Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Making the most of sperm activation responses: experiments with boar spermatozoa and bicarbonate

William V. Holt A C and Nana Satake B
+ Author Affiliations
- Author Affiliations

A Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK.

B School of Veterinary Sciences, Faculty of Science, University of Queensland, Gatton Campus, Gatton, Qld 4343, Australia.

C Corresponding author. Email: bill.holt@sheffield.ac.uk

Reproduction, Fertility and Development 30(6) 842-849 https://doi.org/10.1071/RD17476
Submitted: 7 November 2017  Accepted: 19 December 2017   Published: 8 March 2018

Abstract

Attempting to extract useful and reliable information about semen quality and its fertility potential remains a difficult exercise, partly because the sperm heterogeneity within samples often renders simple statistical analyses rather meaningless. In fact, a mean and standard deviation may reflect neither the very fast swimming activities of the most active cells nor the slow and sluggish activities of others. Herein we propose that the information value within semen samples can be maximised if current knowledge about sperm activation mechanisms is exploited before undertaking the measurements. We explain, using boar semen as an example, that estimating and defining relative sperm subpopulation sizes, after activation by bicarbonate, provides a means of quantifying sperm quality. Although such estimates may indeed be related to in vivo fertility, the general approach also suggests potential new avenues that could be exploited for the elaboration of novel in vitro tests for the characterisation of toxic environmental chemicals and, indeed, to reduce the number of animals used in such testing programs.

Additional keywords: semen, signal transduction, transport.


References

Abaigar, T., Holt, W. V., Harrison, R. A. P., and del Barrio, G. (1999). Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments. Biol. Reprod. 60, 32–41.
Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFymtA%3D%3D&md5=4b952b68134a6a2b14a3285ba42c3b2fCAS |

Azizullah, A., Richter, P., and Häder, D.-P. (2011). Toxicity assessment of a common laundry detergent using the freshwater flagellate Euglena gracilis. Chemosphere 84, 1392–1400.
Toxicity assessment of a common laundry detergent using the freshwater flagellate Euglena gracilis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVagtLnF&md5=4981a7fd435ba753f88cab507bf4d270CAS |

Beatty, R. A., Stewart, D. L., Spooner, R. L., and Hancock, J. L. (1976). Evaluation by the heterospermic insemination technique of the differential effect of freezing at −196°C on the fertility of individual bull semen. J. Reprod. Fertil. 47, 377–379.
Evaluation by the heterospermic insemination technique of the differential effect of freezing at −196°C on the fertility of individual bull semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE283msV2guw%3D%3D&md5=65c090fd03cc413775f0a0d9a986845aCAS |

Belbin, L. (1993). ‘PATN, Pattern Analysis Package.’ (Division of Wildlife and Ecology, CSIRO: Canberra.)

Berger, T. (1995). Proportion of males with lower fertility spermatozoa estimated from heterospermic insemination. Theriogenology 43, 769–775.
Proportion of males with lower fertility spermatozoa estimated from heterospermic insemination.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVChtg%3D%3D&md5=6ce44b67cc5753d58ed4564421f9c420CAS |

Brinke, A., and Buchinger, S. (2016). Toxicogenomics in environmental science. In ‘In Vitro Environmental Toxicology – Concepts, Application and Assessment. Advances in Biochemical Engineering/Biotechnology, Vol. 157’. (Eds G. Reifferscheid and S. Buchinger.) pp. 159–186. (Springer: Cham.)

Buffone, M. G., Wertheimer, E. V., Visconti, P. E., and Krapf, D. (2014). Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim. Biophys. Acta 1842, 2610–2620.
Central role of soluble adenylyl cyclase and cAMP in sperm physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1OrtbrJ&md5=26521775fef30f2a073c90f286741d6eCAS |

Cosson, J. (2004). The ionic and osmotic factors controlling motility of fish spermatozoa. Aquacult. Int. 12, 69–85.
The ionic and osmotic factors controlling motility of fish spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFSjsro%3D&md5=6190695eb68509db42d98be6a3372a86CAS |

Coy, P., Lloyd, R., Romar, R., Satake, N., Matas, C., Gadea, J., and Holt, W. V. (2010). Effects of porcine pre-ovulatory oviductal fluid on boar sperm function. Theriogenology 74, 632–642.
Effects of porcine pre-ovulatory oviductal fluid on boar sperm function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjms1GntA%3D%3D&md5=9942969275f0665dabebaf9fdde251c3CAS |

Dobrowolski, W., and Hafez, E. S. E. (1970). Transport and distribution of spermatozoa in the reproductive tract of the cow. J. Anim. Sci. 31, 940–943.
Transport and distribution of spermatozoa in the reproductive tract of the cow.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M%2Fjs1Cquw%3D%3D&md5=eb317b829f7e02478467959a05d8464cCAS |

Dorado, J., Alcaraz, L., Duarte, N., Portero, J. M., Acha, D., and Hidalgo, M. (2011). Changes in the structures of motile sperm subpopulations in dog spermatozoa after both cryopreservation and centrifugation on PureSperm® gradient. Anim. Reprod. Sci. 125, 211–218.
Changes in the structures of motile sperm subpopulations in dog spermatozoa after both cryopreservation and centrifugation on PureSperm® gradient.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MrpsVOjtg%3D%3D&md5=a1cfa5dccb9f4e2392741d8b2364b875CAS |

Dubé, C., Beaulieu, M., Reyes-Moreno, C., Guillemette, C., and Bailey, J. L. (2004). Boar sperm storage capacity of BTS and Androhep Plus: viability, motility, capacitation, and tyrosine phosphorylation. Theriogenology 62, 874–886.
Boar sperm storage capacity of BTS and Androhep Plus: viability, motility, capacitation, and tyrosine phosphorylation.Crossref | GoogleScholarGoogle Scholar |

Dziuk, P. J. (1996). Factors that influence the proportion of offspring sired by a male following heterospermic insemination. Anim. Reprod. Sci. 43, 65–88.
Factors that influence the proportion of offspring sired by a male following heterospermic insemination.Crossref | GoogleScholarGoogle Scholar |

Elliott, R. M., Lloyd, R. E., Fazeli, A., Sostaric, E., Georgiou, A. S., Satake, N., Watson, P. F., and Holt, W. V. (2009). Effects of HSPA8, an evolutionarily conserved oviductal protein, on boar and bull spermatozoa. Reproduction 137, 191–203.
Effects of HSPA8, an evolutionarily conserved oviductal protein, on boar and bull spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2ks7g%3D&md5=fe371f8abe26e75172b4c0b465947e26CAS |

Fazeli, A., Elliott, R. M., Duncan, A. E., Moore, A., Watson, P. F., and Holt, W. V. (2003). In vitro maintenance of boar sperm viability by a soluble fraction obtained from oviductal apical plasma membrane preparations. Reproduction 125, 509–517.
In vitro maintenance of boar sperm viability by a soluble fraction obtained from oviductal apical plasma membrane preparations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOqt7c%3D&md5=8190685b7d59ac01dbab02de56d21147CAS |

First, N. L., Short, R. E., Peters, J. B., and Stratman, F. W. (1968). Transport and loss of boar spermatozoa in the reproductive tract of the sow. J. Anim. Sci. 27, 1037–1040.
Transport and loss of boar spermatozoa in the reproductive tract of the sow.Crossref | GoogleScholarGoogle Scholar |

Forman, H. J., Zhang, H., and Rinna, A. (2009). Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 30, 1–12.
Glutathione: overview of its protective roles, measurement, and biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFelurY%3D&md5=c10406ebbc5f9e2ff5b1ab134b00aaafCAS |

Gadea, J., Garcia-Vazquez, F., Matas, C., Gardon, J. C., Canovas, S., and Gumbao, D. (2005a). Cooling and freezing of boar spermatozoa: supplementation of the freezing media with reduced glutathione preserves sperm function. J. Androl. 26, 396–404.
Cooling and freezing of boar spermatozoa: supplementation of the freezing media with reduced glutathione preserves sperm function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVWjsrg%3D&md5=469d186b0ef3d3ad1b76cae5b68a6216CAS |

Gadea, J., Gumbao, D., Matas, C., and Romar, R. (2005b). Supplementation of the thawing media with reduced glutathione improves function and the in vitro fertilizing ability of boar spermatozoa after cryopreservation. J. Androl. 26, 749–756.
Supplementation of the thawing media with reduced glutathione improves function and the in vitro fertilizing ability of boar spermatozoa after cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2msbfO&md5=8aea6b5efe7c5b52694629904bdbd1b7CAS |

Gangwar, D. K., and Atreja, S. K. (2015). Signalling events and associated pathways related to the mammalian sperm capacitation. Reprod. Domest. Anim. 50, 705–711.
Signalling events and associated pathways related to the mammalian sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFGitbbI&md5=86b53436b700be0a2a5f722b558f2243CAS |

Gervasi, M. G., and Visconti, P. E. (2016). Chang’s meaning of capacitation: a molecular perspective. Mol. Reprod. Dev. 83, 860–874.
Chang’s meaning of capacitation: a molecular perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslaltL%2FO&md5=2aa765dfc615d7de650c5a9e8bbe4f7cCAS |

Harayama, H. (2013). Roles of intracellular cyclic AMP signal transduction in the capacitation and subsequent hyperactivation of mouse and boar spermatozoa. J. Reprod. Dev. 59, 421–430.
Roles of intracellular cyclic AMP signal transduction in the capacitation and subsequent hyperactivation of mouse and boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVClsr7E&md5=1c1a5e9f8f0cf1bfba59c7aaccdb7e7bCAS |

Harrison, R. A. P., and Holt, W. V. (2000). Modelling boar sperm signalling systems. In ‘Boar Semen Preservation IV’. (Eds L. A. Johnson and H. D. Guthrie.) pp. 13–19. (Allen Press: Lawrence, KA.)

Harrison, R. A. P., Ashworth, P. J. C., and Miller, N. G. A. (1996). Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membrane. Mol. Reprod. Dev. 45, 378–391.
Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslWlu7g%3D&md5=06028897b5430768081eab3d5c5a9debCAS |

Hawk, H. W. (1983). Sperm survival and transport in the female reproductive tract. J. Dairy Sci. 66, 2645–2660.
Sperm survival and transport in the female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c7js1Giuw%3D%3D&md5=0c532fdb32d338d03df7261b595f94b8CAS |

Hawk, H. W. (1987). Transport and fate of spermatozoa after insemination of cattle. J. Dairy Sci. 70, 1487–1503.
Transport and fate of spermatozoa after insemination of cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2szgvFSksg%3D%3D&md5=ee3f76379f224f5952850b9a312b1693CAS |

Hawk, H. W., Conley, H. H., and Cooper, B. S. (1978). Number of sperm in the oviducts, uterus, and cervix of the mated ewe as affected by exogenous estradiol. J. Anim. Sci. 46, 1300–1308.
Number of sperm in the oviducts, uterus, and cervix of the mated ewe as affected by exogenous estradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXkslWguro%3D&md5=e798b34bbe05533ae833defc82eab226CAS |

Henning, H., Petrunkina, A. M., Harrison, R. A., and Waberski, D. (2014). Cluster analysis reveals a binary effect of storage on boar sperm motility function. Reprod. Fertil. Dev. 26, 623–632.
Cluster analysis reveals a binary effect of storage on boar sperm motility function.Crossref | GoogleScholarGoogle Scholar |

Hernandez, M., Lloyd, R., and Holt, W. V. (2009). Effects of the heat shock 70 kDa protein 8 (HSPA8) on boar sperm motility. In ‘Maternal Communication with Gametes and Embryo’. (Eds A. Fazeli, F. Gandolf, and S. Ledda.) p. 68. (GEMINI COST ACTION FA0702: Brussels.)

Holt, W. V. (2009). Is semen analysis useful to predict the odds that the sperm will meet the egg? Reprod. Domest. Anim. 44, 31–38.
Is semen analysis useful to predict the odds that the sperm will meet the egg?Crossref | GoogleScholarGoogle Scholar |

Holt, W. V., and Fazeli, A. (2015). Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract. Mol. Hum. Reprod. 21, 491–501.
Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract.Crossref | GoogleScholarGoogle Scholar |

Holt, W. V., and Harrison, R. A. (2002). Bicarbonate stimulation of boar sperm motility via a protein kinase A-dependent pathway: between-cell and between-ejaculate differences are not due to deficiencies in protein kinase A activation. J. Androl. 23, 557–565.
| 1:CAS:528:DC%2BD38Xlt1KhsLc%3D&md5=6420228aa2fc03733ef6d7d3947c70faCAS |

Hunter, R. H. F., and Nichol, R. (1983). Transport of spermatozoa in the sheep oviduct – preovulatory sequestering of cells in the caudal isthmus. J. Exp. Zool. 228, 121–128.
Transport of spermatozoa in the sheep oviduct – preovulatory sequestering of cells in the caudal isthmus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c7htlCjtw%3D%3D&md5=ded774e93db6cd999ffe7f9dff91e1d9CAS |

Hunter, R. H. F., Fléchon, B., and Fléchon, J. E. (1984). Pre-ovulatory arrest and peri-ovulatory redistribution of competent spermatozoa in the isthmus of the pig oviduct. J. Reprod. Fertil. 72, 203–211.
Pre-ovulatory arrest and peri-ovulatory redistribution of competent spermatozoa in the isthmus of the pig oviduct.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3pt1Wrsw%3D%3D&md5=7199f29e2167cce22566e849374ceee6CAS |

Hunter, R. H. F., Fléchon, B., and Fléchon, J. E. (1987). Preovulatory and peri-ovulatory distribution of viable spermatozoa in the pig oviduct – a scanning electron-microscope study. Tissue Cell 19, 423–436.
Preovulatory and peri-ovulatory distribution of viable spermatozoa in the pig oviduct – a scanning electron-microscope study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3pt12gtA%3D%3D&md5=4f5de28eee06a6f62c1c9043d905a01fCAS |

Ibănescu, I., Leiding, C., and Bollwein, H. (2017). Cluster analysis reveals seasonal variation of sperm subpopulations in extended boar semen. J. Reprod. Dev. , .
Cluster analysis reveals seasonal variation of sperm subpopulations in extended boar semen.Crossref | GoogleScholarGoogle Scholar |

Ingre-Khans, E., Agerstrand, M., Beronius, A., and Ruden, C. (2016). Transparency of chemical risk assessment data under REACH. Environ. Sci. Process. Impacts 18, 1508–1518.
Transparency of chemical risk assessment data under REACH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVShs7rO&md5=6e22630e88dfdc2c4bbb0ef7ab1aafd9CAS |

Kanno, C., Sakamoto, K. Q., Yanagawa, Y., Takahashi, Y., Katagiri, S., and Nagano, M. (2017). Comparison of sperm subpopulation structures in first and second ejaculated semen from Japanese black bulls by a cluster analysis of sperm motility evaluated by a CASA system. J. Vet. Med. Sci. 79, 1359–1365.
Comparison of sperm subpopulation structures in first and second ejaculated semen from Japanese black bulls by a cluster analysis of sperm motility evaluated by a CASA system.Crossref | GoogleScholarGoogle Scholar |

Li, Z.-H., Li, P., Dzyuba, B., and Randak, T. (2010). Influence of environmental related concentrations of heavy metals on motility parameters and antioxidant responses in sturgeon sperm. Chem. Biol. Interact. 188, 473–477.
Influence of environmental related concentrations of heavy metals on motility parameters and antioxidant responses in sturgeon sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVagtrvL&md5=66d0601b5061cc85b2a0cba4b2fd05fbCAS |

Liu, Y., Wang, D. K., and Chen, L. M. (2012). The physiology of bicarbonate transporters in mammalian reproduction. Biol. Reprod. 86, 99.
The physiology of bicarbonate transporters in mammalian reproduction.Crossref | GoogleScholarGoogle Scholar |

Maas, D. H., Storey, B. T., and Mastroianni, L. (1977). Hydrogen ion and carbon dioxide content of the oviductal fluid of the rhesus monkey (Macaca mulatta). Fertil. Steril. 28, 981–985.
Hydrogen ion and carbon dioxide content of the oviductal fluid of the rhesus monkey (Macaca mulatta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlvVWks7Y%3D&md5=a66106a45f09b8d37906611377c7e889CAS |

Macías-García, B., González-Fernández, L., Loux, S. C., Rocha, A. M., Guimarães, T., Peña, F. J., Varner, D. D., and Hinrichs, K. (2015). Effect of calcium, bicarbonate, and albumin on capacitation-related events in equine sperm. Reproduction 149, 87–99.
Effect of calcium, bicarbonate, and albumin on capacitation-related events in equine sperm.Crossref | GoogleScholarGoogle Scholar |

Martínez-Pastor, F., Tizado, E. J., Garde, J. J., Anel, L., and de Paz, P. (2011). Statistical series: opportunities and challenges of sperm motility subpopulation analysis. Theriogenology 75, 783–795.
Statistical series: opportunities and challenges of sperm motility subpopulation analysis.Crossref | GoogleScholarGoogle Scholar |

Mattner, P. E. (1966). Formation and retention of the spermatozoan reservoir in the cervix of the ruminant. Nature 212, 1479–1480.
Formation and retention of the spermatozoan reservoir in the cervix of the ruminant.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cbovVSgtA%3D%3D&md5=bc70d2ee5e6844c263ced6e41dda8935CAS |

Mattner, P. E., and Braden, A. W. H. (1969). Comparison of distribution of motile and immotile spermatozoa in ovine cervix. Aust. J. Biol. Sci. 22, 1069–1070.
Comparison of distribution of motile and immotile spermatozoa in ovine cervix.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c7jslSnsg%3D%3D&md5=0b2e093e1b5f264043ef2b9289c40127CAS |

Mburu, J. N., Einarsson, S., Lundeheim, N., and Rodriguez-Martinez, H. (1996). Distribution, number and membrane integrity of spermatozoa in the pig oviduct in relation to spontaneous ovulation. Anim. Reprod. Sci. 45, 109–121.
Distribution, number and membrane integrity of spermatozoa in the pig oviduct in relation to spontaneous ovulation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szmslyntQ%3D%3D&md5=8948ed08f01c54e7509b6ef39ced5077CAS |

Moein-Vaziri, N., Phillips, I., Smith, S., Almiňana, C., Maside, C., Gil, M. A., Roca, J., Martinez, E., Holt, B., Pockley, A. A. G., and Fazeli, A. (2014). Heat shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity. Reproduction 147, 719–732.
Heat shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFGnurg%3D&md5=5c6320ee92a2ec0f131617060568070dCAS |

Moore, H. D. M., and Akhondi, M. A. (1996). Fertilizing capacity of rat spermatozoa is correlated with decline in straight-line velocity measured by continuous computer-aided sperm analysis: epididymal rat spermatozoa from the proximal cauda have a greater fertilizing capacity in vitro than those from the distal cauda or vas deferens. J. Androl. 17, 50–60.
| 1:STN:280:DyaK28vjtVKitQ%3D%3D&md5=ec8ace2b88b2035192be7a171f890a19CAS |

Nishigaki, T., José, O., González-Cota, A. L., Romero, F., Treviño, C. L., and Darszon, A. (2014). Intracellular pH in sperm physiology. Biochem. Biophys. Res. Commun. 450, 1149–1158.
Intracellular pH in sperm physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFWnt70%3D&md5=14b6eeb6acf722fb190443624924976aCAS |

Núñez-Martínez, I., Moran, J. M., and Peña, F. J. (2006). A three-step statistical procedure to identify sperm kinematic subpopulations in canine ejaculates: changes after cryopreservation. Reprod. Domest. Anim. 41, 408–415.
A three-step statistical procedure to identify sperm kinematic subpopulations in canine ejaculates: changes after cryopreservation.Crossref | GoogleScholarGoogle Scholar |

Okamura, N., Tajima, Y., Soejima, A., Masuda, H., and Sugita, Y. (1985). Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J. Biol. Chem. 260, 9699–9705.
| 1:CAS:528:DyaL2MXltVaksb8%3D&md5=c9eee81406d90a6583b9187b340a4f03CAS |

Okamura, N., Tajima, Y., Ishikawa, H., Yoshii, S., Koiso, K., and Sugita, Y. (1986). Lowered levels of bicarbonate in seminal plasma cause the poor sperm motility in human infertile patients. Fertil. Steril. 45, 265–272.
Lowered levels of bicarbonate in seminal plasma cause the poor sperm motility in human infertile patients.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL287js1Kntw%3D%3D&md5=6842e56853e9bda768284e52c389e036CAS |

Pursel, V. G., and Park, C. S. (1985). Freezing and thawing procedures for boar spermatozoa. In ‘Deep Freezing of Boar Semen’. (Eds L. A. Johnson and K. Larsson.) pp. 147–166. (Swedish University of Agricultural Sciences: Uppsala.)

Quintero-Moreno, A., Rigau, T., and Rodriguez-Gil, J. E. (2007). Multivariate cluster analysis regression procedures as tools to identify motile sperm subpopulations in rabbit semen and to predict semen fertility and litter size. Reprod. Domest. Anim. 42, 312–319.
Multivariate cluster analysis regression procedures as tools to identify motile sperm subpopulations in rabbit semen and to predict semen fertility and litter size.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s3psF2qtQ%3D%3D&md5=75737e8f752263c3e462d3e63df20821CAS |

Robl, J. M., and Dziuk, P. J. (1988). Comparison of heterospermic and homospermic inseminations as measures of male fertility. J. Exp. Zool. 245, 97–101.
Comparison of heterospermic and homospermic inseminations as measures of male fertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7ntFemsw%3D%3D&md5=9c7ee4911e6614d2ab08ea49f57a259fCAS |

Rodriguez-Martinez, H. (2007). Role of the oviduct in sperm capacitation. Theriogenology 68, S138–S146.
Role of the oviduct in sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitLY%3D&md5=3c730a9db0bc6fadb24ea7fcfa847ab8CAS |

Rodriguez-Martinez, H., Tienthai, P., Suzuki, K., Funahashi, H., Ekwall, H., and Johannisson, A. (2001). Involvement of oviduct in sperm capacitation and oocyte development in pigs. In ‘Control of Pig Reproduction’ VI, pp. 129–145.

Rodriguez-Martinez, H., Saravia, F., Wallgren, M., Tienthai, P., Johannisson, A., Vazquez, J. M., Martinez, E., Roca, J., Sanz, L., and Calvete, J. J. (2005). Boar spermatozoa in the oviduct. Theriogenology 63, 514–535.
Boar spermatozoa in the oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVSr&md5=c806dd1d8da3bc4d103b2cbd40209fa4CAS |

Satake, N., Elliott, R. M. A., Watson, P. F., and Holt, W. V. (2006). Sperm selection and competition in pigs may be mediated by the differential motility activation and suppression of sperm subpopulations within the oviduct. J. Exp. Biol. 209, 1560–1572.
Sperm selection and competition in pigs may be mediated by the differential motility activation and suppression of sperm subpopulations within the oviduct.Crossref | GoogleScholarGoogle Scholar |

Sławeta, R., and Laskowska, T. (1987). The effect of glutathione on the motility and fertility of frozen bull sperm. Anim. Reprod. Sci. 13, 249–253.
The effect of glutathione on the motility and fertility of frozen bull sperm.Crossref | GoogleScholarGoogle Scholar |

Stahlberg, R., Harlizius, B., Weitze, K. F., and Waberski, D. (2000). Identification of embryo paternity using polymorphic DNA markers to assess fertilizing capacity of spermatozoa after heterospermic insemination in boars. Theriogenology 53, 1365–1373.
Identification of embryo paternity using polymorphic DNA markers to assess fertilizing capacity of spermatozoa after heterospermic insemination in boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVOmsbw%3D&md5=fee06a5a738885d152290377e6fbfa8cCAS |

Tajima, Y., Okamura, N., and Sugita, Y. (1987). The activating effects of bicarbonate on sperm motility and respiration at ejaculation. Biochim. Biophys. Acta 924, 519–529.
The activating effects of bicarbonate on sperm motility and respiration at ejaculation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksFKmu7o%3D&md5=47c56867e70116e87a203f3b2cd6ef8cCAS |

Tienthai, P., Johannisson, A., and Rodriguez-Martinez, H. (2004). Sperm capacitation in the porcine oviduct. Anim. Reprod. Sci. 80, 131–146.
Sperm capacitation in the porcine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7kt1Oquw%3D%3D&md5=9dfa01a7b5c18d572c26531c83570983CAS |

Tuncer, P. B., Bucak, M. N., Buyukleblebici, S., Sariozkan, S., Yeni, D., Eken, A., Akalin, P. P., Kinet, H., Avdatek, F., Fidan, A. F., and Gundogan, M. (2010). The effect of cysteine and glutathione on sperm and oxidative stress parameters of post-thawed bull semen. Cryobiology 61, 303–307.
The effect of cysteine and glutathione on sperm and oxidative stress parameters of post-thawed bull semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOrsr%2FF&md5=e9b46dbe7da115c42e0ddceb9d739efcCAS |

Vitiello, V., Del Prete, F., Langellotti, A. L., Rinna, F., and Sansone, G. (2011). The sperm motility in marine teleosts as a tool to evaluate the toxic effects of xenobiotics. Chem. Ecol. 27, 47–56.
The sperm motility in marine teleosts as a tool to evaluate the toxic effects of xenobiotics.Crossref | GoogleScholarGoogle Scholar |

Wennemuth, G., Carlson, A. E., Harper, A. J., and Babcock, D. F. (2003). Bicarbonate actions on flagellar and Ca2+-channel responses: initial events in sperm activation. Development 130, 1317–1326.
Bicarbonate actions on flagellar and Ca2+-channel responses: initial events in sperm activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislOkur0%3D&md5=f86fb6566b7043a8c22946dc71288cf7CAS |

Xie, F., Garcia, M. A., Carlson, A. E., Schuh, S. M., Babcock, D. F., Jaiswal, B. S., Gossen, J. A., Esposito, G., van Duin, M., and Conti, M. (2006). Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev. Biol. 296, 353–362.
Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2gs7k%3D&md5=a118d03809a12720d1dfe8f6eee925cfCAS |

Yang, H., and Tiersch, T. R. (2009). Sperm motility initiation and duration in a euryhaline fish, medaka (Oryzias latipes). Theriogenology 72, 386–392.
Sperm motility initiation and duration in a euryhaline fish, medaka (Oryzias latipes).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1Mvmt1Sruw%3D%3D&md5=03259b06fdf2468819d90b92bb37b980CAS |

Yeste, M., Lloyd, R. E., Briz, M., Bonet, S., and Holt, W. V. (2008). The changes in the expression of three heat shock proteins during in vitro homologous oviductal epithelial cell co-culture. Reprod. Domest. Anim. 43, 53.

Yeste, M., Holt, W. V., Briz, M., Bonet, S., and Lloyd, R. E. (2009). Boar spermatozoa do not induce changes in heat shock protein gene expression without direct contact with oviductal epithelial cells. Reprod. Domest. Anim. 44, 132.

Yeste, M., Holt, W. V., Bonet, S., Rodriguez-Gil, J. E., and Lloyd, R. E. (2014). Viable and morphologically normal boar spermatozoa alter the expression of heat-shock protein genes in oviductal epithelial cells during co-culture in vitro. Mol. Reprod. Dev. 81, 805–819.
Viable and morphologically normal boar spermatozoa alter the expression of heat-shock protein genes in oviductal epithelial cells during co-culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1KhurfE&md5=750b73ab8767fca3250a32aa5990c482CAS |

Yuan, L., and Kaplowitz, N. (2009). Glutathione in liver diseases and hepatotoxicity. Mol. Aspects Med. 30, 29–41.
Glutathione in liver diseases and hepatotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFelu74%3D&md5=4fb40aba3d30d1ae295e76bbe34aa63bCAS |