Recent advances for spermatogonial stem cell transplantation in livestock
Jon M. OatleyCenter for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA. Email: joatley@vetmed.wsu.edu
Reproduction, Fertility and Development 30(1) 44-49 https://doi.org/10.1071/RD17418
Published: 4 December 2017
Abstract
At the foundation of spermatogenesis are the actions of spermatogonial stem cells (SSCs), and a remarkable feature of these cells is the capacity to regenerate spermatogenesis following transplantation into testes of a recipient male that lacks endogenous germline. This ability could be exploited in livestock production as a breeding tool to enhance genetic gain. A key element to success is derivation of culture conditions that support proliferation of SSCs to provide sufficient numbers of cells for transfer into multiple recipient males. Using methodology devised for rodent cells as a foundation, advances in culturing cattle SSCs have occurred over the past few years and efforts are underway to extend this capability to pig cells. Another critical component to SSC transplantation is generation of males with germline ablation but intact somatic support cell function that can serve as surrogate sires for donor-derived spermatogenesis in a natural mating scheme. Recent advances in pigs using gene editing technologies have demonstrated that knockout of a key male germ cell-specific gene, namely NANOS2, leads to male-specific germline ablation but otherwise normal physiology, including intact seminiferous tubules. Together with recent advances in culturing spermatogonia of higher-order mammals, the now efficient means of producing germline-ablated recipient males have brought the application of SSC transplantation in livestock as a production tool closer to reality than ever before.
Additional keywords: cattle, pig.
References
Brinster, R. L., and Avarbock, M. R. (1994). Germline transmission of donor haplotype following spermatogonial transplantation. Proc. Natl Acad. Sci. USA 91, 11303–11307.| Germline transmission of donor haplotype following spermatogonial transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlyku7g%3D&md5=45ba14d92df20b9fa722acf3cfd1793fCAS |
Brinster, R. L., and Zimmermann, J. W. (1994). Spermatogenesis following male germ-cell transplantation. Proc. Natl Acad. Sci. USA 91, 11298–11302.
| Spermatogenesis following male germ-cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlyku7s%3D&md5=dd39d012578e10c4eb4ef91f105e770eCAS |
Brinster, C. J., Ryu, B. Y., Avarbock, M. R., Karagenc, L., Brinster, R. L., and Orwig, K. E. (2003). Restoration of fertility by germ cell transplantation requires effective recipient preparation. Biol. Reprod. 69, 412–420.
| Restoration of fertility by germ cell transplantation requires effective recipient preparation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVertLs%3D&md5=db79622eac608b62898b0bd6c8066c4fCAS |
Chan, F., Oatley, M. J., Kaucher, A. V., Yang, Q. E., Bieberich, C. J., Shashikant, C. S., and Oatley, J. M. (2014). Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev. 28, 1351–1362.
| Functional and molecular features of the Id4+ germline stem cell population in mouse testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFalu73N&md5=55f29c0955d4e9894b96ce04f525e05eCAS |
de Rooij, D. G., and Grootegoed, J. A. (1998). Spermatogonial stem cells. Curr. Opin. Cell Biol. 10, 694–701.
| Spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVOmtw%3D%3D&md5=0907c7234c98b196d1a219e32e07f4e7CAS |
de Rooij, D. G., and Russell, L. D. (2000). All you wanted to know about spermatogonia but were afraid to ask. J. Androl. 21, 776–798.
| 1:STN:280:DC%2BD3MzgtlyrtA%3D%3D&md5=eb0e252aa1b094a77d765c63f4c01e3eCAS |
Helsel, A. R., and Oatley, J. M. (2017). Transplantation as a quantitative assay to study mammalian male germline stem cells. Methods Mol. Biol. 1463, 155–172.
| Transplantation as a quantitative assay to study mammalian male germline stem cells.Crossref | GoogleScholarGoogle Scholar |
Helsel, A. R., Oatley, M. J., and Oatley, J. M. (2017a). Glycolysis-optimized conditions enhance maintenance of regenerative integrity in mouse spermatogonial stem cells during long-term culture. Stem Cell Reports 8, 1430–1441.
| Glycolysis-optimized conditions enhance maintenance of regenerative integrity in mouse spermatogonial stem cells during long-term culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXlslyjsr8%3D&md5=aaaf6a1752163b6af57ebba04b90da7cCAS |
Helsel, A. R., Yang, Q. E., Oatley, M. J., Lord, T., Sablitzky, F., and Oatley, J. M. (2017b). ID4 levels dictate the stem cell state in mouse spermatogonia. Development 144, 624–634.
| ID4 levels dictate the stem cell state in mouse spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtF2gtrzK&md5=daa6f97b7e471406d989b6bbe842cadfCAS |
Honaramooz, A., Megee, S. O., and Dobrinski, I. (2002). Germ cell transplantation in pigs. Biol. Reprod. 66, 21–28.
| Germ cell transplantation in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1ylsg%3D%3D&md5=231217a902e1b37d82aa32eb76a9141bCAS |
Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Miki, H., Ogura, A., Toyokuni, S., and Shinohara, T. (2003). Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69, 612–616.
| Long-term proliferation in culture and germline transmission of mouse male germline stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVerurc%3D&md5=5742949293eca238e8674fcd4dd6b38aCAS |
Kanatsu-Shinohara, M., Muneto, T., Lee, J., Takenaka, M., Chuma, S., Nakatsuji, N., Horiuchi, T., and Shinohara, T. (2008). Long-term culture of male germline stem cells from hamster testes. Biol. Reprod. 78, 611–617.
| Long-term culture of male germline stem cells from hamster testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvVaitbg%3D&md5=e1dc9e75f5f3f561f72efa4558263f6bCAS |
Kubota, H., Avarbock, M. R., and Brinster, R. L. (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA 101, 16489–16494.
| Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOisbvP&md5=1cba5d260e033cf73f65706875a8ae66CAS |
Kubota, H., Wu, X., Goodyear, S. M., Avarbock, M. R., and Brinster, R. L. (2011). Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J. 25, 2604–2614.
| Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFers74%3D&md5=b9b2b35ec1b8945c50857f86ee6623aaCAS |
Oatley, J. M., and Brinster, R. L. (2006). Spermatogonial stem cells. Methods Enzymol. 419, 259–282.
| Spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1SlsrY%3D&md5=bba5734b0d38d1f3ec17db3ab01ec4bfCAS |
Oatley, J. M., and Brinster, R. L. (2008). Regulation of spermatogonial stem cell self-renewal in mammals. Annu. Rev. Cell Dev. Biol. 24, 263–286.
| Regulation of spermatogonial stem cell self-renewal in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOgtbbI&md5=76329a94507fa918996edc6d6abaab3eCAS |
Oatley, J. M., and Brinster, R. L. (2012). The germline stem cell niche unit in mammalian testes. Physiol. Rev. 92, 577–595.
| The germline stem cell niche unit in mammalian testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptF2ktbk%3D&md5=17d9f8e976b1e3c94754437ccf863263CAS |
Oatley, M. J., Kaucher, A. V., Yang, Q. E., Waqas, M. S., and Oatley, J. M. (2016). Conditions for long-term culture of cattle undifferentiated spermatogonia. Biol. Reprod. 95, 14.
| Conditions for long-term culture of cattle undifferentiated spermatogonia.Crossref | GoogleScholarGoogle Scholar |
Park, K. E., Kaucher, A. V., Powell, A., Waqas, M. S., Sandmaier, S. E., Oatley, M. J., Park, C. H., Tibary, A., Donovan, D. M., Blomberg, L. A., Lillico, S. G., Whitelaw, C. B., Mileham, A., Telugu, B. P., and Oatley, J. M. (2017). Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci. Rep. 7, 40176.
| Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXps12ntg%3D%3D&md5=68dfbff4f47a4a19b26cfc8fd0ccda3bCAS |
Ryu, B. Y., Kubota, H., Avarbock, M. R., and Brinster, R. L. (2005). Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc. Natl Acad. Sci. USA 102, 14302–14307.
| Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCgsr7N&md5=50333e1d16fd4c75747b6f98fb571e62CAS |
Saga, Y. (2010). Function of Nanos2 in the male germ cell lineage in mice. Cell. Mol. Life Sci. 67, 3815–3822.
| Function of Nanos2 in the male germ cell lineage in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qurrO&md5=191e93696a9be7ca2fccf26cc3b59d2eCAS |
Tsuda, M., Sasaoka, Y., Kiso, M., Abe, K., Haraguchi, S., Kobayashi, S., and Saga, Y. (2003). Conserved role of nanos proteins in germ cell development. Science 301, 1239–1241.
| Conserved role of nanos proteins in germ cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslShs7c%3D&md5=c7e687d8f66b1c71702bc23dd0330896CAS |
Zeng, W., Tang, L., Bondareva, A., Honaramooz, A., Tanco, V., Dores, C., Megee, S., Modelski, M., Rodriguez-Sosa, J. R., Paczkowski, M., Silva, E., Wheeler, M., Krisher, R. L., and Dobrinski, I. (2013). Viral transduction of male germline stem cells results in transgene transmission after germ cell transplantation in pigs. Biol. Reprod. 88, 27.
| Viral transduction of male germline stem cells results in transgene transmission after germ cell transplantation in pigs.Crossref | GoogleScholarGoogle Scholar |
Zhang, Z., Shao, S., and Meistrich, M. L. (2006). Irradiated mouse testes efficiently support spermatogenesis derived from donor germ cells of mice and rats. J. Androl. 27, 365–375.
| Irradiated mouse testes efficiently support spermatogenesis derived from donor germ cells of mice and rats.Crossref | GoogleScholarGoogle Scholar |