | GoogleScholarGoogle Scholar | 18556056PubMed |

Fukushima, S., Endo, M., Matsumoto, Y., Fukushi, J. I., Matsunobu, T., Kawaguchi, K., Setsu, N., IIda, K., Yokoyama, N., Nakagawa, M., Yahiro, K., Oda, Y., Iwamoto, Y., and Nakashima, Y. (2017). Hypoxia-inducible factor 1 alpha is a poor prognostic factor and potential therapeutic target in malignant peripheral nerve sheath tumor. PLoS One 12, e0178064.
Hypoxia-inducible factor 1 alpha is a poor prognostic factor and potential therapeutic target in malignant peripheral nerve sheath tumor.Crossref | GoogleScholarGoogle Scholar | 28837679PubMed |

Galli, C., Lagutina, I., Crotti, G., Colleoni, S., Turini, P., Ponderato, N., Duchi, R., and Lazzari, G. (2003). Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.
Pregnancy: a cloned horse born to its dam twin.Crossref | GoogleScholarGoogle Scholar | 12904778PubMed |

Gambini, A., and Maserati, M. (2017). A journey through horse cloning. Reprod. Fertil. Dev. 30, 8–17.
A journey through horse cloning.Crossref | GoogleScholarGoogle Scholar | 29539299PubMed |

Gambini, A., Jarazo, J., Olivera, R., and Salamone, D. F. (2012). Equine cloning: in vitro and in vivo development of aggregated embryos. Biol. Reprod. 87, 1–9.

Gambini, A., Jarazo, J., Karlanian, F., De Stéfano, A., and Salamone, D. F. (2014a). Effect of collection–maturation interval time and pregnancy status of donor mares on oocyte developmental competence in horse cloning. J. Anim. Sci. 92, 561–567.
Effect of collection–maturation interval time and pregnancy status of donor mares on oocyte developmental competence in horse cloning.Crossref | GoogleScholarGoogle Scholar | 24664561PubMed |

Gambini, A., De Stefano, A., Bevacqua, R. J., Karlanian, F., and Salamone, D. F. (2014b). The aggregation of four reconstructed zygotes is the limit to improve the developmental competence of cloned equine embryos. PLoS One 14, e110998.9.

Jafarpour, F., Hosseini, S. M., Hajian, M., Forouzanfar, M., Ostadhosseini, S., Abedi, P., Gholami, S., Ghaedi, K., Gourabi, H., Shahverdi, A. H., Vosough, A. D. T., and Nasr-Esfahani, M. H. (2011). Somatic cell-induced hyperacetylation, but not hypomethylation, positively and reversibly affects the efficiency of in vitro cloned blastocyst production in cattle. Cell. Reprogram. 13, 483–493.
Somatic cell-induced hyperacetylation, but not hypomethylation, positively and reversibly affects the efficiency of in vitro cloned blastocyst production in cattle.Crossref | GoogleScholarGoogle Scholar | 21919704PubMed |

Johnson, A. K., Clark-price, S. C., Choi, Y., Hartman, D. L., and Hinrichs, K. (2010). Physical and clinicopathologic findings in foals derived by use of somatic cell nuclear transfer: 14 cases (2004–2008). J. Am. Vet. Med. Assoc. 236, 983–990.
Physical and clinicopathologic findings in foals derived by use of somatic cell nuclear transfer: 14 cases (2004–2008).Crossref | GoogleScholarGoogle Scholar | 20433399PubMed |

Kawahara, M., Wakai, T., Yamanaka, K., Kobayashi, J., Sugimura, S., Shimizu, T., Matsumoto, H., Kim, J. H., Sasada, H., and Sato, E. (2005). Caffeine promotes premature chromosome condensation formation and in vitro development in porcine reconstructed embryos via a high level of maturation promoting factor activity during nuclear transfer. Reproduction 130, 351–357.
Caffeine promotes premature chromosome condensation formation and in vitro development in porcine reconstructed embryos via a high level of maturation promoting factor activity during nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 16123242PubMed |

Kim, T. S., Park, S. H., Lee, M. R., Kim, S. Y., Eun, H. J., Baek, S. K., Ko, Y. G., Kim, S. W., Sung, H. H., and Lee, J. H. (2013). Selection and synchronization of recipient cytoplasts for improving the efficiency of porcine somatic cell nuclear transfer. J. Agric. Life Sci. 47, 167–181.
Selection and synchronization of recipient cytoplasts for improving the efficiency of porcine somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar |

Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N. V., Wakayama, S., Bui, H. T., and Wakayama, T. (2006). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun. 340, 183–189.
Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 16356478PubMed |

Lagutina, I., Lazzari, G., Duchi, R., Colleoni, S., Ponderato, N., Turini, P., Crotti, G., and Galli, C. (2005). Somatic cell nuclear transfer in horses: effect of oocyte morphology, embryo reconstruction method and donor cell type. Reproduction 130, 559–567.
Somatic cell nuclear transfer in horses: effect of oocyte morphology, embryo reconstruction method and donor cell type.Crossref | GoogleScholarGoogle Scholar | 16183874PubMed |

Lai, Y. S., Chen, J. Y., Tsai, H. J., Chen, T. Y., and Hung, W. C. (2015). The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells. Blood Cancer J. 5, e313.
The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells.Crossref | GoogleScholarGoogle Scholar | 25978433PubMed |

Lee, J. H., and Campbell, K. H. (2006). Effects of enucleation caffeine on maturation-promoting factor (MPF), mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer. Biol. Reprod. 74, 691–698.
Effects of enucleation caffeine on maturation-promoting factor (MPF), mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 16371593PubMed |

Liu, Z., Cai, Y., Wang, Y., Nie, Y., Zhang, C., Xu, Y., Zhang, X., Lu, Y., Wang, Z., Poo, M., and Sun, Q. (2018). Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172, 881–887.e7.
Cloning of macaque monkeys by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 29395327PubMed |

Loi, P., Iuso, D., Czernik, M., and Ogura, A. (2016). A new, dynamic era for somatic cell nuclear transfer? Trends Biotechnol. 34, 791–797.
A new, dynamic era for somatic cell nuclear transfer?Crossref | GoogleScholarGoogle Scholar | 27118511PubMed |

Matoba, S., Liu, Y., Lu, F., Iwabuchi, K. A., Shen, L., Inoue, A., and Zhang, Y. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884–895.
Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation.Crossref | GoogleScholarGoogle Scholar | 25417163PubMed |

Mitalipov, S. M., Zhou, Q., Byrne, J. A., Ji, W. Z., Norgren, R. B., and Wolf, D. P. (2007). Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum. Reprod. 22, 2232–2242.
Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling.Crossref | GoogleScholarGoogle Scholar | 17562675PubMed |

Niemann, H. (2016). Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 86, 80–90.
Epigenetic reprogramming in mammalian species after SCNT-based cloning.Crossref | GoogleScholarGoogle Scholar | 27160443PubMed |

Park, J. S., Young, S. J., Sang, T. S., Lee, K. K., and Kang, Y. K. (2007). Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev. Dyn. 236, 2523–2533.
Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes.Crossref | GoogleScholarGoogle Scholar | 17676637PubMed |

Peters, A. H. F. M., O’carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schöfer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A., Opravil, S., Doyle, M., Sibilia, M., and Jenuwein, T. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337.
Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability.Crossref | GoogleScholarGoogle Scholar |

Reece, K. M., Richardson, E. D., Cook, K. M., Campbell, T. J., Pisle, S. T., Holly, A. J., Venzon, D. J., Liewehr, D. J., Chau, C. H., Price, D. K., and Figg, W. D. (2014). Epidithiodiketopiperazines (ETPs) exhibit in vitro antiangiogenic and in vivo antitumor activity by disrupting the HIF-1α/p300 complex in a preclinical model of prostate cancer. Mol. Cancer 13, 91.
Epidithiodiketopiperazines (ETPs) exhibit in vitro antiangiogenic and in vivo antitumor activity by disrupting the HIF-1α/p300 complex in a preclinical model of prostate cancer.Crossref | GoogleScholarGoogle Scholar | 24775564PubMed |

Saini, M., Selokar, N. L., Agrawal, H., Singla, S. K., Chauhan, M. S., Manik, R. S., and Palta, P. (2017). Treatment of donor cells and reconstructed embryos with a combination of trichostatin-A and 5-aza-2′-deoxycytidine improves the developmental competence and quality of buffalo embryos produced by handmade cloning and alters their epigenetic status and gene expression. Cell. Reprogram. 19, 208–215.
Treatment of donor cells and reconstructed embryos with a combination of trichostatin-A and 5-aza-2′-deoxycytidine improves the developmental competence and quality of buffalo embryos produced by handmade cloning and alters their epigenetic status and gene expression.Crossref | GoogleScholarGoogle Scholar | 28463020PubMed |

Shen, C. J., Lin, C. C., Shen, P. C., Cheng, W. T., Chen, H. L., Chang, T. C., Liu, S. S., and Chen, C. M. (2013). Imprinted genes and satellite loci are differentially methylated in bovine somatic cell nuclear transfer clones. Cell. Reprogram. 15, 413–424.
| 23961768PubMed |

Shi, L. H., Miao, Y. L., Ouyang, Y. C., Huang, J. C., Lei, Z. L., Yang, J. W., Han, Z. M., Song, X. F., Sun, Q. Y., and Chen, D. Y. (2008). Trichostatin A (TSA) improves the development of rabbit–rabbit intraspecies cloned embryos, but not rabbit–human interspecies cloned embryos. Dev. Dyn. 237, 640–648.
Trichostatin A (TSA) improves the development of rabbit–rabbit intraspecies cloned embryos, but not rabbit–human interspecies cloned embryos.Crossref | GoogleScholarGoogle Scholar | 18265023PubMed |

Silva, C. G. D., Martins, C. F., Bessler, H. C., da Fonseca Neto, Á. M., Cardoso, T. C., Franco, M. M., Mendonça, A. D. S., Leme, L. D. O., Borges, J. R. J., Malaquias, J. V., and Báo, S. N. (2019). Use of trichostatin A alters the expression of HDAC3 and KAT2 and improves in vitro development of bovine embryos cloned using less methylated mesenchymal stem cells. Reprod. Domest. Anim. 54, 289–299.
Use of trichostatin A alters the expression of HDAC3 and KAT2 and improves in vitro development of bovine embryos cloned using less methylated mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar |

Simões, R., and Rodrigues Santos Jr, A. (2017). Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer. Organogenesis 13, 156–178.
Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 29020571PubMed |

Sparman, M. L., Tachibana, M., and Mitalipov, S. M. (2010). Cloning of non-human primates: the road ‘less traveled by’. Int. J. Dev. Biol. 54, 1671–1678.
Cloning of non-human primates: the road ‘less traveled by’.Crossref | GoogleScholarGoogle Scholar | 21404187PubMed |

Su, J. M., Yang, B., Wang, Y. S., Li, Y. Y., Xiong, X. R., Wang, L. J., Guo, Z. K., and Zhang, Y. (2011). Expression and methylation status of imprinted genes in placentas of deceased and live cloned transgenic calves. Theriogenology 75, 1346–1359.
Expression and methylation status of imprinted genes in placentas of deceased and live cloned transgenic calves.Crossref | GoogleScholarGoogle Scholar | 21295824PubMed |

Tachibana, M., Amato, P., Sparman, M., Gutierrez, N. M., Tippner-Hedges, R., Ma, H., Kang, E., Fulati, A., Lee, H. S., Sritanaudomchai, H., and Masterson, K. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153, 1228–1238.
Human embryonic stem cells derived by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 23683578PubMed |

Takahashi, M., Takemoto, Y., Shimazu, T., Kawasaki, H., Tachibana, M., Shinkai, Y., Takagi, M., Shin-Ya, K., Igarashi, Y., Ito, A., and Yoshida, M. (2012). Inhibition of histone H3K9 methyltransferases by gliotoxin and related epipolythiodioxopiperazines. J. Antibiot. (Tokyo) 65, 263–265.
Inhibition of histone H3K9 methyltransferases by gliotoxin and related epipolythiodioxopiperazines.Crossref | GoogleScholarGoogle Scholar | 22334240PubMed |

Tennant, J. R. (1964). Evaluation of the Trypan blue technique for determination of cell viability. Transplantation 2, 685–694.
Evaluation of the Trypan blue technique for determination of cell viability.Crossref | GoogleScholarGoogle Scholar | 14224649PubMed |

Tran, H. T. T., Kim, H. N., Lee, I. K., Nguyen-Pham, T. N., Ahn, J. S., Kim, Y. K., Lee, J. J., Park, K. S., Kook, H., and Kim, H. J. (2013). Improved therapeutic effect against leukemia by a combination of the histone methyltransferase inhibitor chaetocin and the histone deacetylase inhibitor trichostatin A. J. Korean Med. Sci. 28, 237–246.
Improved therapeutic effect against leukemia by a combination of the histone methyltransferase inhibitor chaetocin and the histone deacetylase inhibitor trichostatin A.Crossref | GoogleScholarGoogle Scholar |

Tripathi, A., Kumar, K. V. P., and Chaube, S. K. (2010). Meiotic cell cycle arrest in mammalian oocytes. J. Cell. Physiol. 223, 592–600.
| 20232297PubMed |

Vajta, G., Peura, T. T., Holm, P., Páldi, A., Greve, T., Trounson, A. O., and Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system. Mol. Reprod. Dev. 55, 256–264.
New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system.Crossref | GoogleScholarGoogle Scholar | 10657044PubMed |

Wei, Y., Zhu, J., Huan, Y., Liu, Z., Yang, C., Zhang, X., Mu, Y., Xia, P., and Liu, Z. (2010). Aberrant expression and methylation status of putatively imprinted genes in placenta of cloned piglets. Cell. Reprogram. 12, 213–222.
| 20677935PubMed |

Zhang, X., Wang, D., Han, Y., Duan, F., Lv, Q., and Li, Z. (2014). Altered imprinted gene expression and methylation patterns in mid-gestation aborted cloned porcine fetuses and placentas. J. Assist. Reprod. Genet. 31, 1511–1517.
Altered imprinted gene expression and methylation patterns in mid-gestation aborted cloned porcine fetuses and placentas.Crossref | GoogleScholarGoogle Scholar | 25172095PubMed |

Zhang, J., Qu, P., Zhou, C., Liu, X., Ma, X., Wang, M., Wang, Y., Su, J., Liu, J., and Zhang, Y. (2017). MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming. J. Biol. Chem. 292, 15916–15926.
MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming.Crossref | GoogleScholarGoogle Scholar | 28794155PubMed |

Zhang, Y. M., Gao, E. E., Wang, Q. Q., Tian, H., and Hou, J. (2018). Effects of histone methyltransferase inhibitor chaetocin on histone H3K9 methylation of cultured ovine somatic cells and development of preimplantation cloned embryos. Reprod. Toxicol. 79, 124–131.
Effects of histone methyltransferase inhibitor chaetocin on histone H3K9 methylation of cultured ovine somatic cells and development of preimplantation cloned embryos.Crossref | GoogleScholarGoogle Scholar | 29909068PubMed |

Zhao, J., Ross, J. W., Hao, Y., Spate, L. D., Walters, E. M., Samuel, M. S., Rieke, A., Murphy, C. N., and Prather, R. S. (2009). Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol. Reprod. 81, 525–530.
Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 19386991PubMed |