Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Transcriptomics–genomics data integration and expression quantitative trait loci analyses in oocyte donors and embryo recipients for improving in vitro production of dairy cattle embryos

H. N. Kadarmideen A B C and G. Mazzoni A
+ Author Affiliations
- Author Affiliations

A Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kongens Lyngby, Denmark.

B Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, 2800 Kongens Lyngby, Denmark.

C Corresponding author. Email: hajak@dtu.dk

Reproduction, Fertility and Development 31(1) 55-67 https://doi.org/10.1071/RD18338
Published online: 3 December 2018

Abstract

In this paper we first provide a brief review of main results from our previously published studies on genome-wide gene expression (transcriptomics) in donor and recipient cattle used in in vitro production (IVP) of embryos and embryo transfer (ET). Then, we present novel results from applying integrative systems genomics and biological analyses where transcriptomics data are combined with genomic data in both donor and recipient cattle to map expression quantitative trait loci (eQTLs). The eQTLs are genetic markers that can regulate or control the expression of genes in the entire genome, via complex molecular mechanisms, and thus can act as a powerful tool for genomic and gene-assisted selection. We identified significant eQTLs potentially controlling the expression of 13 candidate genes for donor cow quality (IVP parameters; e.g. cyclin B1 (CCNB1), outer dense fiber of sperm tails 2 like (ODF2L)) and 19 candidate genes for recipient cows quality (endometrial receptivity; e.g. ER membrane protein complex subunit 9 (EMC9), mannosidase beta (MANBA), peptidase inhibitor 16 (PI16)). Annotation and colocation of detected eQTLs show that some of the eQTLs are in the same genomic regions previously reported as QTLs for reproduction-related traits. However, eQTLs and the candidate genes identified should be further validated in larger populations before implementation as genetic markers or used in genomic selection for improving IVP and ET performance.

Additional keywords: candidate genes, cattle IVF, genomic breeding, omics data.


References

Albert, F. W., and Kruglyak, L. (2015). The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16, 197–212.
The role of regulatory variation in complex traits and disease.Crossref | GoogleScholarGoogle Scholar |

Bauersachs, S., Ulbrich, S. E., Gross, K., Schmidt, S. E., Meyer, H. H., Wenigerkind, H., Vermehren, M., Sinowatz, F., Blum, H., and Wolf, E. (2006). Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction 132, 319–331.
Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity.Crossref | GoogleScholarGoogle Scholar |

Bauersachs, S., Ulbrich, S. E., Zakhartchenko, V., Minten, M., Reichenbach, M., Reichenbach, H.-D., Blum, H., Spencer, T. E., and Wolf, E. (2009). The endometrium responds differently to cloned versus fertilized embryos. Proc. Natl Acad. Sci. USA 106, 5681–5686.
The endometrium responds differently to cloned versus fertilized embryos.Crossref | GoogleScholarGoogle Scholar |

Bettegowda, A., Patel, O. V., Lee, K.-B., Park, K.-E., Salem, M., Yao, J., Ireland, J. J., and Smith, G. W. (2008). Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications. Biol. Reprod. 79, 301–309.
Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications.Crossref | GoogleScholarGoogle Scholar |

Bols, P., Jorssen, E., Goovaerts, I., Langbeen, A., and Leroy, J. (2012). High throughput non-invasive oocyte quality assessment: the search continues. Anim. Reprod. 9, 420–425.

Bunel, A., Nivet, A., Blondin, P., Vigneault, C., Richard, F., and Sirard, M. (2014). Cumulus cell gene expression associated with pre-ovulatory acquisition of developmental competence in bovine oocytes. Reprod. Fertil. Dev. 26, 855–865.
Cumulus cell gene expression associated with pre-ovulatory acquisition of developmental competence in bovine oocytes.Crossref | GoogleScholarGoogle Scholar |

Civelek, M., and Lusis, A. J. (2014). Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 15, 34–48.
Systems genetics approaches to understand complex traits.Crossref | GoogleScholarGoogle Scholar |

Cushman, R. A., McDaneld, T. G., Kuehn, L. A., Snelling, W. M., and Nonneman, D. (2014). Incorporation of genetic technologies associated with applied reproductive technologies to enhance world food production. In ‘Current and Future Reproductive Technologies and World Food Production’. (Eds I.R. Cohen, A. Latjtha, J.D. Lambris, R. Paoletti, N. Rezaei.) pp. 77–96. (Springer: Berlin.)

Do, D. N., Bissonnette, N., Lacasse, P., Miglior, F., Sargolzaei, M., Zhao, X., and Ibeagha-Awemu, E. (2017). Genome-wide association analysis and pathways enrichment for lactation persistency in Canadian Holstein cattle. J. Dairy Sci. 100, 1955–1970.
Genome-wide association analysis and pathways enrichment for lactation persistency in Canadian Holstein cattle.Crossref | GoogleScholarGoogle Scholar |

Fair, T. (2013). Molecular and endocrine determinants of oocyte competence. Anim. Reprod. 10, 277–282.

Forde, N., and Lonergan, P. (2012). Transcriptomic analysis of the bovine endometrium: what is required to establish uterine receptivity to implantation in cattle? J. Reprod. Dev. 58, 189–195.
Transcriptomic analysis of the bovine endometrium: what is required to establish uterine receptivity to implantation in cattle?Crossref | GoogleScholarGoogle Scholar |

Forde, N., Carter, F., Fair, T., Crowe, M. A., Evans, A. C., Spencer, T. E., Bazer, F. W., O’Gaora, P., McBride, R., and Boland, M. P. (2008). ‘Effect of pregnancy and progesterone on gene expression in the uterine endometrium of cattle.’ (Oxford University Press: Oxford, UK.)

Forde, N., Carter, F., Fair, T., Crowe, M., Evans, A., Spencer, T., Bazer, F., McBride, R., Boland, M., and O’gaora, P. (2009). Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod. 81, 784–794.
Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle.Crossref | GoogleScholarGoogle Scholar |

Forde, N., Beltman, M., Lonergan, P., Diskin, M., Roche, J., and Crowe, M. (2011). Oestrous cycles in Bos taurus cattle. Anim. Reprod. Sci. 124, 163–169.
Oestrous cycles in Bos taurus cattle.Crossref | GoogleScholarGoogle Scholar |

Forde, N., Mehta, J. P., Minten, M., Crowe, M. A., Roche, J. F., Spencer, T. E., and Lonergan, P. (2012). Effects of low progesterone on the endometrial transcriptome in cattle. Biol. Reprod. 87, 124.
Effects of low progesterone on the endometrial transcriptome in cattle.Crossref | GoogleScholarGoogle Scholar |

Forde, N., Simintiras, C. A., Sturmey, R., Mamo, S., Kelly, A. K., Spencer, T. E., Bazer, F. W., and Lonergan, P. (2014). Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle. PLoS One 9, e100010.
Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar |

Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., Belmont, J. W., Boudreau, A., Hardenbol, P., and Leal, S. M. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861.
A second generation human haplotype map of over 3.1 million SNPs.Crossref | GoogleScholarGoogle Scholar |

Gilbert, I., Robert, C., Vigneault, C., Blondin, P., and Sirard, M.-A. (2012). Impact of the LH surge on granulosa cell transcript levels as markers of oocyte developmental competence in cattle. Reproduction 143, 735–747.
Impact of the LH surge on granulosa cell transcript levels as markers of oocyte developmental competence in cattle.Crossref | GoogleScholarGoogle Scholar |

Girard, A., Dufort, I., Douville, G., and Sirard, M.-A. (2015). Global gene expression in granulosa cells of growing, plateau and atretic dominant follicles in cattle. Reprod. Biol. Endocrinol. 13, 17.
Global gene expression in granulosa cells of growing, plateau and atretic dominant follicles in cattle.Crossref | GoogleScholarGoogle Scholar |

Gómez, E., Rodríguez, A., Muñoz, M., Caamaño, J. N., Hidalgo, C. O., Morán, E., Facal, N., and Díez, C. (2008). Serum free embryo culture medium improves in vitro survival of bovine blastocysts to vitrification. Theriogenology 69, 1013–1021.

Hatzirodos, N., Hummitzsch, K., Irving-Rodgers, H. F., Harland, M. L., Morris, S. E., and Rodgers, R. J. (2014a). Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia. BMC Genomics 15, 40.
Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia.Crossref | GoogleScholarGoogle Scholar |

Hatzirodos, N., Irving-Rodgers, H. F., Hummitzsch, K., Harland, M. L., Morris, S. E., and Rodgers, R. J. (2014b). Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes. BMC Genomics 15, 24.
Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes.Crossref | GoogleScholarGoogle Scholar |

Heleil, B., Kuzmina, T., Alm, H., Scotti, O., Tuchscherer, A., and Torner, H. (2010). Involvement of granulosa cells in realization of prolactin effects on the developmental competence of bovine oocytes matured in vitro. J. Am. Sci. 6, 796–805.

Hu, Z.-L., Park, C. A., and Reecy, J. M. (2016). Developmental progress and current status of the Animal QTLdb. Nucleic Acids Res. 44, D827–D833.
Developmental progress and current status of the Animal QTLdb.Crossref | GoogleScholarGoogle Scholar |

Ikeda, S., Saeki, K., Imai, H., and Yamada, M. (2006). Abilities of cumulus and granulosa cells to enhance the developmental competence of bovine oocytes during in vitro maturation period are promoted by midkine; a possible implication of its apoptosis suppressing effects. Reproduction 132, 549–557.
Abilities of cumulus and granulosa cells to enhance the developmental competence of bovine oocytes during in vitro maturation period are promoted by midkine; a possible implication of its apoptosis suppressing effects.Crossref | GoogleScholarGoogle Scholar |

Jiang, J.-Y., Xiong, H., Cao, M., Xia, X., Sirard, M.-A., and Tsang, B. K. (2010). Mural granulosa cell gene expression associated with oocyte developmental competence. J. Ovarian Res. 3, 6.
Mural granulosa cell gene expression associated with oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar |

Kadarmideen, H. N. (2014). Genomics to systems biology in animal and veterinary sciences: progress, lessons and opportunities. Livest. Sci. 166, 232–248.
Genomics to systems biology in animal and veterinary sciences: progress, lessons and opportunities.Crossref | GoogleScholarGoogle Scholar |

Kadarmideen, H., Mazzoni, G., Watanabe, Y., Strøbech, L., Baruselli, P., Meirelles, F., Callesen, H., Hyttel, P., Ferraz, J., and Nogueira, M. (2015). Genomic selection of in vitro produced and somatic cell nuclear transfer embryos for rapid genetic improvement in cattle production. Anim. Reprod. 12, 389–396.

Killeen, A. P., Morris, D. G., Kenny, D. A., Mullen, M. P., Diskin, M. G., and Waters, S. M. (2014). Global gene expression in endometrium of high and low fertility heifers during the mid-luteal phase of the estrous cycle. BMC Genomics 15, 234.
Global gene expression in endometrium of high and low fertility heifers during the mid-luteal phase of the estrous cycle.Crossref | GoogleScholarGoogle Scholar |

Li, H. (2013). Systems genetics in ‘-omics’ era: current and future development. Theory Biosci. 132, 1–16.
Systems genetics in ‘-omics’ era: current and future development.Crossref | GoogleScholarGoogle Scholar |

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biology 15, 550.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2Crossref | GoogleScholarGoogle Scholar |

Matoba, S., Bender, K., Fahey, A. G., Mamo, S., Brennan, L., Lonergan, P., and Fair, T. (2014). Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod. Fertil. Dev. 26, 337–345.
Predictive value of bovine follicular components as markers of oocyte developmental potential.Crossref | GoogleScholarGoogle Scholar |

Mazzoni, G., Kogelman, L. J., Suravajhala, P., and Kadarmideen, H. N. (2015). Systems genetics of complex diseases using RNA-sequencing methods. Int. J. Biosci. Biochem. Bioinform. 5, 264.
Systems genetics of complex diseases using RNA-sequencing methods.Crossref | GoogleScholarGoogle Scholar |

Mazzoni, G., Pedersen, H. S., de Oliveira, G. A., Alexandre, P., Razza, E. M., Callesen, H., Hyttel, P., Nogueira, M. F., Ferraz, J. B. S., and Kadarmideen, H. N. (2017a). Application of integrative genomics and systems biology to conventional and in vitro reproductive traits in cattle. Anim. Reprod. 14, 507–513.
Application of integrative genomics and systems biology to conventional and in vitro reproductive traits in cattle.Crossref | GoogleScholarGoogle Scholar |

Mazzoni, G., Razza, E., Pedersen, H. S., Secher, J., Kadarmideen, H. N., Callesen, H., Stroebech, L., Freude, K., and Hyttel, P. (2017b). In vitro production of bovine embryos: cumulus/granulosa cell gene expression patterns point to early atresia as beneficial for oocyte competence. Anim. Reprod. 14, 482–489.
In vitro production of bovine embryos: cumulus/granulosa cell gene expression patterns point to early atresia as beneficial for oocyte competence.Crossref | GoogleScholarGoogle Scholar |

Mazzoni, G., Salleh, S. M., Freude, K., Pedersen, H. S., Stroebech, L., Callesen, H., Hyttel, P., and Kadarmideen, H. N. (2017c). Identification of potential biomarkers in donor cows for in vitro embryo production by granulosa cell transcriptomics. PLoS One 12, e0175464.
Identification of potential biomarkers in donor cows for in vitro embryo production by granulosa cell transcriptomics.Crossref | GoogleScholarGoogle Scholar |

Ménézo, Y. J., and Hérubel, F. (2002). Mouse and bovine models for human IVF. Reprod. Biomed. Online 4, 170–175.
Mouse and bovine models for human IVF.Crossref | GoogleScholarGoogle Scholar |

Meuwissen, T.H.E., Hayes, B., and Goddard, M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.

Mitko, K., Ulbrich, S. E., Wenigerkind, H., Sinowatz, F., Blum, H., Wolf, E., and Bauersachs, S. (2008). Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle. Reproduction 135, 225–240.
Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar |

Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, Muñoz, (2014). Prediction of pregnancy viability in bovine in vitro-produced embryos and recipient plasma with Fourier transform infrared spectroscopy. J. Dairy Sci. 97, 5497–5507.

Nielsen, L. (2016). Genomic selection and breeding programs in Nordic countries with the focus on semen sexing, IVF and future potential use of OPU-IVP in Denmark. Paper presented at the International symposium on modern cattle breeding: genomic selection and screening of in vitro produced embryos (MoCaS), 6 September 2016, Copenhagen, Denmark.

Nivet, A.-L., Bunel, A., Labrecque, R., Belanger, J., Vigneault, C., Blondin, P., and Sirard, M.-A. (2012). FSH withdrawal improves developmental competence of oocytes in the bovine model. Reproduction 143, 165–171.
FSH withdrawal improves developmental competence of oocytes in the bovine model.Crossref | GoogleScholarGoogle Scholar |

Nivet, A.-L., Vigneault, C., Blondin, P., and Sirard, M.-A. (2013). Changes in granulosa cells’ gene expression associated with increased oocyte competence in bovine. Reproduction 145, 555–565.
Changes in granulosa cells’ gene expression associated with increased oocyte competence in bovine.Crossref | GoogleScholarGoogle Scholar |

Orozco-Lucero, E., and Sirard, M. (2014). Molecular markers of fertility in cattle oocytes and embryos: progress and challenges. Anim. Reprod. 11, 183–194.

Ponsuksili, S., Murani, E., Schwerin, M., Schellander, K., Tesfaye, D., and Wimmers, K. (2012). Gene expression and DNA-methylation of bovine pretransfer endometrium depending on its receptivity after in vitro-produced embryo transfer. PLoS One 7, e42402.
Gene expression and DNA-methylation of bovine pretransfer endometrium depending on its receptivity after in vitro-produced embryo transfer.Crossref | GoogleScholarGoogle Scholar |

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., and Sham, P. C. (2007). PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum Genet. 81, 559–575.

Rath, D., Barcikowski, S., de Graaf, S., Garrels, W., Grossfeld, R., Klein, S., Knabe, W., Knorr, C., Kues, W., and Meyer, H. (2013). Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction 145, R15–R30.
Sex selection of sperm in farm animals: status report and developmental prospects.Crossref | GoogleScholarGoogle Scholar |

Revelli, A., Delle Piane, L., Casano, S., Molinari, E., Massobrio, M., and Rinaudo, P. (2009). Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 7, 40.
Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics.Crossref | GoogleScholarGoogle Scholar |

Robert, C. (2008). Challenges of functional genomics applied to farm animal gametes and pre-hatching embryos. Theriogenology 70, 1277–1287.
Challenges of functional genomics applied to farm animal gametes and pre-hatching embryos.Crossref | GoogleScholarGoogle Scholar |

Seidel, G. E. (2006). On the usefulness of an update on assisted reproductive technologies in cattle. Theriogenology 1, 1–3.

Shabalin, A. A. (2012). Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358.
Matrix eQTL: ultra fast eQTL analysis via large matrix operations.Crossref | GoogleScholarGoogle Scholar |

Sirard, M.-A. (2017). The ovarian follicle of cows as a model for human. Anim. Models Hum. Reprod. 127, 44.
The ovarian follicle of cows as a model for human.Crossref | GoogleScholarGoogle Scholar |

Sirard, M.-A., Richard, F., Blondin, P., and Robert, C. (2006). Contribution of the oocyte to embryo quality. Theriogenology 65, 126–136.
Contribution of the oocyte to embryo quality.Crossref | GoogleScholarGoogle Scholar |

Sponchiado, M., Gomes, N. S., Fontes, P. K., Martins, T., del Collado, M., de Assumpção Pastore, A., Pugliesi, G., Nogueira, M. F. G., and Binelli, M. (2017). Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle. PLoS One 12, e0175954.
Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle.Crossref | GoogleScholarGoogle Scholar |

Stroebech, L., Mazzoni, G., Pedersen, H. S., Freude, K. K., Kadarmideen, H., Callesen, H., and Hyttel, P. (2015). In vitro production of bovine embryos: revisiting oocyte development and application of systems biology. Anim. Reprod. 12, 465–472.

Suravajhala, P., Kogelman, L. J., and Kadarmideen, H. N. (2016). Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare. Genet. Sel. Evol. 48, 38.
Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare.Crossref | GoogleScholarGoogle Scholar |

Underwood, S. L., Bathgate, R., Pereira, D., Castro, A., Thomson, P., Maxwell, W., and Evans, G. (2010). Embryo production after in vitro fertilization with frozen–thawed, sex-sorted, re-frozen–thawed bull sperm. Theriogenology 73, 97–102.
Embryo production after in vitro fertilization with frozen–thawed, sex-sorted, re-frozen–thawed bull sperm.Crossref | GoogleScholarGoogle Scholar |

Veerkamp, R. R., and Beerda, B. (2007). Genetics and genomics to improve fertility in high producing dairy cows. Theriogenology 68, S266–S273.
Genetics and genomics to improve fertility in high producing dairy cows.Crossref | GoogleScholarGoogle Scholar |

Velazquez, M. A. (2008). Assisted reproductive technologies in cattle: applications in livestock production, biomedical research and conservation biology. Annu. Rev. Biomed. Sci. 10, 36–62.
Assisted reproductive technologies in cattle: applications in livestock production, biomedical research and conservation biology.Crossref | GoogleScholarGoogle Scholar |

Wang, L., and Michoel, T. (2016). Detection of regulator genes and eQTLs in gene networks. In ‘Systems biology in animal production and health’. Vol. 1. (Ed. H Kadarmideen) pp. 1–23. (Springer: Berlin.)