Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Fish sperm motility analysis: the central role of the flagellum

Sergii Boryshpolets A , Vitaliy Kholodnyy A , Jacky Cosson A B and Borys Dzyuba A
+ Author Affiliations
- Author Affiliations

A University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Laboratory of Reproductive Physiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic.

B Corresponding author. Email: jacosson@gmail.com

Reproduction, Fertility and Development 30(6) 833-841 https://doi.org/10.1071/RD17478
Submitted: 9 November 2017  Accepted: 28 February 2018   Published: 13 April 2018

Abstract

Motility analysis of spermatozoa relies on the investigation of either head trajectories or flagellum characteristics. Those two sets of parameters are far from being independent, the flagellum playing the role of motor, whereas the head plays a passive role of cargo. Therefore, quantitative descriptions of head trajectories represent a simplification of the complex pattern of whole sperm cell motion, resulting from the waves developed by the flagellum. The flagellum itself responds to a large variety of signals that precisely control its axoneme to allow activation, acceleration, slowing down or reorientation of the whole spermatozoon. Thus, it is obvious that analysis of flagellum characteristics provides information on the original source of movement and orientation of the sperm cell and presents additional parameters that enrich the panoply of quantitative descriptors of sperm motility. In this review, we briefly describe the methodologies used to obtain good-quality images of fish spermatozoa (head and especially flagellum) while they move fast and the methods developed for their analysis. The paper also aims to establish a link between classical analyses by computer-aided sperm analysis (CASA) and the descriptors generated by fish sperm flagellum analysis, and emphasises the information to be gained regarding motility performance from flagellum motion data.

Additional keywords: axoneme, computer-aided sperm analysis, flagella shape, sperm guidance, spermatozoon movement, video microscopy.


References

Abascal, F. J., Cosson, J., and Fauvel, C. (2007). Characterization of sperm motility in sea bass: the effect of heavy metals and physicochemical variables on sperm motility. J. Fish Biol. 70, 509–522.
Characterization of sperm motility in sea bass: the effect of heavy metals and physicochemical variables on sperm motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVOgsr8%3D&md5=89ebec9eb13305d9cf94e566d8527593CAS |

Alavi, S. M. H., and Cosson, J. (2005). Sperm motility in fishes. I. Effects of temperature and pH: a review. Cell Biol. Int. 29, 101–110.
Sperm motility in fishes. I. Effects of temperature and pH: a review.Crossref | GoogleScholarGoogle Scholar |

Alavi, S. M. H., and Cosson, J. (2006). Sperm motility in fishes. (II) Effects of ions and osmolality: a review. Cell Biol. Int. 30, 1–14.
Sperm motility in fishes. (II) Effects of ions and osmolality: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsF2ntr8%3D&md5=9555fa18246fdb5cad2a746ab04df971CAS |

Alavi, S. M. H., Cosson, J., Karami, M., Amiri, B. M., and Akhoundzadeh, M. A. (2004). Spermatozoa motility in the Persian sturgeon, Acipenser persicus: effects of pH, dilution rate, ions and osmolality. Reproduction 128, 819–828.
Spermatozoa motility in the Persian sturgeon, Acipenser persicus: effects of pH, dilution rate, ions and osmolality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSqsA%3D%3D&md5=a5dad8c7e9533717805147e7aad05fb6CAS |

Amann, R. P., and Waberski, D. (2014). Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81, 5–17.
Computer-assisted sperm analysis (CASA): capabilities and potential developments.Crossref | GoogleScholarGoogle Scholar |

Baba, S. A., and Mogami, Y. (1985). An approach to digital image analysis of bending shapes of eukaryotic flagella and cilia. Cell Motil. 5, 475–489.
An approach to digital image analysis of bending shapes of eukaryotic flagella and cilia.Crossref | GoogleScholarGoogle Scholar |

Billard, R., Christen, R., Cosson, M. P., Gatty, J. L., Letellier, L., Renard, P., and Saad, A. (1986). Biology of the gametes of some teleost species. Fish Physiol. Biochem. 2, 115–120.
Biology of the gametes of some teleost species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtFKktrg%3D&md5=4ed20a57b66388d896b908911a6710f6CAS |

Billard, R., Cosson, J., Perchec, G., and Linhart, O. (1995). Biology of sperm and artificial reproduction in carp. Aquaculture 129, 95–112.
Biology of sperm and artificial reproduction in carp.Crossref | GoogleScholarGoogle Scholar |

Billard, R., Cosson, J., Fierville, F., Brun, R., Rouault, T., and Williot, P. (1999). Motility analysis and energetics of the Siberian sturgeon Acipenser baerii spermatozoa. J. Appl. Ichthyol. 15, 199–203.
Motility analysis and energetics of the Siberian sturgeon Acipenser baerii spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Boitano, S., and Omoto, C. K. (1991). Membrane hyperpolarization activates trout sperm without an increase in intracellular pH. J. Cell Sci. 98, 343–349.

Bondarenko, O., Dzyuba, B., Cosson, J., Rodina, M., and Linhart, O. (2014). The role of Ca2+ and Na+ membrane transport in brook trout (Salvelinus fontinalis) spermatozoa motility. Fish Physiol. Biochem. 40, 1417–1421.
The role of Ca2+ and Na+ membrane transport in brook trout (Salvelinus fontinalis) spermatozoa motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmt1WksLc%3D&md5=013b11ad99b76da0acabc2bec1b3cde7CAS |

Boryshpolets, S., Cosson, J., Bondarenko, V., Gillies, E., Rodina, M., Dzyuba, B., and Linhart, O. (2013a). Different swimming behaviors of sterlet (Acipenser ruthenus) spermatozoa close to solid and free surfaces. Theriogenology 79, 81–86.
Different swimming behaviors of sterlet (Acipenser ruthenus) spermatozoa close to solid and free surfaces.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s%2FosFGkug%3D%3D&md5=66830f8351e791de7c1098cd530bb333CAS |

Boryshpolets, S., Kowalski, R. K., Dietrich, G. J., Dzyuba, B., and Ciereszko, A. (2013b). Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters. Theriogenology 80, 758–765.
Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sfotlCjtw%3D%3D&md5=cc14876874e7b9dc21abe9c74d4b4da6CAS |

Boryshpolets, S., Pérez-Cerezales, S., and Eisenbach, M. (2015). Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation. Hum. Reprod. 30, 884–892.
Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation.Crossref | GoogleScholarGoogle Scholar |

Brokaw, C. J. (1966). Bend propagation along flagella. Nature 209, 161–163.
Bend propagation along flagella.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF2s%2Fgtlequg%3D%3D&md5=848e57fe6352ec4261a8b56d2ca1d95dCAS |

Brokaw, C. J. (1972). Computer simulation of flagellar movement: I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys. J. 12, 564–586.
Computer simulation of flagellar movement: I. Demonstration of stable bend propagation and bend initiation by the sliding filament model.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE387psFaruw%3D%3D&md5=93086d40415c73a03dbc969d62b68458CAS |

Brokaw, C. J. (1974). Calcium and flagellar response during the chemotaxis of bracken spermatozoids. J. Cell. Physiol. 83, 151–158.
Calcium and flagellar response during the chemotaxis of bracken spermatozoids.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c7gtVGiug%3D%3D&md5=f11db299b8d3a52f453a5d88480f35a8CAS |

Brokaw, C. J., Josslin, R., and Bobrow, L. (1974). Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem. Biophys. Res. Commun. 58, 795–800.
Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXks1Wgu7k%3D&md5=4c1af03f17cad9c70a887918ecb519fdCAS |

Butts, I. A. E., Prokopchuk, G., Kašpar, V., Cosson, J., and Pitcher, T. E. (2017). Ovarian fluid impacts flagellar beating and biomechanical metrics of sperm between alternative reproductive tactics. J. Exp. Biol. 220, 2210–2217.
Ovarian fluid impacts flagellar beating and biomechanical metrics of sperm between alternative reproductive tactics.Crossref | GoogleScholarGoogle Scholar |

Chauvaud, L., Cosson, J., Suquet, M., and Billard, R. (1995). Sperm motility in turbot, Scophthalmus marimus: initiation of movement and changes with time of swimming characteristics. Environ. Biol. Fishes 43, 341–349.
Sperm motility in turbot, Scophthalmus marimus: initiation of movement and changes with time of swimming characteristics.Crossref | GoogleScholarGoogle Scholar |

Christ, S. A., Toth, G. P., McCarthy, H. W., Torsella, J. A., and Smith, M. K. (1996). Monthly variation in sperm motility in common carp assessed using computer-assisted sperm analysis (CASA). J. Fish Biol. 48, 1210–1222.
Monthly variation in sperm motility in common carp assessed using computer-assisted sperm analysis (CASA).Crossref | GoogleScholarGoogle Scholar |

Christen, R., Schackmann, R. W., and Shapiro, B. M. (1982). Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus. J. Biol. Chem. 257, 14881–14890.
| 1:CAS:528:DyaL38XmtFeis70%3D&md5=296a7b019d0827817965769870eaf917CAS |

Chyb, J., Kime, D., Szczerbik, P., Mikolajczyk, T., and Epler, P. (2001). Computer-assisted analysis (CASA) of common carp Cyprinus carpio L. spermatozoa motility in the presence of cadmium. Arch. Pol. Fisheries 9, 173–181.

Cosson, J. (2004). The ionic and osmotic factors controlling motility of fish spermatozoa. Aquacult. Int. 12, 69–85.
The ionic and osmotic factors controlling motility of fish spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFSjsro%3D&md5=6190695eb68509db42d98be6a3372a86CAS |

Cosson, J. (2008). Methods to analyse the movements of fish spermatozoa and their flagella. In ‘Fish Spermatology’. (Eds S. M. H. Alavi, J. Cosson, K. Coward, and G. Rafiee.) pp. 63–102. (Alpha Science International: Oxford, UK.)

Cosson, J. (2010). Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. J. Fish Biol. 76, 240–279.
Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjnsFSjtg%3D%3D&md5=ec2b4c07c4747051553bf6f36958a90aCAS |

Cosson, J. J., (Ed.) (2015). Flagellar Mechanics and Sperm Guidance. (Bentham Science Publishers: Sharjah, U.A.E.)

Cosson, M.-P., and Gagnon, C. (1988). Protease inhibitor and substrates block motility and microtubule sliding of sea urchin and carp spermatozoa. Cell Motil. Cytoskeleton 10, 518–527.
Protease inhibitor and substrates block motility and microtubule sliding of sea urchin and carp spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtVyqtb8%3D&md5=2015e51a9d5e84a026f71b011a2d9727CAS |

Cosson, M.-P., Billard, R., Gatti, J. L., and Christen, R. (1985). Rapid and quantitative assessment of trout spermatozoa motility using stroboscopy. Aquaculture 46, 71–75.
Rapid and quantitative assessment of trout spermatozoa motility using stroboscopy.Crossref | GoogleScholarGoogle Scholar |

Cosson, M.-P., Cosson, J., and Billard, R. (1991). Synchronous triggering of trout sperm is followed by an invariable set sequence of movement parameters whatever the incubation medium. Cell Motil. Cytoskeleton 20, 55–68.
Synchronous triggering of trout sperm is followed by an invariable set sequence of movement parameters whatever the incubation medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2Fpslajuw%3D%3D&md5=e449188e36ea82d50ab7d497f03171d4CAS |

Cosson, J., Billard, R., Cibert, C., Dreanno, C., Linhart, O., and Suquet, M. (1997). Movements of fish sperm flagella studied by high speed videomicroscopy coupled to computer assisted image analysis. Pol. Arch. Hydrobiol. 44, 103–113.

Cosson, J., Billard, R., Gibert, C., Dreanno, C., and Suquet, M. (1999). Ionic factors regulating the motility of fish sperm. In ‘The Male Gamete: From Basic to Clinical Applications’. (Ed. C. Gagnon.) pp. 161–186. (Cache River Press: Vienna, Illinois.)

Cosson, J., Linhart, O., Mims, S. D., Shelton, W. L., and Rodina, M. (2000). Analysis of motility parameters from paddlefish and shovelnose sturgeon spermatozoa. J. Fish Biol. 56, 1348–1367.
Analysis of motility parameters from paddlefish and shovelnose sturgeon spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Cosson, J., Huitorel, P., and Gagnon, C. (2003). How spermatozoa come to be confined to surfaces. Cell Motil. Cytoskeleton 54, 56–63.
How spermatozoa come to be confined to surfaces.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38novFylsQ%3D%3D&md5=6bdc63a42c7aeb038e72d6173435f2b4CAS |

Cosson, J., Groison, A.-L., Suquet, M., Fauvel, C., Dreanno, C., and Billard, R. (2008). Studying sperm motility in marine fish: an overview on the state of the art. J. Appl. Ichthyology 24, 460–486.
Studying sperm motility in marine fish: an overview on the state of the art.Crossref | GoogleScholarGoogle Scholar |

Dadras, H., Dzyuba, B., Cosson, J., Golpour, A., Siddique, M. A. M., and Linhart, O. (2017). Effect of water temperature on the physiology of fish spermatozoon function: a brief review. Aquacult. Res. 48, 729–740.
Effect of water temperature on the physiology of fish spermatozoon function: a brief review.Crossref | GoogleScholarGoogle Scholar |

Dreanno, C., Suquet, M., Quemener, L., Cosson, J., Fierville, F., Normant, Y., and Billard, R. (1997). Cryopreservation of turbot (Scophthalmus maximus) spermatozoa. Theriogenology 48, 589–603.
Cryopreservation of turbot (Scophthalmus maximus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtV2jtA%3D%3D&md5=e04cfc7c28c85d6c2429fcba75540d90CAS |

Dreanno, C., Suquet, M., Desbruyères, E., Cosson, J., Le Delliou, H., and Billard, R. (1998). Effect of urine on semen quality in turbot (Psetta maxima). Aquaculture 169, 247–262.
Effect of urine on semen quality in turbot (Psetta maxima).Crossref | GoogleScholarGoogle Scholar |

Dreanno, C., Cosson, J., Suquet, M., Cibert, C., Fauvel, C., Dorange, G., and Billard, R. (1999). Effects of osmolality, morphology perturbations and intracellular nucleotide content during the movement of sea bass (Dicentrarchus labrax) spermatozoa. J. Reprod. Fertil. 116, 113–125.
Effects of osmolality, morphology perturbations and intracellular nucleotide content during the movement of sea bass (Dicentrarchus labrax) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVemsbo%3D&md5=3753493916c88e3e491f918bcbaec239CAS |

Dzyuba, B., Cosson, J., Boryshpolets, S., Dzyuba, V., Rodina, M., Bondarenko, O., Shaliutina, A., and Linhart, O. (2013). Motility of sturgeon spermatozoa can sustain successive activations episodes. Anim. Reprod. Sci. 138, 305–313.
Motility of sturgeon spermatozoa can sustain successive activations episodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFCju74%3D&md5=2e80c9fe605c26ad2fa71d40c95ca158CAS |

Eisenbach, M., and Giojalas, L. C. (2006). Sperm guidance in mammals – An unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7, 276–285.
Sperm guidance in mammals – An unpaved road to the egg.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt12qsLY%3D&md5=d34e4ba3c9bc4fa872c4aefe7d67716eCAS |

Elofsson, H., Van Look, K., Borg, B., and Mayer, I. (2003). Influence of salinity and ovarian fluid on sperm motility in the fifteen-spined stickleback. J. Fish Biol. 63, 1429–1438.
Influence of salinity and ovarian fluid on sperm motility in the fifteen-spined stickleback.Crossref | GoogleScholarGoogle Scholar |

Fechner, S., Alvarez, L., Bönigk, W., Müller, A., Berger, T. K., Pascal, R., Trötschel, C., Poetsch, A., Stölting, G., Siegfried, K. R., Kremmer, E., Seifert, R., and Kaupp, U. B. (2015). A K+-selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm. eLife 4, e07624.
A K+-selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm.Crossref | GoogleScholarGoogle Scholar |

Gazo, I., Dietrich, M. A., Prulière, G., Shaliutina-Kolešová, A., Shaliutina, O., Cosson, J., and Chenevert, J. (2017). Protein phosphorylation in spermatozoa motility of Acipenser ruthenus and Cyprinus carpio. Reproduction 154, 653–673.
Protein phosphorylation in spermatozoa motility of Acipenser ruthenus and Cyprinus carpio.Crossref | GoogleScholarGoogle Scholar |

Gibbons, B. H., and Gibbons, I. R. (1972). Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-100. J. Cell Biol. 54, 75–97.
Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-100.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XksVGqur0%3D&md5=a353901eeafb805aff38121321924e77CAS |

Gillies, E. A., Bondarenko, V., Cosson, J., and Pacey, A. A. (2013). Fins improve the swimming performance of fish sperm: a hydrodynamic analysis of the Siberian sturgeon Acipenser baerii. Cytoskeleton (Hoboken) 70, 85–100.
Fins improve the swimming performance of fish sperm: a hydrodynamic analysis of the Siberian sturgeon Acipenser baerii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFOmt74%3D&md5=390643c105b3a3dcb2c537866e759d37CAS |

Hagedorn, M., McCarthy, M., Carter, V. L., and Meyers, S. A. (2012). Oxidative stress in zebrafish (Danio rerio) sperm. PLoS One 7, e39397.
Oxidative stress in zebrafish (Danio rerio) sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptlSgu70%3D&md5=9562a0d9aebc7cb1f531e53ffc4a819aCAS |

Inaba, K., Dréanno, C., and Cosson, J. (2003). Control of flatfish sperm motility by CO2 and carbonic anhydrase. Cell Motil. Cytoskeleton 55, 174–187.
Control of flatfish sperm motility by CO2 and carbonic anhydrase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFWjtLg%3D&md5=4eddb55d35f0eee557fd188c921df502CAS |

Ishijima, S. (2012). Comparative analysis of movement characteristics of lancelet and fish spermatozoa having different morphologies. Biol. Bull. 222, 214–221.
Comparative analysis of movement characteristics of lancelet and fish spermatozoa having different morphologies.Crossref | GoogleScholarGoogle Scholar |

Ishimoto, K., Cosson, J., and Gaffney, E. A. (2016). A simulation study of sperm motility hydrodynamics near fish eggs and spheres. J. Theor. Biol. 389, 187–197.
A simulation study of sperm motility hydrodynamics near fish eggs and spheres.Crossref | GoogleScholarGoogle Scholar |

Kime, D. E., and Tveiten, H. (2002). Unusual motility characteristics of sperm of the spotted wolffish. J. Fish Biol. 61, 1549–1559.
Unusual motility characteristics of sperm of the spotted wolffish.Crossref | GoogleScholarGoogle Scholar |

Krasznai, Z., Márián, T., Izumi, H., Trón, L., and Morisawa, M. (1998). Effects of membrane potential on the activation mechanism of sperm. Zygote 6, S123.

Krasznai, Z., Marian, T., Izumi, H., Damjanovich, S., Balkay, L., Tron, L., and Morisawa, M. (2000). Membrane hyperpolarization removes inactivation of Ca2+ channels, leading to Ca2+ influx and subsequent initiation of sperm motility in the common carp. Proc. Natl Acad. Sci. USA 97, 2052–2057.
Membrane hyperpolarization removes inactivation of Ca2+ channels, leading to Ca2+ influx and subsequent initiation of sperm motility in the common carp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslKhsLc%3D&md5=5743d09ab1473fa21faf11daf1ba91beCAS |

Lahnsteiner, F., Berger, B., Weismann, T., and Patzner, R. (1995). Fine structure and motility of spermatozoa and composition of the seminal plasma in the perch. J. Fish Biol. 47, 492–508.
Fine structure and motility of spermatozoa and composition of the seminal plasma in the perch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFeksLc%3D&md5=34ce65dca2abd17bce9ab66b4c2884b9CAS |

Leeuwenhoeck, M. (1685). An abstract of a letter of Mr. Leeuwenhoeck Fellow of the R. Society, dated March 30th. 1685. to the R. S. concerning generation by an infect. Philos. Trans. 15, 1120–1134.
An abstract of a letter of Mr. Leeuwenhoeck Fellow of the R. Society, dated March 30th. 1685. to the R. S. concerning generation by an infect.Crossref | GoogleScholarGoogle Scholar |

Linhart, O., Cosson, J., Mims, S. D., Shelton, W. L., and Rodina, M. (2002). Effects of ions on the motility of fresh and demembranated paddlefish (Polyodon spathula) spermatozoa. Reproduction 124, 713–719.
Effects of ions on the motility of fresh and demembranated paddlefish (Polyodon spathula) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1KktA%3D%3D&md5=e3718e2d74ede5921c53120b12e0a63cCAS |

Linhart, O., Cosson, J., Mims, S. D., Rodina, M., Gela, D., and Shelton, W. L. (2003a). Effects of ions on the motility of fresh and demembranate spermatozoa of common carp (Cyprinus carpio) and paddlefish (Polyodon spathula). Fish Physiol. Biochem. 28, 203–205.
Effects of ions on the motility of fresh and demembranate spermatozoa of common carp (Cyprinus carpio) and paddlefish (Polyodon spathula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1WqtL4%3D&md5=5840093eafa920297bfd83d033499ba5CAS |

Linhart, O., Rodina, M., Bastl, J., and Cosson, J. (2003b). Urinary bladder, ionic composition of seminal fluid and urine with characterization of sperm motility in tench (Tinca tinca L.). J. Appl. Ichthyology 19, 177–181.
Urinary bladder, ionic composition of seminal fluid and urine with characterization of sperm motility in tench (Tinca tinca L.).Crossref | GoogleScholarGoogle Scholar |

McAllister, B. G., and Kime, D. E. (2003). Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquat. Toxicol. 65, 309–316.
Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1yqtLY%3D&md5=c86583424f4763040929325183214661CAS |

Morisawa, S., and Morisawa, M. (1988). Induction of potential for sperm motility by bicarbonate and pH in rainbow trout and chum salmon. J. Exp. Biol. 136, 13–22.
| 1:STN:280:DyaL1c3pvFykug%3D%3D&md5=de99d4db450a50c4c059574cdcb46516CAS |

Morisawa, M., and Suzuki, K. (1980). Osmolality and potassium ion: their roles in initiation of sperm motility in teleosts. Science 210, 1145–1147.
Osmolality and potassium ion: their roles in initiation of sperm motility in teleosts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M%2FnvVOntQ%3D%3D&md5=dfcec2d75eb88488331396b9f95a10bbCAS |

Morisawa, S., Ishida, K., Okuno, M., and Morisawa, M. (1993). Roles of pH and cyclic adenosine monophosphate in the acquisition of potential for sperm motility during migration from the sea to the river in chum salmon. Mol. Reprod. Dev. 34, 420–426.
Roles of pH and cyclic adenosine monophosphate in the acquisition of potential for sperm motility during migration from the sea to the river in chum salmon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksVGlur4%3D&md5=52b2dcfbe39f84be94c1b19b1b86bd27CAS |

Mortimer, S. T. (1997). A critical review of the physiological importance and analysis of sperm movement in mammals. Hum. Reprod. Update 3, 403–439.
A critical review of the physiological importance and analysis of sperm movement in mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7oslOmtQ%3D%3D&md5=0f935820737125a096b023ae77b9f2eeCAS |

Mortimer, S. T. (2000). CASA – practical aspects. J. Androl. 21, 515–524.
| 1:STN:280:DC%2BD3M%2FgvVylsQ%3D%3D&md5=6276cbd7cf7be527e907f9e29bd90a79CAS |

Perchec, G., Cosson, J., André, F., and Billard, R. (1995a). Degradation of the quality of carp sperm by urine contamination during stripping. Aquaculture 129, 135–136.
Degradation of the quality of carp sperm by urine contamination during stripping.Crossref | GoogleScholarGoogle Scholar |

Perchec, G., Jeulin, C., Cosson, J., André, F., and Billard, R. (1995b). Relationship between sperm ATP content and motility of carp spermatozoa. J. Cell Sci. 108, 747–753.
| 1:CAS:528:DyaK2MXktFSjsb4%3D&md5=6125c71d5a617028bdb6966bf15a62a8CAS |

Perchec, G., Cosson, M. P., Cosson, J., Jeulin, C., and Billard, R. (1996). Morphological and kinetic changes of carp (Cyprinus carpio) spermatozoa after initiation of motility in distilled water. Cell Motil. Cytoskeleton 35, 113–120.
Morphological and kinetic changes of carp (Cyprinus carpio) spermatozoa after initiation of motility in distilled water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslOhtr4%3D&md5=dd565e7c62dad99d1db2ba703777e368CAS |

Perchec Poupard, G., Gatti, J. L., Cosson, J., and Fierville, F. (1997). Involved in activation of motility of carp spermatozoa. J. Reprod. Fertil. 110, 315–327.
Involved in activation of motility of carp spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2svlt1aitw%3D%3D&md5=fe6e15b87cd7f27cffabb3e705c9cfb4CAS |

Pérez-Cerezales, S., Boryshpolets, S., and Eisenbach, M. (2015). Behavioral mechanisms of mammalian sperm guidance. Asian J. Androl. 17, 628–632.
Behavioral mechanisms of mammalian sperm guidance.Crossref | GoogleScholarGoogle Scholar |

Prokopchuk, G., Dzyuba, B., Bondarenko, O., Rodina, M., and Cosson, J. (2015). Motility initiation of sterlet sturgeon (Acipenser ruthenus) spermatozoa: describing the propagation of the first flagellar waves. Theriogenology 84, 51–61.
Motility initiation of sterlet sturgeon (Acipenser ruthenus) spermatozoa: describing the propagation of the first flagellar waves.Crossref | GoogleScholarGoogle Scholar |

Prokopchuk, G., Dzyuba, B., Rodina, M., and Cosson, J. (2016). Control of sturgeon sperm motility: antagonism between K+ ions concentration and osmolality. Anim. Reprod. Sci. 164, 82–89.
Control of sturgeon sperm motility: antagonism between K+ ions concentration and osmolality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGisL3I&md5=147a961dda49b4b7040aed76ecb2e649CAS |

Ravinder, K., Nasaruddin, K., Majumdar, K. C., and Shivaji, S. (1997). Computerized analysis of motility, motility patterns and motility parameters of spermatozoa of carp following short-term storage of semen. J. Fish Biol. 50, 1309–1328.
Computerized analysis of motility, motility patterns and motility parameters of spermatozoa of carp following short-term storage of semen.Crossref | GoogleScholarGoogle Scholar |

Redondo-Müller, C., Cosson, M.-P., Cosson, J., and Billard, R. (1991). In vitro maturation of the potential for movement of carp spermatozoa. Mol. Reprod. Dev. 29, 259–270.
In vitro maturation of the potential for movement of carp spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Rodina, M., Cosson, J., Gela, D., and Linhart, O. (2004). Kurokura solution as immobilizing medium for spermatozoa of tench (Tinca tinca L.). Aquacult. Int. 12, 119–131.
Kurokura solution as immobilizing medium for spermatozoa of tench (Tinca tinca L.).Crossref | GoogleScholarGoogle Scholar |

Rouxel, C., Suquet, M., Cosson, J., Severe, A., Quemener, L., and Fauvel, C. (2008). Changes in Atlantic cod (Gadus morhua L.) sperm quality during the spawning season. Aquacult. Res. 39, 434–440.
Changes in Atlantic cod (Gadus morhua L.) sperm quality during the spawning season.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFCqurw%3D&md5=1942db779d41e767a37a96664127b25cCAS |

Rurangwa, E., Roelants, I., Huyskens, G., Ebrahimi, M., Kime, D. E., and Ollevier, F. (1998). The minimum effective spermatozoa : egg ratio for artificial insemination and the effects of mercury on sperm motility and fertilization ability in Clarias gariepinus. J. Fish Biol. 53, 402–413.
| 1:CAS:528:DyaK1cXlvVahtbk%3D&md5=f030ee3c6815b92a53cb2dd83a42ae52CAS |

Rurangwa, E., Volckaert, F. A. M., Huyskens, G., Kime, D. E., and Ollevier, F. (2001). Quality control of refrigerated and cryopreserved semen using computer-assisted sperm analysis (CASA), viable staining and standardized fertilization in African catfish (Clarias gariepinus). Theriogenology 55, 751–769.
Quality control of refrigerated and cryopreserved semen using computer-assisted sperm analysis (CASA), viable staining and standardized fertilization in African catfish (Clarias gariepinus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzgtFOrug%3D%3D&md5=2890c3901927b21eb2fb92ac3f1c5899CAS |

Saudrais, C., Fierville, F., Loir, M., Le Rumeur, E., Cibert, C., and Cosson, J. (1998). The use of phosphocreatine plus ADP as energy source for motility of membrane-deprived trout spermatozoa. Cell Motil. Cytoskeleton 41, 91–106.
The use of phosphocreatine plus ADP as energy source for motility of membrane-deprived trout spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFGmtLk%3D&md5=330146cc5b8a45fe9ae3fd0980d247b1CAS |

Shaliutina-Kolešová, A., Cosson, J., Lebeda, I., Gazo, I., Shaliutina, O., Dzyuba, B., and Linhart, O. (2015). The influence of cryoprotectants on sturgeon (Acipenser ruthenus) sperm quality, DNA integrity, antioxidant responses, and resistance to oxidative stress. Anim. Reprod. Sci. 159, 66–76.
The influence of cryoprotectants on sturgeon (Acipenser ruthenus) sperm quality, DNA integrity, antioxidant responses, and resistance to oxidative stress.Crossref | GoogleScholarGoogle Scholar |

Shaliutina-Kolešová, A., Kotas, P., Štěrba, J., Rodina, M., Dzyuba, B., Cosson, J., and Linhart, O. (2016). Protein profile of seminal plasma and functionality of spermatozoa during the reproductive season in the common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss). Mol. Reprod. Dev. 83, 968–982.
Protein profile of seminal plasma and functionality of spermatozoa during the reproductive season in the common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss).Crossref | GoogleScholarGoogle Scholar |

Shiba, K., Baba, S. A., Inoue, T., and Yoshida, M. (2008). Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response. Proc. Natl Acad. Sci. USA 105, 19312–19317.
Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamu73L&md5=a644d676f9f3cf24cb1bfb116b3beba3CAS |

Takai, H., and Morisawa, M. (1995). Change in intracellular K+ concentration caused by external osmolality change regulates sperm motility of marine and freshwater teleosts. J. Cell Sci. 108, 1175–1181.
| 1:CAS:528:DyaK2MXkvFalt7g%3D&md5=3b5d0f0f36981de454dc557ce6149850CAS |

Toth, G. P., Christ, S. A., McCarthy, H. W., Torsella, J. A., and Smith, M. K. (1995). Computer‐assisted motion analysis of sperm from the common carp. J. Fish Biol. 47, 986–1003.
Computer‐assisted motion analysis of sperm from the common carp.Crossref | GoogleScholarGoogle Scholar |

Tsvetkova, L. I., Cosson, J., Linhart, O., and Billard, R. (1996). Motility and fertilizing capacity of fresh and frozen–thawed spermatozoa in sturgeons Acipenser baeri and A. ruthenus. J. Appl. Ichthyology 12, 107–112.
Motility and fertilizing capacity of fresh and frozen–thawed spermatozoa in sturgeons Acipenser baeri and A. ruthenus.Crossref | GoogleScholarGoogle Scholar |

Van Look, K. J. W. (2001). The development of sperm motility and morphological techniques for the assessment of the effects of heavy metals on fish reproduction. Ph.D. Thesis, University of Sheffield. Available at http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369940 [verified 6 November 2017].

Vermeirssen, E. L. M., Mazorra De Quero, C., Shields, R. J., Norberg, B., Kime, D. E., and Scott, A. P. (2004). Fertility and motility of sperm from Atlantic halibut (Hippoglossus hippoglossus) in relation to dose and timing of gonadotrophin-releasing hormone agonist implant. Aquaculture 230, 547–567.
Fertility and motility of sperm from Atlantic halibut (Hippoglossus hippoglossus) in relation to dose and timing of gonadotrophin-releasing hormone agonist implant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Gq&md5=267e86d8abe17a0ca8e01cf54bc74cf9CAS |

Wilson-Leedy, J. G., and Ingermann, R. L. (2007). Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology 67, 661–672.
Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters.Crossref | GoogleScholarGoogle Scholar |

Woolley, D. M., and Vernon, G. G. (2001). A study of helical and planar waves on sea urchin sperm flagella, with a theory of how they are generated. J. Exp. Biol. 204, 1333–1345.
| 1:STN:280:DC%2BD3MvjsVCrsw%3D%3D&md5=0f0b9a92febdff6deaea33bfb1abd76eCAS |

Yoshida, M., and Yoshida, K. (2011). Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol. Hum. Reprod. 17, 457–465.
Sperm chemotaxis and regulation of flagellar movement by Ca2+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFCnsbg%3D&md5=ad5be011fdad64bc1d6ba7548bd81402CAS |