Preantral follicle culture and oocyte quality
Martyna Heiligentag A and Ursula Eichenlaub-Ritter A BA Universitaet Bielefeld, Fac. Biol., Gene Technol./Mikrobiol., 33501 Bielefeld, Germany.
B Corresponding author. Email: EiRi@uni-bielefeld.de
Reproduction, Fertility and Development 30(1) 18-43 https://doi.org/10.1071/RD17411
Published: 4 December 2017
Abstract
The formation of high-quality oocytes depends on complex stage-specific interactions between the germ cell and the somatic compartment involving endocrine, paracrine, and autocrine regulation. Cooperativity in bidirectional signalling and metabolism in response to factors in the microenvironment drive growth, proliferation, cell cycle regulation, spindle formation and the establishment of epigenetic marks in oocytes. This is essential to ensure faithful chromosome segregation and to achieve high oocyte quality, with far-reaching consequences for embryo survival, development and the health of offspring. Oocytes reach developmental capacity throughout early meiotic stages up to full growth and acquisition of nuclear and cytoplasmic maturational competence during folliculogenesis. Improved preantral follicle culture in which ideally intimate contacts between oocyte and somatic cells are retained provides unique opportunities to assess the effects of microenvironment, growth factors, hormones, cryopreservation and environmental exposure on folliculogenesis and oocyte quality. An optimised follicle culture can contribute to the generation of high-quality oocytes for use in fertility preservation in cancer patients, animal breeding and the preservation of endangered species. The past decade has brought about major advances in follicle culture from different species. Recent advances in preantral follicle culture are discussed to assess the effects of environment, adverse exposure, cryopreservation and age on oocyte quality.
Additional keywords: age, chromosomal constitution, cryopreservation, developmental capacity, environmental exposure, fertility preservation, gap junctional communication, growth factors.
References
Abedelahi, A., Salehnia, M., Allameh, A. A., and Davoodi, D. (2010). Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Hum. Reprod. 25, 977–985.| Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslejt7g%3D&md5=bdc3e027a6253ee89c8f4108ced9df8cCAS | 20139425PubMed |
Abir, R., Roizman, P., Fisch, B., Nitke, S., Okon, E., Orvieto, R., and Ben Rafael, Z. (1999). Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum. Reprod. 14, 1299–1301.
| Pilot study of isolated early human follicles cultured in collagen gels for 24 hours.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3mt1Ohtg%3D%3D&md5=2a379006fd52db84a2f2954423c6037dCAS | 10325281PubMed |
Adam, A. A., Takahashi, Y., Katagiri, S., and Nagano, M. (2004). In vitro culture of mouse preantral follicles using membrane inserts and developmental competence of in vitro ovulated oocytes. J. Reprod. Dev. 50, 579–586.
| In vitro culture of mouse preantral follicles using membrane inserts and developmental competence of in vitro ovulated oocytes.Crossref | GoogleScholarGoogle Scholar | 15514465PubMed |
Adhikari, D., Gorre, N., Risal, S., Zhao, Z., Zhang, H., Shen, Y., and Liu, K. (2012). The safe use of a PTEN inhibitor for the activation of dormant mouse primordial follicles and generation of fertilizable eggs. PLoS One 7, e39034.
| The safe use of a PTEN inhibitor for the activation of dormant mouse primordial follicles and generation of fertilizable eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Ojtrg%3D&md5=66add1bc04a368eabb635e40685b34baCAS | 22761722PubMed |
Adhikari, D., and Liu, K. (2014). The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol. Cell. Endocrinol. 382, 480–487.
| The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCntrnE&md5=eaa85b470433f50a5f46a9a4b1f14792CAS | 23916417PubMed |
Adriaens, I., Cortvrindt, R., and Smitz, J. (2004). Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum. Reprod. 19, 398–408.
| Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1entQ%3D%3D&md5=42ffa6f23d38506d78038b3f842f3664CAS | 14747188PubMed |
Ahn, R. W., Barrett, S. L., Raja, M. R., Jozefik, J. K., Spaho, L., Chen, H., Bally, M. B., Mazar, A. P., Avram, M. J., Winter, J. N., Gordon, L. I., Shea, L. D., O’Halloran, T. V., and Woodruff, T. K. (2013). Nano-encapsulation of arsenic trioxide enhances efficacy against murine lymphoma model while minimizing its impact on ovarian reserve in vitro and in vivo. PLoS One 8, e58491.
| Nano-encapsulation of arsenic trioxide enhances efficacy against murine lymphoma model while minimizing its impact on ovarian reserve in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltFyqtLw%3D&md5=c790019bbf203738d01e620fb7dea30bCAS | 23526987PubMed |
Albuz, F. K., Sasseville, M., Lane, M., Armstrong, D. T., Thompson, J. G., and Gilchrist, R. B. (2010). Simulated physiological oocyte maturation (SPOM): a novel IVM system that substantially improves embryo yield and pregnancy outcomes. Hum. Reprod. 25, 2999–3011.
| Simulated physiological oocyte maturation (SPOM): a novel IVM system that substantially improves embryo yield and pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cbotlKnsg%3D%3D&md5=7f3e4a55365616ad1f1f715847b20391CAS | 20870682PubMed |
Alves, A. M., Chaves, R. N., Rocha, R. M., Lima, L. F., Andrade, P. M., Lopes, C. A., Souza, C. E., Moura, A. A., Campello, C. C., Báo, S. N., Smitz, J., and Figueiredo, J. R. (2013). Dynamic medium containing growth differentiation factor-9 and FSH maintains survival and promotes in vitro growth of caprine preantral follicles after long-term IVC. Reprod. Fertil. Dev. 25, 955–965.
| Dynamic medium containing growth differentiation factor-9 and FSH maintains survival and promotes in vitro growth of caprine preantral follicles after long-term IVC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSrtrzN&md5=e15dd514a931500bc37e823b52e96e36CAS | 23050662PubMed |
Amorim, C. A., Van Langendonckt, A., David, A., Dolmans, M. M., and Donnez, J. (2009). Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and IVC in a calcium alginate matrix. Hum. Reprod. 24, 92–99.
| Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and IVC in a calcium alginate matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtbbI&md5=3c171693b745b297edfcc5ff5cee15c7CAS | 18815120PubMed |
Anckaert, E., Adriaenssens, T., Romero, S., and Smitz, J. (2009). Ammonium accumulation and use of mineral oil overlay do not alter imprinting establishment at three key imprinted genes in mouse oocytes grown and matured in a long-term follicle culture. Biol. Reprod. 81, 666–673.
| Ammonium accumulation and use of mineral oil overlay do not alter imprinting establishment at three key imprinted genes in mouse oocytes grown and matured in a long-term follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhsLjL&md5=39cd97872a3c9901f255d4fc32a787faCAS | 19494252PubMed |
Anckaert, E., Romero, S., Adriaenssens, T., and Smitz, J. (2010). Effects of low methyl donor levels in culture medium during mouse follicle culture on oocyte imprinting establishment. Biol. Reprod. 83, 377–386.
| Effects of low methyl donor levels in culture medium during mouse follicle culture on oocyte imprinting establishment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrsrrF&md5=693629e388289df5f5d1c35ca3f5f945CAS | 20393167PubMed |
Anckaert, E., De Rycke, M., and Smitz, J. (2013). Culture of oocytes and risk of imprinting defects. Hum. Reprod. Update 19, 52–66.
| Culture of oocytes and risk of imprinting defects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWgs7jM&md5=fbd763bf479db1f41f12f395222bf924CAS | 23054129PubMed |
Andrade, E. R., van den Hurk, R., Lisboa, L. A., Hertel, M. F., Melo-Sterza, F. A., Moreno, K., Bracarense, A. P., Landim-Alvarenga, F. C., Seneda, M. M., and Alfieri, A. A. (2012). Effects of ascorbic acid on IVC of bovine preantral follicles. Zygote 20, 379–388.
| Effects of ascorbic acid on IVC of bovine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12lsb%2FO&md5=48e675c66a50a7d3573722dbaf30a871CAS | 22475070PubMed |
Araújo, V. R., Gastal, M. O., Figueiredo, J. R., and Gastal, E. L. (2014a). In vitro culture of bovine preantral follicles: a review. Reprod. Biol. Endocrinol. 12, 78.
| In vitro culture of bovine preantral follicles: a review.Crossref | GoogleScholarGoogle Scholar | 25117631PubMed |
Araújo, V. R., Gastal, M. O., Wischral, A., Figueiredo, J. R., and Gastal, E. L. (2014b). In vitro development of bovine secondary follicles in two- and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone. Theriogenology 82, 1246–1253.
| In vitro development of bovine secondary follicles in two- and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone.Crossref | GoogleScholarGoogle Scholar | 25219848PubMed |
Arunakumari, G., Shanmugasundaram, N., and Rao, V. H. (2010). Development of morulae from the oocytes of cultured sheep preantral follicles. Theriogenology 74, 884–894.
| Development of morulae from the oocytes of cultured sheep preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjosVSktA%3D%3D&md5=4446469823b5baeb63dafc93e0b59247CAS | 20615540PubMed |
Babayev, E., and Seli, E. (2015). Oocyte mitochondrial function and reproduction. Curr. Opin. Obstet. Gynecol. 27, 175–181.
| Oocyte mitochondrial function and reproduction.Crossref | GoogleScholarGoogle Scholar | 25719756PubMed |
Battaglia, R., Vento, M. E., Borzì, P., Ragusa, M., Barbagallo, D., Arena, D., Purrello, M., and Di Pietro, C. (2017). Non-coding RNAs in the ovarian follicle. Front. Genet. 8, 57.
| Non-coding RNAs in the ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 28553318PubMed |
Baumgarten, S. C., Armouti, M., Ko, C., and Stocco, C. (2017). IGF1R expression in ovarian granulosa cells is essential for steroidogenesis, follicle survival, and fertility in female mice. Endocrinology 158, 2309–2318.
| IGF1R expression in ovarian granulosa cells is essential for steroidogenesis, follicle survival, and fertility in female mice.Crossref | GoogleScholarGoogle Scholar | 28407051PubMed |
Belli, M., Vigone, G., Merico, V., Redi, C. A., Zuccotti, M., and Garagna, S. (2012). Towards a 3D culture of mouse ovarian follicles. Int. J. Dev. Biol. 56, 931–937.
| Towards a 3D culture of mouse ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVyqsbo%3D&md5=c9644a0e4c8200d6e92fca314c1dab70CAS | 23417415PubMed |
Bennabi, I., Terret, M. E., and Verlhac, M. H. (2016). Meiotic spindle assembly and chromosome segregation in oocytes. J. Cell Biol. 215, 611–619.
| Meiotic spindle assembly and chromosome segregation in oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXktVWnsL0%3D&md5=5288bec7efc57e5076444caeb50c4ab9CAS | 27879467PubMed |
Berkholtz, C. B., Shea, L. D., and Woodruff, T. K. (2006). Extracellular matrix functions in follicle maturation. Semin. Reprod. Med. 24, 262–269.
| Extracellular matrix functions in follicle maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2jsr3F&md5=e603a050822eac8dfde815bc7967c97eCAS | 16944423PubMed |
Bertoldo, M. J., Guibert, E., Faure, M., Ramé, C., Foretz, M., Viollet, B., Dupont, J., and Froment, P. (2015). Specific deletion of AMP-activated protein kinase (α1AMPK) in murine oocytes alters junctional protein expression and mitochondrial physiology. PLoS One 10, e0119680.
| Specific deletion of AMP-activated protein kinase (α1AMPK) in murine oocytes alters junctional protein expression and mitochondrial physiology.Crossref | GoogleScholarGoogle Scholar | 25767884PubMed |
Bianchi, L., Gagliardi, A., Landi, C., Focarelli, R., De Leo, V., Luddi, A., Bini, L., and Piomboni, P. (2016). Protein pathways working in human follicular fluid: the future for tailored IVF? Expert Rev. Mol. Med. 18, e9.
| Protein pathways working in human follicular fluid: the future for tailored IVF?Crossref | GoogleScholarGoogle Scholar | 27149979PubMed |
Bolamba, D., Borden-Russ, K. D., and Durrant, B. S. (1998). In vitro maturation of domestic dog oocytes cultured in advanced preantral and early antral follicles. Theriogenology 49, 933–942.
| In vitro maturation of domestic dog oocytes cultured in advanced preantral and early antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ps1Kmsg%3D%3D&md5=4214359f66e05cbdfdc9794b5a72935aCAS | 10732101PubMed |
Boland, N. I., Humpherson, P. G., Leese, H. J., and Gosden, R. G. (1993). Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol. Reprod. 48, 798–806.
| Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1enuro%3D&md5=6474b5d3db65d28ec3d542c66ba74f6dCAS | 8485244PubMed |
Boudoures, A. L., Saben, J., Drury, A., Scheaffer, S., Modi, Z., Zhang, W., and Moley, K. H. (2017). Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. Dev. Biol. 426, 126–138.
| Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXmvFCrsbY%3D&md5=8a69b1d5d32ef47aecad1a4ef069840eCAS | 28438607PubMed |
Brito, I. R., Lima, I. M., Xu, M., Shea, L. D., Woodruff, T. K., and Figueiredo, J. R. (2014). Three-dimensional systems for in vitro follicular culture: overview of alginate-based matrices. Reprod. Fertil. Dev. 26, 915–930.
| Three-dimensional systems for in vitro follicular culture: overview of alginate-based matrices.Crossref | GoogleScholarGoogle Scholar | 23866836PubMed |
Brito, I. R., Silva, G. M., Sales, A. D., Lobo, C. H., Rodrigues, G. Q., Sousa, R. F., Moura, A., Calderón, C., Bertolini, M., Campello, C. C., Smitz, J., and Figueiredo, J. R. (2016). Fibrin–alginate hydrogel supports steroidogenesis, IVM of oocytes and parthenotes production from caprine preantral follicles cultured in group. Reprod. Domest. Anim. 51, 997–1009.
| Fibrin–alginate hydrogel supports steroidogenesis, IVM of oocytes and parthenotes production from caprine preantral follicles cultured in group.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhsl2hu7nO&md5=93c5f6f6ab6d1341c77101519b46a206CAS | 27650787PubMed |
Brown, H. M., Dunning, K. R., Sutton-McDowall, M., Gilchrist, R. B., Thompson, J. G., and Russell, D. L. (2017). Failure to launch: aberrant cumulus gene expression during oocyte IVM. Reproduction 153, R109–R120.
| Failure to launch: aberrant cumulus gene expression during oocyte IVM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtVSgs7vM&md5=1fbe37dece42dcbf6809098fec37dd31CAS | 27879344PubMed |
Brunet, S., Dumont, J., Lee, K. W., Kinoshita, K., Hikal, P., Gruss, O. J., Maro, B., and Verlhac, M. H. (2008). Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One 3, e3338.
| Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 18833336PubMed |
Bunel, A., Jorssen, E. P., Merckx, E., Leroy, J. L., Bols, P. E., and Sirard, M. A. (2015). Individual bovine in vitro embryo production and cumulus cell transcriptomic analysis to distinguish cumulus–oocyte complexes with high or low developmental potential. Theriogenology 83, 228–237.
| Individual bovine in vitro embryo production and cumulus cell transcriptomic analysis to distinguish cumulus–oocyte complexes with high or low developmental potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ymu7bE&md5=3bd94955456a48170e2dcef74f54a41fCAS | 25442391PubMed |
Buratini, J., Teixeira, A. B., Costa, I. B., Glapinski, V. F., Pinto, M. G. L., Giometti, I. C., Barros, C. M., Cao, M., Nicola, E. S., and Price, C. A. (2005). Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor-3c and -4, in bovine antral follicles. Reproduction 130, 343–350.
| Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor-3c and -4, in bovine antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWisr3I&md5=14606c5272443b011c7e518c910aa568CAS | 16123241PubMed |
Burkhardt, S., Borsos, M., Szydlowska, A., Godwin, J., Williams, S. A., Cohen, P. E., Hirota, T., Saitou, M., and Tachibana-Konwalski, K. (2016). Chromosome cohesion established by Rec8–Cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice. Curr. Biol. 26, 678–685.
| Chromosome cohesion established by Rec8–Cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XivFOqtr0%3D&md5=bf827089bfcc1b6819445c36c9d6cda8CAS | 26898469PubMed |
Cakmak, H., Franciosi, F., Zamah, A. M., Cedars, M. I., and Conti, M. (2016). Dynamic secretion during meiotic reentry integrates the function of the oocyte and cumulus cells. Proc. Natl Acad. Sci. USA 113, 2424–2429.
| Dynamic secretion during meiotic reentry integrates the function of the oocyte and cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xitlyqsrc%3D&md5=12372ac420cd3ac52004b02ea3ffe9e0CAS | 26864200PubMed |
Camboni, A., Van Langendonckt, A., Donnez, J., Vanacker, J., Dolmans, M. M., and Amorim, C. A. (2013). Alginate beads as a tool to handle, cryopreserve and culture isolated human primordial/primary follicles. Cryobiology 67, 64–69.
| Alginate beads as a tool to handle, cryopreserve and culture isolated human primordial/primary follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovVCksb8%3D&md5=60a71df89678e460bb8d8d17b86eee08CAS | 23688636PubMed |
Canosa, S., Adriaenssens, T., Coucke, W., Dalmasso, P., Revelli, A., Benedetto, C., and Smitz, J. (2017). Zona pellucida gene mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence. Mol. Hum. Reprod. 23, 292–303.
| Zona pellucida gene mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC1c3nsVWmtw%3D%3D&md5=716dd39414e0b35e33a3eff0e5c8275eCAS | 28204536PubMed |
Chang, H. M., Qiao, J., and Leung, P. C. (2016). Oocyte–somatic cell interactions in the human ovary – novel role of bone morphogenetic proteins and growth differentiation factors. Hum. Reprod. Update 23, 1–18.
| Oocyte–somatic cell interactions in the human ovary – novel role of bone morphogenetic proteins and growth differentiation factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVyqs78%3D&md5=843f4f70174abfbd3388c2f7f9363eefCAS | 27797914PubMed |
Chaves, R. N., Duarte, A. B., Rodrigues, G. Q., Celestino, J. J., Silva, G. M., Lopes, C. A., Almeida, A. P., Donato, M. A., Peixoto, C. A., Moura, A. A., Lobo, C. H., Locatelli, Y., Mermillod, P., Campello, C. C., and Figueiredo, J. R. (2012). The effects of insulin and follicle-stimulating hormone (FSH) during in vitro development of ovarian goat preantral follicles and the relative mRNA expression for insulin and FSH receptors and cytochrome P450 aromatase in cultured follicles. Biol. Reprod. 87, 69.
| The effects of insulin and follicle-stimulating hormone (FSH) during in vitro development of ovarian goat preantral follicles and the relative mRNA expression for insulin and FSH receptors and cytochrome P450 aromatase in cultured follicles.Crossref | GoogleScholarGoogle Scholar | 22811569PubMed |
Cheng, Y., Yata, A., Klein, C., Cho, J. H., Deguchi, M., and Hsueh, A. J. (2011). Oocyte-expressed interleukin 7 suppresses granulosa cell apoptosis and promotes oocyte maturation in rats. Biol. Reprod. 84, 707–714.
| Oocyte-expressed interleukin 7 suppresses granulosa cell apoptosis and promotes oocyte maturation in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFanurk%3D&md5=6c005b831abf1f34081681bb9712a645CAS | 21178173PubMed |
Choi, J. K., Agarwal, P., and He, X. (2013). In vitro culture of early secondary preantral follicles in hanging drop of ovarian cell-conditioned medium to obtain MII oocytes from outbred deer mice. Tissue Eng. Part A 19, 2626–2637.
| In vitro culture of early secondary preantral follicles in hanging drop of ovarian cell-conditioned medium to obtain MII oocytes from outbred deer mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2hs7%2FL&md5=51de88be13fde21907a3358d2e0d4ee8CAS | 23789595PubMed |
Clift, D., and Schuh, M. (2015). A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes. Nat. Commun. 6, 7217.
| A three-step MTOC fragmentation mechanism facilitates bipolar spindle assembly in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 26147444PubMed |
Collado-Fernandez, E., Picton, H. M., and Dumollard, R. (2012). Metabolism throughout follicle and oocyte development in mammals. Int. J. Dev. Biol. 56, 799–808.
| Metabolism throughout follicle and oocyte development in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVyqsL8%3D&md5=aadc47320a158980c2482ec0ba3153e4CAS | 23417402PubMed |
Collins, J. K., and Jones, K. T. (2016). DNA damage responses in mammalian oocytes. Reproduction 152, R15–R22.
| DNA damage responses in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslaqtL%2FO&md5=1c18c85d22ead57b46a41c251a27176fCAS | 27069010PubMed |
Collins, J. K., Lane, S. I., Merriman, J. A., and Jones, K. T. (2015). DNA damage induces a meiotic arrest in mouse oocytes mediated by the spindle assembly checkpoint. Nat. Commun. 6, 8553.
| DNA damage induces a meiotic arrest in mouse oocytes mediated by the spindle assembly checkpoint.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslOgtbjK&md5=e60042ffc90e30f9630376cd5c30b34cCAS | 26522232PubMed |
Conti, M., Hsieh, M., Zamah, A. M., and Oh, J. S. (2012). Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol. Cell. Endocrinol. 356, 65–73.
| Novel signaling mechanisms in the ovary during oocyte maturation and ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1eitrk%3D&md5=5f2e0bb3f481fc58595ac4602e3f2af6CAS | 22101318PubMed |
Cook-Andersen, H., Curnow, K. J., Su, H. I., Chang, R. J., and Shimasaki, S. (2016). Growth and differentiation factor 9 promotes oocyte growth at the primary but not the early secondary stage in three-dimensional follicle culture. J. Assist. Reprod. Genet. 33, 1067–1077.
| Growth and differentiation factor 9 promotes oocyte growth at the primary but not the early secondary stage in three-dimensional follicle culture.Crossref | GoogleScholarGoogle Scholar | 27155601PubMed |
Cormier, P. (2017). Translation regulator ballet in meiotic spindle. Cell Cycle 16, 733–734.
| Translation regulator ballet in meiotic spindle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXlvVeqsrs%3D&md5=8a2265f472c71e4fbac07f4d21c7686cCAS | 28319437PubMed |
Cortvrindt, R. G., and Smitz, J. E. (2002). Follicle culture in reproductive toxicology: a tool for in-vitro testing of ovarian function? Hum. Reprod. Update 8, 243–254.
| Follicle culture in reproductive toxicology: a tool for in-vitro testing of ovarian function?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zjs1ygsA%3D%3D&md5=d1e33ecb2071efbd3face35f6e0894b4CAS | 12078835PubMed |
Cortvrindt, R., Smitz, J., and Van Steirteghem, A. C. (1996). In vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepubertal mice in a simplified culture system. Hum. Reprod. 11, 2656–2666.
| In vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepubertal mice in a simplified culture system.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7ntlClsQ%3D%3D&md5=064503f89ab63809c6a280691bb8ef99CAS | 9021369PubMed |
Cortvrindt, R., Smitz, J., and Van Steirteghem, A. C. (1997). Assessment of the need for follicle stimulating hormone in early preantral mouse follicle culture in vitro. Hum. Reprod. 12, 759–768.
| Assessment of the need for follicle stimulating hormone in early preantral mouse follicle culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsF2ntLk%3D&md5=276e595ed8b7e81f354d8e4b2d2501a6CAS | 9159439PubMed |
Coticchio, G., Dal Canto, M., Mignini Renzini, M., Guglielmo, M. C., Brambillasca, F., Turchi, D., Novara, P. V., and Fadini, R. (2015). Oocyte maturation: gamete–somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum. Reprod. Update 21, 427–454.
| Oocyte maturation: gamete–somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization.Crossref | GoogleScholarGoogle Scholar | 25744083PubMed |
Curnow, E. C., Ryan, J. P., Saunders, D. M., and Hayes, E. S. (2010). In vitro developmental potential of macaque oocytes, derived from unstimulated ovaries, following maturation in the presence of glutathione ethyl ester. Hum. Reprod. 25, 2465–2474.
| In vitro developmental potential of macaque oocytes, derived from unstimulated ovaries, following maturation in the presence of glutathione ethyl ester.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyltLjK&md5=447fb90a3a8c059a9ba5b18bd0a5f36fCAS | 20729236PubMed |
Curnow, E. C., Ryan, J. P., Saunders, D. M., and Hayes, E. S. (2011). Primate model of metaphase I oocyte IVM and the effects of a novel glutathione donor on maturation, fertilization, and blastocyst development. Fertil. Steril. 95, 1235–1240.
| Primate model of metaphase I oocyte IVM and the effects of a novel glutathione donor on maturation, fertilization, and blastocyst development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1CksLg%3D&md5=d816a9671493527fc1ae5d562792fb55CAS | 20667536PubMed |
Czeizel, A. E., Elek, C., Gundy, S., Metneki, J., Nemes, E., Reis, A., Sperling, K., Timar, L., Tusnady, G., and Viragh, Z. (1993). Environmental trichlorfon and cluster of congenital abnormalities. Lancet 341, 539–542.
| Environmental trichlorfon and cluster of congenital abnormalities.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7nt1yhsA%3D%3D&md5=d478388a1452f6352505bdbcc610a43dCAS | 8094783PubMed |
Dankert, D., Demond, H., Trapphoff, T., Heiligentag, M., Rademacher, K., Eichenlaub-Ritter, U., Horsthemke, B., and Grümmer, R. (2014). Pre- and postovulatory aging of murine oocytes affect the transcript level and poly(A) tail length of maternal effect genes. PLoS One 9, e108907.
| Pre- and postovulatory aging of murine oocytes affect the transcript level and poly(A) tail length of maternal effect genes.Crossref | GoogleScholarGoogle Scholar | 25271735PubMed |
Davis, B. J., Maronpot, R. R., and Heindel, J. J. (1994). Di-(2-ethylhexyl)phthalate suppresses estradiol and ovulation in cycling rats. Toxicol. Appl. Pharmacol. 128, 216–223.
| Di-(2-ethylhexyl)phthalate suppresses estradiol and ovulation in cycling rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsVynu7k%3D&md5=cdad7d6f865c1acf505e2d60f2a17de4CAS | 7940536PubMed |
de Castro, F. C., Cruz, M. H., and Leal, C. L. (2016). Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility – a review. Asian-Australas. J. Anim. Sci. 29, 1065–1074.
| Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility – a review.Crossref | GoogleScholarGoogle Scholar | 26954112PubMed |
del Collado, M., da Silveira, J. C., Sangalli, J. R., Andrade, G. M., Sousa, L. R. D. S., Silva, L. A., Meirelles, F. V., and Perecin, F. (2017). Fatty acid binding protein 3 and transzonal projections are involved in lipid accumulation during IVM of bovine oocytes. Sci. Rep. 7, 2645.
| Fatty acid binding protein 3 and transzonal projections are involved in lipid accumulation during IVM of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 28572619PubMed |
Demain, L. A., Conway, G. S., and Newman, W. G. (2017). Genetics of mitochondrial dysfunction and infertility. Clin. Genet. 91, 199–207.
| Genetics of mitochondrial dysfunction and infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsF2nsLk%3D&md5=30d09b2cd74a7e26c3349081b9a9f8e2CAS | 27748512PubMed |
Demant, M., Trapphoff, T., Fröhlich, T., Arnold, G. J., and Eichenlaub-Ritter, U. (2012). Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. Hum. Reprod. 27, 1096–1111.
| Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVarsbg%3D&md5=debd6a2181ce82936d8cc4479fff94deCAS | 22258663PubMed |
Demeestere, I., Centner, J., Gervy, C., Englert, Y., and Delbaere, A. (2005). Impact of various endocrine and paracrine factors on IVC of preantral follicles in rodents. Reproduction 130, 147–156.
| Impact of various endocrine and paracrine factors on IVC of preantral follicles in rodents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSksbrF&md5=c5e7fb95005f52658d6090208793c4ceCAS | 16049152PubMed |
Demond, H., Trapphoff, T., Dankert, D., Heiligentag, M., Grümmer, R., Horsthemke, B., and Eichenlaub-Ritter, U. (2016). Preovulatory aging in vivo and in vitro affects maturation rates, abundance of selected proteins, histone methylation pattern and spindle integrity in murine oocytes. PLoS One 11, e0162722.
| Preovulatory aging in vivo and in vitro affects maturation rates, abundance of selected proteins, histone methylation pattern and spindle integrity in murine oocytes.Crossref | GoogleScholarGoogle Scholar | 27611906PubMed |
Desai, N., Alex, A., Abdel Hafez, F., Calabro, A., Goldfarb, J., Fleischman, A., and Falcone, T. (2010). Three-dimensional in vitro follicle growth: overview of culture models, biomaterials, design parameters and future directions. Reprod. Biol. Endocrinol. 8, 119.
| Three-dimensional in vitro follicle growth: overview of culture models, biomaterials, design parameters and future directions.Crossref | GoogleScholarGoogle Scholar | 20946661PubMed |
Desmet, K. L., Van Hoeck, V., Gagné, D., Fournier, E., Thakur, A., Doherty, A. M., Walsh, C. P., Sirard, M. A., Bols, P. E., and Leroy, J. L. (2016). Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: integration of epigenetic and transcriptomic signatures in resultant blastocysts. BMC Genomics 17, 1004.
| Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: integration of epigenetic and transcriptomic signatures in resultant blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2sjkvVOktw%3D%3D&md5=17831142df8b63ae06288d0567655074CAS | 27931182PubMed |
Desquiret-Dumas, V., Clément, A., Seegers, V., Boucret, L., Ferré-L’Hotellier, V., Bouet, P. E., Descamps, P., Procaccio, V., Reynier, P., and May-Panloup, P. (2017). The mitochondrial DNA content of cumulus granulosa cells is linked to embryo quality. Hum. Reprod. 32, 607–614.
| 1:STN:280:DC%2BC1c7kslKisQ%3D%3D&md5=de55ea90f395abbb4e4ddc9be7dabaaeCAS | 28077604PubMed |
Dieci, C., Lodde, V., Franciosi, F., Lagutina, I., Tessaro, I., Modina, S. C., Albertini, D. F., Lazzari, G., Galli, C., and Luciano, A. M. (2013). The effect of cilostamide on gap junction communication dynamics, chromatin remodeling, and competence acquisition in pig oocytes following parthenogenetic activation and nuclear transfer. Biol. Reprod. 89, 68.
| The effect of cilostamide on gap junction communication dynamics, chromatin remodeling, and competence acquisition in pig oocytes following parthenogenetic activation and nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 23926281PubMed |
Dieci, C., Lodde, V., Labreque, R., Dufort, I., Tessaro, I., Sirard, M. A., and Luciano, A. M. (2016). Differences in cumulus cell gene expression indicate the benefit of a pre-maturation step to improve in-vitro bovine embryo production. Mol. Hum. Reprod. 22, 882–897.
| 27559149PubMed |
Dong, J., Albertini, D. F., Nishimori, K., Kumar, T. R., Lu, N., and Matzuk, M. M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535.
| Growth differentiation factor-9 is required during early ovarian folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1GrsL0%3D&md5=d240d08e74519a6d010c340e99b578c9CAS | 8849725PubMed |
Dorati, R., Genta, I., Ferrari, M., Vigone, G., Merico, V., Garagna, S., Zuccotti, M., and Conti, B. (2016). Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus–oocyte complexes culture. J. Microencapsul. 33, 137–145.
| Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus–oocyte complexes culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Crtro%3D&md5=8353ef114892f3f9a077685f84433010CAS | 26791322PubMed |
Dumollard, R., Carroll, J., Duchen, M. R., Campbell, K., and Swann, K. (2009). Mitochondrial function and redox state in mammalian embryos. Semin. Cell Dev. Biol. 20, 346–353.
| Mitochondrial function and redox state in mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVCmsLo%3D&md5=a9d48ea8d5163a40b32aa8a0cef17a05CAS | 19530278PubMed |
Dunning, K. R., Akison, L. K., Russell, D. L., Norman, R. J., and Robker, R. L. (2011). Increased beta-oxidation and improved oocyte developmental competence in response to l-carnitine during ovarian in vitro follicle development in mice. Biol. Reprod. 85, 548–555.
| Increased beta-oxidation and improved oocyte developmental competence in response to l-carnitine during ovarian in vitro follicle development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gtLjN&md5=eb269867b74048e2a58437140f00ad1cCAS | 21613630PubMed |
Dunning, K. R., Russell, D. L., and Robker, R. L. (2014). Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 148, R15–R27.
| Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyrtrnE&md5=00089343ef289f0fe4743fd4b5d37375CAS | 24760880PubMed |
Eichenlaub-Ritter, U. (2012). Oocyte ageing and its cellular basis. Int. J. Dev. Biol. 56, 841–852.
| Oocyte ageing and its cellular basis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVyqsLs%3D&md5=e6c899f1e3d54a26c975c9af9e9dfbccCAS | 23417406PubMed |
Eichenlaub-Ritter, U. (2014). How to get a good start in life. In ‘Textbook of Human Reproductive Genetics’. (Eds K. Sermon and S. Viville.) pp. 33–51. (Cambridge University Press.)
Eichenlaub-Ritter, U., and Pacchierotti, F. (2015). Bisphenol A effects on mammalian oogenesis and epigenetic integrity of oocytes: a case study exploring risks of endocrine disrupting chemicals. BioMed Res. Int. 2015, 698795.
| Bisphenol A effects on mammalian oogenesis and epigenetic integrity of oocytes: a case study exploring risks of endocrine disrupting chemicals.Crossref | GoogleScholarGoogle Scholar | 26339634PubMed |
Eichenlaub-Ritter, U., and Peschke, M. (2002). Expression in in-vivo and in-vitro growing and maturing oocytes: focus on regulation of expression at the translational level. Hum. Reprod. Update 8, 21–41.
| Expression in in-vivo and in-vitro growing and maturing oocytes: focus on regulation of expression at the translational level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVSgtr0%3D&md5=bde591f37244d240f5464ec785550be8CAS | 11866238PubMed |
Eichenlaub-Ritter, U., and Plancha, C. (2013). Structural basis for oocyte–granulosa cell interactions. In ‘Biology and Pathology of the Oocyte’. (Eds A. Trounson, U. Eichenlaub-Ritter, and R. Gosden.) pp. 81–94. (Cambridge University Press.)
Eichenlaub-Ritter, U., Vogt, E., Yin, H., and Gosden, R. (2004). Spindles, mitochondria and redox potential in ageing oocytes. Reprod. Biomed. Online 8, 45–58.
| Spindles, mitochondria and redox potential in ageing oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Ojsb0%3D&md5=28ad611aacc87cd8af2b9560aee75e16CAS | 14759287PubMed |
Elahi, F., Lee, H., Lee, Y., Park, B., Lee, J., Hyun, S. H., and Lee, E. (2016). Cilostazol improves developmental competence of pig oocytes by increasing intraoocyte cyclic adenosine monophosphate level and delaying meiotic resumption. Reprod. Domest. Anim. 51, 220–226.
| Cilostazol improves developmental competence of pig oocytes by increasing intraoocyte cyclic adenosine monophosphate level and delaying meiotic resumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjvFGhu7k%3D&md5=a4138c703f6c0dccb9a01ecb3c083c26CAS | 26834044PubMed |
Eppig, J. (2005). Mouse oocytes control metabolic co-operativity between oocytes and cumulus cells. Reprod. Fertil. Dev. 17, 1–2.
| Mouse oocytes control metabolic co-operativity between oocytes and cumulus cells.Crossref | GoogleScholarGoogle Scholar | 16502524PubMed |
Eppig, J. J., and O’Brien, M. J. (1996). Development in vitro of mouse oocytes from primordial follicles. Biol. Reprod. 54, 197–207.
| Development in vitro of mouse oocytes from primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSisLjO&md5=4b62f42eead822bced3e8a1e924b7906CAS | 8838017PubMed |
Eppig, J. J., O’Brien, M. J., Pendola, F. L., and Watanabe, S. (1998). Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle stimulating hormone and insulin. Biol. Reprod. 59, 1445–1453.
| Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle stimulating hormone and insulin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVOit7s%3D&md5=dceb3ad00909abc3b0e4ceb763b5d614CAS | 9828191PubMed |
Eppig, J. J., Hosoe, M., O’Brien, M. J., Pendola, F. M., Requena, A., and Watanabe, S. (2000). Conditions that affect acquisition of developmental competence by mouse oocytes in vitro: FSH, insulin, glucose and ascorbic acid. Mol. Cell. Endocrinol. 163, 109–116.
| Conditions that affect acquisition of developmental competence by mouse oocytes in vitro: FSH, insulin, glucose and ascorbic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvV2ms7o%3D&md5=7863285e07fb34ea463de22e143475d5CAS | 10963882PubMed |
Eppig, J. J., Pendola, F. L., Wigglesworth, K., and Pendola, J. K. (2005). Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol. Reprod. 73, 351–357.
| Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yqsLk%3D&md5=905fd58f38f976728d1a11d64da65490CAS | 15843493PubMed |
Faustino, L. R., Rossetto, R., Lima, I. M., Silva, C. M., Saraiva, M. V., Lima, L. F., Silva, A. W., Donato, M. A., Campello, C. C., Peixoto, C. A., Figueiredo, J. R., and Rodrigues, A. P. R. (2011). Expression of keratinocyte growth factor in goat ovaries and its effects on preantral follicles within cultured ovarian cortex. Reprod. Sci. 18, 1222–1229.
| Expression of keratinocyte growth factor in goat ovaries and its effects on preantral follicles within cultured ovarian cortex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Cqsr3M&md5=5a5e6a78f8728e451c5edb0b25a1f93cCAS | 21693780PubMed |
Filatov, M. A., Khramova, Y. V., and Semenova, M. L. (2015). In vitro mouse ovarian follicle growth and maturation in alginate hydrogel: current state of the art. Acta Naturae 7, 48–56.
| 1:STN:280:DC%2BC2MbkslSlsA%3D%3D&md5=f9cf120a264855ecf309175ba2a8cf69CAS | 26085944PubMed |
Findlay, J. K., Hutt, K. J., Hickey, M., and Anderson, R. A. (2015). How is the number of primordial follicles in the ovarian reserve established? Biol. Reprod. 93, 111.
| How is the number of primordial follicles in the ovarian reserve established?Crossref | GoogleScholarGoogle Scholar | 26423124PubMed |
Fortune, J. E. (1994). Ovarian follicular growth and development in mammals. Biol. Reprod. 50, 225–232.
| Ovarian follicular growth and development in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvVeju74%3D&md5=cbc7802c443d0cda603007d3722a211cCAS | 8142540PubMed |
Fortune, J. E., Rivera, G. M., and Yang, M. Y. (2004). Follicular development: the role of the follicular microenvironment in selection of the dominant follicle. Anim. Reprod. Sci. 82–83, 109–126.
| Follicular development: the role of the follicular microenvironment in selection of the dominant follicle.Crossref | GoogleScholarGoogle Scholar | 15271447PubMed |
Freitas, C., Neto, A. C., Matos, L., Silva, E., Ribeiro, Â., Silva-Carvalho, J. L., and Almeida, H. (2017). Follicular fluid redox involvement for ovarian follicle growth. J. Ovarian Res. 10, 44.
| Follicular fluid redox involvement for ovarian follicle growth.Crossref | GoogleScholarGoogle Scholar | 28701210PubMed |
Gigli, I., Byrd, D. D., and Fortune, J. E. (2006). Effects of oxygen tension and supplements to the culture medium on activation and development of bovine follicles. Theriogenology 66, 344–353.
| Effects of oxygen tension and supplements to the culture medium on activation and development of bovine follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Gksbk%3D&md5=c091e50ec34d4eb00007833989b9f06aCAS | 16442155PubMed |
Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
| Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKmurY%3D&md5=5e2a57b24e85c8f8d725a9e392930840CAS | 18175787PubMed |
Gilchrist, R. B., Luciano, A. M., Richani, D., Zeng, H. T., Wang, X., Vos, M. D., Sugimura, S., Smitz, J., Richard, F. J., and Thompson, J. G. (2016). Oocyte maturation and quality: role of cyclic nucleotides. Reproduction 152, R143–R157.
| Oocyte maturation and quality: role of cyclic nucleotides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXktlajsb4%3D&md5=a82c6ba1a0055e11804ddf7233083bbcCAS | 27422885PubMed |
Gomes, R. G., Lisboa, L. A., Silva, C. B., Max, M. C., Marino, P. C., Oliveira, R. L., González, S. M., Barreiros, T. R., Marinho, L. S., and Seneda, M. M. (2015). Improvement of development of equine preantral follicles after 6 days of IVC with ascorbic acid supplementation. Theriogenology 84, 750–755.
| Improvement of development of equine preantral follicles after 6 days of IVC with ascorbic acid supplementation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVeks7bI&md5=f7d933f3d5385870776e5cdb84177d41CAS | 26074067PubMed |
Gook, D. A., Edgar, D. H., Lewis, K., Sheedy, J. R., and Gardner, D. K. (2014). Impact of oxygen concentration on adult murine pre-antral follicle development in vitro and the corresponding metabolic profile. Mol. Hum. Reprod. 20, 31–41.
| Impact of oxygen concentration on adult murine pre-antral follicle development in vitro and the corresponding metabolic profile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1GqsQ%3D%3D&md5=a288685bea65955594520998b550b2dbCAS | 24013158PubMed |
Gougeon, A. (1996). Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr. Rev. 17, 121–155.
| Regulation of ovarian follicular development in primates: facts and hypotheses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislGisbc%3D&md5=9274881c19fdedc94c4dd78eb611fa1fCAS | 8706629PubMed |
Green, L. J., and Shikanov, A. (2016). In vitro culture methods of preantral follicles. Theriogenology 86, 229–238.
| In vitro culture methods of preantral follicles.Crossref | GoogleScholarGoogle Scholar | 27173961PubMed |
Griswold, A. (2013). Profile of John J. Eppig. Proc. Natl Acad. Sci. USA 110, 15506–15508.
| Profile of John J. Eppig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WlurzK&md5=ab4a8552ae9e1973e578eb8f846ed29aCAS | 24009340PubMed |
Gupta, P. S., Ramesh, H. S., Manjunatha, B. M., Nandi, S., and Ravindra, J. P. (2008). Production of buffalo embryos using oocytes from in vitro grown preantral follicles. Zygote 16, 57–63.
| Production of buffalo embryos using oocytes from in vitro grown preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGmt74%3D&md5=2013408f3a7ad8c50c0127cfbeb41126CAS | 18221582PubMed |
Gutierrez, C. G., Ralph, J. H., Telfer, E. E., Wilmut, I., and Webb, R. (2000). Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol. Reprod. 62, 1322–1328.
| Growth and antrum formation of bovine preantral follicles in long-term culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htLc%3D&md5=0a53dadb2879d8b4b8d3644bfd013bc1CAS | 10775183PubMed |
Guzel, Y., and Oktem, O. (2017). Understanding follicle growth in vitro: are we getting closer to obtaining mature oocytes from in vitro-grown follicles in human? Mol. Reprod. Dev. 84, 544–559.
| Understanding follicle growth in vitro: are we getting closer to obtaining mature oocytes from in vitro-grown follicles in human?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXpt1aiur0%3D&md5=cacb0852014a09d5f161551e61684583CAS | 28452156PubMed |
Hanna, C. W., and Kelsey, G. (2014). The specification of imprints in mammals. Heredity 113, 176–183.
| The specification of imprints in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslCms78%3D&md5=1e2fb944155007ed7c1ca28ef5bdfff8CAS | 24939713PubMed |
Hannon, P. R., Brannick, K. E., Wang, W., Gupta, R. K., and Flaws, J. A. (2015a). Di(2-ethylhexyl)phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles. Toxicol. Appl. Pharmacol. 284, 42–53.
| Di(2-ethylhexyl)phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtVakurk%3D&md5=1d2646e42f338d81c0aa33d07dfea1caCAS | 25701202PubMed |
Hannon, P. R., Brannick, K. E., Wang, W., and Flaws, J. A. (2015b). Mono(2-ethylhexyl)phthalate accelerates early folliculogenesis and inhibits steroidogenesis in cultured mouse whole ovaries and antral follicles. Biol. Reprod. 92, 120.
| Mono(2-ethylhexyl)phthalate accelerates early folliculogenesis and inhibits steroidogenesis in cultured mouse whole ovaries and antral follicles.Crossref | GoogleScholarGoogle Scholar | 25810477PubMed |
Hardy, K., Fenwick, M., Mora, J., Laird, M., Thomson, K., and Franks, S. (2017). Onset and heterogeneity of responsiveness to FSH in mouse preantral follicles in culture. Endocrinology 158, 134–147.
| 27819761PubMed |
Hart, R. J. (2016). Physiological aspects of female fertility: role of the environment, modern lifestyle, and genetics. Physiol. Rev. 96, 873–909.
| Physiological aspects of female fertility: role of the environment, modern lifestyle, and genetics.Crossref | GoogleScholarGoogle Scholar | 27252278PubMed |
Hartshorne, G. M. (1997). In vitro culture of ovarian follicles. Rev. Reprod. 2, 94–104.
| In vitro culture of ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktV2nur0%3D&md5=2817c59ad0c65d11f337eb48aef3ba09CAS | 9414471PubMed |
Hayashi, K., Hikabe, O., Obata, Y., and Hirao, Y. (2017). Reconstitution of mouse oogenesis in a dish from pluripotent stem cells. Nat. Protoc. 12, 1733–1744.
| Reconstitution of mouse oogenesis in a dish from pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtlSrsL3O&md5=f825bdb84cbd30af5528889a36a14979CAS | 28796232PubMed |
He, X., and Toth, T. L. (2017). In vitro culture of ovarian follicles from Peromyscus. Semin. Cell Dev. Biol. 61, 140–149.
| In vitro culture of ovarian follicles from Peromyscus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Slu7vE&md5=4e7d89b0f17e6365ab073743df2c6d5dCAS | 27397871PubMed |
Heeren, A. M., van Iperen, L., Klootwijk, D. B., de Melo Bernardo, A., Roost, M. S., Gomes Fernandes, M. M., Louwe, L. A., Hilders, C. G., Helmerhorst, F. M., van der Westerlaken, L. A., and Chuva de Sousa Lopes, S. M. (2015). Development of the follicular basement membrane during human gametogenesis and early folliculogenesis. BMC Dev. Biol. 15, 4.
| Development of the follicular basement membrane during human gametogenesis and early folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 25605128PubMed |
Heise, M., Koepsel, R., Russell, A. J., and McGee, E. A. (2005). Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology. Reprod. Biol. Endocrinol. 3, 47.
| Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology.Crossref | GoogleScholarGoogle Scholar | 16162282PubMed |
Higuchi, C. M., Maeda, Y., Horiuchi, T., and Yamazaki, Y. (2015). A simplified method for three-dimensional (3-D) ovarian tissue culture yielding oocytes competent to produce full-term offspring in mice. PLoS One 10, e0143114.
| A simplified method for three-dimensional (3-D) ovarian tissue culture yielding oocytes competent to produce full-term offspring in mice.Crossref | GoogleScholarGoogle Scholar | 26571501PubMed |
Hirao, Y., Itoh, T., Shimizu, M., Iga, K., Aoyagi, K., Kobayashi, M., Kacchi, M., Hoshi, H., and Takenouchi, N. (2004). In vitro growth and development of bovine oocyte–granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium. Biol. Reprod. 70, 83–91.
| In vitro growth and development of bovine oocyte–granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVyl&md5=99ccfa0e53d7d99263b3950dfdaf130eCAS | 12954724PubMed |
Holt, J. E., Lane, S. I., and Jones, K. T. (2013). The control of meiotic maturation in mammalian oocytes. Curr. Top. Dev. Biol. 102, 207–226.
| The control of meiotic maturation in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2lsrjO&md5=024daa1e30546420c3834dcbc7eefc1dCAS | 23287034PubMed |
Holubcová, Z., Blayney, M., Elder, K., and Schuh, M. (2015). Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 348, 1143–1147.
| Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes.Crossref | GoogleScholarGoogle Scholar | 26045437PubMed |
Hornick, J. E., Duncan, F. E., Shea, L. D., and Woodruff, T. K. (2013). Multiple follicle culture supports primary follicle growth through paracrine-acting signals. Reproduction 145, 19–32.
| Multiple follicle culture supports primary follicle growth through paracrine-acting signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGisb4%3D&md5=c8c8d810cac4835b88ea83e303929909CAS | 23108112PubMed |
Hovatta, O., Silye, R., Abir, R., Krausz, T., and Winston, R. M. (1997). Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture. Hum. Reprod. 12, 1032–1036.
| Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szjsl2qsg%3D%3D&md5=0d8b9e0a0a1da39dfaec17992eab211eCAS | 9194661PubMed |
Hsieh, M., Zamah, A. M., and Conti, M. (2009). Epidermal growth factor-like growth factors in the follicular fluid: role in oocyte development and maturation. Semin. Reprod. Med. 27, 52–61.
| Epidermal growth factor-like growth factors in the follicular fluid: role in oocyte development and maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVGntrs%3D&md5=1b44baca067c09a9cfc6fe49109143c2CAS | 19197805PubMed |
Hsueh, A. J., Kawamura, K., Cheng, Y., and Fauser, B. C. (2015). Intraovarian control of early folliculogenesis. Endocr. Rev. 36, 1–24.
| Intraovarian control of early folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1Shsrg%3D&md5=c8174dc71314800dca5464e6b4543d50CAS | 25202833PubMed |
Hu, Y., Betzendahl, I., Cortvrindt, R., Smitz, J., and Eichenlaub-Ritter, U. (2001). Effects of low O2 and ageing on spindles and chromosomes in mouse oocytes from pre-antral follicle culture. Hum. Reprod. 16, 737–748.
| Effects of low O2 and ageing on spindles and chromosomes in mouse oocytes from pre-antral follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSisro%3D&md5=6bac20d36b09716a2dba2654535c88e6CAS | 11278227PubMed |
Hu, Y., Cortvrindt, R., and Smitz, J. (2002). Effects of aromatase inhibition on in vitro follicle and oocyte development analyzed by early preantral mouse follicle culture. Mol. Reprod. Dev. 61, 549–559.
| Effects of aromatase inhibition on in vitro follicle and oocyte development analyzed by early preantral mouse follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFShu7c%3D&md5=c783f012f24edb571401b92c489248acCAS | 11891927PubMed |
Hunt, P. A., Koehler, K. E., Susiarjo, M., Hodges, C. A., Ilagan, A., Voigt, R. C., Thomas, S., Thomas, B. F., and Hassold, T. J. (2003). Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr. Biol. 13, 546–553.
| Bisphenol A exposure causes meiotic aneuploidy in the female mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislChsb4%3D&md5=3156f2f476448b6c2077be4a1d10ff82CAS | 12676084PubMed |
Itami, N., Shirasuna, K., Kuwayama, T., and Iwata, H. (2015). Resveratrol improves the quality of pig oocytes derived from early antral follicles through sirtuin 1 activation. Theriogenology 83, 1360–1367.
| Resveratrol improves the quality of pig oocytes derived from early antral follicles through sirtuin 1 activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtFSis78%3D&md5=4e22f0c03941b45141a20710795213e5CAS | 25724287PubMed |
Itami, N., Munakata, Y., Shirasuna, K., Kuwayama, T., and Iwata, H. (2017). Promotion of glucose utilization by insulin enhances granulosa cell proliferation and developmental competence of porcine oocyte grown in vitro. Zygote 25, 65–74.
| Promotion of glucose utilization by insulin enhances granulosa cell proliferation and developmental competence of porcine oocyte grown in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFCmsrjP&md5=d9576ed34bd04cb0ff5ed3c6aeae25daCAS | 27955719PubMed |
Jackson, M. R. (1998). Priorities in the development of alternative methodologies in the pharmaceutical industry. Arch. Toxicol. Suppl. 20, 61–70.
| Priorities in the development of alternative methodologies in the pharmaceutical industry.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7gsVeltg%3D%3D&md5=05cc4f3789b5efe1c7ea85124e49e47fCAS | 9442282PubMed |
Jaffe, L. A., and Egbert, J. R. (2017). Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu. Rev. Physiol. 79, 237–260.
| Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvV2hsrfN&md5=25eef71d8bdae99381ef28d2504ea5e7CAS | 27860834PubMed |
Jimenez, C. R., Araújo, V. R., Penitente-Filho, J. M., de Azevedo, J. L., Silveira, R. G., and Torres, C. A. (2016). The base medium affects ultrastructure and survival of bovine preantral follicles cultured in vitro. Theriogenology 85, 1019–1029.
| The base medium affects ultrastructure and survival of bovine preantral follicles cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGitr7P&md5=77b69b59fd46d54245650602e74a7e68CAS | 26711701PubMed |
Jin, S. Y., Lei, L., Shikanov, A., Shea, L. D., and Woodruff, T. K. (2010). A novel two-step strategy for IVC of early-stage ovarian follicles in the mouse. Fertil. Steril. 93, 2633–2639.
| A novel two-step strategy for IVC of early-stage ovarian follicles in the mouse.Crossref | GoogleScholarGoogle Scholar | 20004373PubMed |
Juengel, J. L., and McNatty, K. P. (2005). The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum. Reprod. Update 11, 143–160.
| The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitV2jtrg%3D&md5=4f7029e6af99c8718708f767dde3e120CAS | 15705960PubMed |
Kahraman, S., Cetinkaya, C. P., Cetinkaya, M., Yelke, H., Colakoglu, Y. K., Aygun, M., and Montag, M. (2017). The effect of follicle size and homogeneity of follicular development on the morphokinetics of human embryos. J. Assist. Reprod. Genet. 34, 895–903.
| The effect of follicle size and homogeneity of follicular development on the morphokinetics of human embryos.Crossref | GoogleScholarGoogle Scholar | 28470453PubMed |
Karimpour Malekshah, A., Heidari, M., Parivar, K., and Azami, N. S. (2014). The effects of fibroblast co-culture and activin A on in vitro growth of mouse preantral follicles. Iran. Biomed. J. 18, 49–54.
| 24375163PubMed |
Kashka, R. H., Zavareh, S., and Lashkarbolouki, T. (2016). Augmenting effect of vitrification on lipid peroxidation in mouse preantral follicle during cultivation: Modulation by coenzyme Q10. Syst Biol Reprod Med 62, 404–414.
| Augmenting effect of vitrification on lipid peroxidation in mouse preantral follicle during cultivation: Modulation by coenzyme Q10.Crossref | GoogleScholarGoogle Scholar | 27690645PubMed |
Kawamura, K., Kawamura, N., and Hsueh, A. J. (2016). Activation of dormant follicles: a new treatment for premature ovarian failure? Curr. Opin. Obstet. Gynecol. 28, 217–222.
| Activation of dormant follicles: a new treatment for premature ovarian failure?Crossref | GoogleScholarGoogle Scholar | 27022685PubMed |
Kelsey, T. W., Anderson, R. A., Wright, P., Nelson, S. M., and Wallace, W. H. (2012). Data-driven assessment of the human ovarian reserve. Mol. Hum. Reprod. 18, 79–87.
| Data-driven assessment of the human ovarian reserve.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC387nsVaisQ%3D%3D&md5=b469ea28df7ebf49369e24fbb194742cCAS | 21933846PubMed |
Kerjean, A., Couvert, P., Heams, T., Chalas, C., Poirier, K., Chelly, J., Jouannet, P., Paldi, A., and Poirot, C. (2003). In vitro follicular growth affects oocyte imprinting establishment in mice. Eur. J. Hum. Genet. 11, 493–496.
| In vitro follicular growth affects oocyte imprinting establishment in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVegtrs%3D&md5=4fc8aed918ed03c4cda40232f00ddac5CAS | 12825069PubMed |
Kim, K. H., and Lee, K. A. (2014). Maternal effect genes: findings and effects on mouse embryo development. Clin. Exp. Reprod. Med. 41, 47–61.
| Maternal effect genes: findings and effects on mouse embryo development.Crossref | GoogleScholarGoogle Scholar | 25045628PubMed |
Kim, C. H., Cheon, Y. P., Lee, Y. J., Lee, K. H., Kim, S. H., Chae, H. D., and Kang, B. M. (2013). The effect of fibroblast co-culture on IVM of mouse preantral follicles. Dev. Reprod. 17, 269–274.
| The effect of fibroblast co-culture on IVM of mouse preantral follicles.Crossref | GoogleScholarGoogle Scholar | 25949142PubMed |
Kim, S. Y., Kim, S. K., Lee, J. R., and Woodruff, T. K. (2016). Toward precision medicine for preserving fertility in cancer patients: existing and emerging fertility preservation options for women. J. Gynecol. Oncol. 27, e22.
| Toward precision medicine for preserving fertility in cancer patients: existing and emerging fertility preservation options for women.Crossref | GoogleScholarGoogle Scholar | 26768785PubMed |
Kniazeva, E., Hardy, A. N., Boukaidi, S. A., Woodruff, T. K., Jeruss, J. S., and Shea, L. D. (2015). Primordial follicle transplantation within designer biomaterial grafts produce live births in a mouse infertility model. Sci. Rep. 5, 17709.
| Primordial follicle transplantation within designer biomaterial grafts produce live births in a mouse infertility model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGmtrnK&md5=5a5db8cd05c537b87adab3ed209a9029CAS | 26633657PubMed |
Kreeger, P. K., Deck, J. W., Woodruff, T. K., and Shea, L. D. (2006). The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials 27, 714–723.
| The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFakur3E&md5=81a9f3bdb8c2f0829c937b4d7ce92354CAS | 16076485PubMed |
Lane, S. I., Yun, Y., and Jones, K. T. (2012). Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubule-kinetochore attachment but not by bivalent alignment or tension. Development 139, 1947–1955.
| Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubule-kinetochore attachment but not by bivalent alignment or tension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGlsLvP&md5=f7b49f9032918f04093c1f60272fccfcCAS | 22513370PubMed |
Latham, K. E., Bautista, F. D. M., Hirao, Y., O’Brien, M. J., and Eppig, J. J. (1999). Comparison of protein synthesis patterns in mouse cumulus cells and mural granulosa cells: effects of follicle-stimulating hormone and insulin on granulosa cell differentiation in vitro. Biol. Reprod. 61, 482–492.
| Comparison of protein synthesis patterns in mouse cumulus cells and mural granulosa cells: effects of follicle-stimulating hormone and insulin on granulosa cell differentiation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslKqt7o%3D&md5=79c17567c3fe299e2e7f0cff343f6985CAS | 10411531PubMed |
Lee, K. Y., and Mooney, D. J. (2012). Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126.
| Alginate: properties and biomedical applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqt77L&md5=20eed14eb0a371564b75585b91fdfaa6CAS | 22125349PubMed |
Lenie, S., and Smitz, J. (2009). Steroidogenesis-disrupting compounds can be effectively studied for major fertility-related endpoints using IVCd mouse follicles. Toxicol. Lett. 185, 143–152.
| Steroidogenesis-disrupting compounds can be effectively studied for major fertility-related endpoints using IVCd mouse follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1KktL8%3D&md5=12536464bd632d3ef71c44dbaca7758fCAS | 19152831PubMed |
Lenie, S., Cortvrindt, R., Eichenlaub-Ritter, U., and Smitz, J. (2008). Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutat. Res. 651, 71–81.
| Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGmt7o%3D&md5=dfde23dc8e8ac93942fba017c3489809CAS | 18093867PubMed |
Li, L., Zheng, P., and Dean, J. (2010). Maternal control of early mouse development. Development 137, 859–870.
| Maternal control of early mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Kjs7k%3D&md5=0bdcf13405aa12f4d36ac78f5a89ce1fCAS | 20179092PubMed |
Li, H. J., Sutton-McDowall, M. L., Wang, X., Sugimura, S., Thompson, J. G., and Gilchrist, R. B. (2016a). Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions. Hum. Reprod. 31, 810–821.
| Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28jjvV2gtg%3D%3D&md5=8de6f1631a2d8a74fb19fb61aeb50d8dCAS | 26908844PubMed |
Li, L., Liu, J.-C., Lai, F.-N., Liu, H.-Q., Zhang, X.-F., and Dyce, P. W. (2016b). Di(2-ethylhexyl)phthalate exposure impairs growth of antral follicle in mice. PLoS One 11, e0148350.
| Di(2-ethylhexyl)phthalate exposure impairs growth of antral follicle in mice.Crossref | GoogleScholarGoogle Scholar | 26845775PubMed |
Lins, T. L., Cavalcante, A. Y., Santos, J. M., Menezes, V. G., Barros, V. R., Barberino, R. S., Bezerra, M. É., Macedo, T. J., and Matos, M. H. (2017). Rutin can replace the use of three other antioxidants in the culture medium, maintaining the viability of sheep isolated secondary follicles. Theriogenology 89, 263–270.
| Rutin can replace the use of three other antioxidants in the culture medium, maintaining the viability of sheep isolated secondary follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFKnu7jE&md5=3fcb987ef7d0a03c75ff883d11225ca5CAS | 28043362PubMed |
Liu, X., Xie, F., Zamah, A. M., Cao, B., and Conti, M. (2014). Multiple pathways mediate luteinizing hormone regulation of cGMP signaling in the mouse ovarian follicle. Biol. Reprod. 91, 9.
| Multiple pathways mediate luteinizing hormone regulation of cGMP signaling in the mouse ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 24740605PubMed |
Lonergan, P., and Fair, T. (2016). Maturation of oocytes in vitro. Annu. Rev. Anim. Biosci. 4, 255–268.
| Maturation of oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVCqs7vJ&md5=f9bdb0d3415536e608a74777ffd6f278CAS | 26566159PubMed |
Luberda, Z. (2005). The role of glutathione in mammalian gametes. Reprod. Biol. 5, 5–17.
| 15821775PubMed |
Macaulay, A. D., Gilbert, I., Scantland, S., Fournier, E., Ashkar, F., Bastien, A., Saadi, H. A., Gagné, D., Sirard, M. A., Khandjian, É. W., Richard, F. J., Hyttel, P., and Robert, C. (2016). Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation. Biol. Reprod. 94, 16.
| Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation.Crossref | GoogleScholarGoogle Scholar | 26586844PubMed |
Makanji, Y., Tagler, D., Pahnke, J., Shea, L. D., and Woodruff, T. K. (2014). Hypoxia-mediated carbohydrate metabolism and transport promote early-stage murine follicle growth and survival. Am. J. Physiol. Endocrinol. Metab. 306, E893–E903.
| Hypoxia-mediated carbohydrate metabolism and transport promote early-stage murine follicle growth and survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns1Gksrg%3D&md5=bf9231d2e00b96735ac989c7f2277828CAS | 24569591PubMed |
Makita, M., and Miyano, T. (2014). Steroid hormones promote bovine oocyte growth and connection with granulosa cells. Theriogenology 82, 605–612.
| Steroid hormones promote bovine oocyte growth and connection with granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWis73N&md5=4cc753c003b7ed45bc629b7e92930c55CAS | 24985562PubMed |
Makita, M., Ueda, M., and Miyano, T. (2016). The fertilization ability and developmental competence of bovine oocytes grown in vitro. J. Reprod. Dev. 62, 379–384.
| The fertilization ability and developmental competence of bovine oocytes grown in vitro.Crossref | GoogleScholarGoogle Scholar | 27151093PubMed |
Markholt, S., Grøndahl, M. L., Ernst, E. H., Andersen, C. Y., Ernst, E., and Lykke-Hartmann, K. (2012). Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction. Mol. Hum. Reprod. 18, 96–110.
| Global gene analysis of oocytes from early stages in human folliculogenesis shows high expression of novel genes in reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslGmsbY%3D&md5=eb2527fe7dd28be06d7412947956834aCAS | 22238370PubMed |
May-Panloup, P., Boucret, L., Chao de la Barca, J. M., Desquiret-Dumas, V., Ferré-L’Hotellier, V., Morinière, C., Descamps, P., Procaccio, V., and Reynier, P. (2016). Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum. Reprod. Update 22, 725–743.
| Ovarian ageing: the role of mitochondria in oocytes and follicles.Crossref | GoogleScholarGoogle Scholar | 27562289PubMed |
McLaughlin, M., and Telfer, E. E. (2010). Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction 139, 971–978.
| Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns12qsLk%3D&md5=821c6bfb2068077d68f39c89ff045c86CAS | 20207724PubMed |
McLaughlin, M., Kinnell, H. L., Anderson, R. A., and Telfer, E. E. (2014). Inhibition of phosphatase and tensin homologue (PTEN) in human ovary in vitro results in increased activation of primordial follicles but compromises development of growing follicles. Mol. Hum. Reprod. 20, 736–744.
| Inhibition of phosphatase and tensin homologue (PTEN) in human ovary in vitro results in increased activation of primordial follicles but compromises development of growing follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Clt7%2FJ&md5=2daa460e15a6be79a42f839e98608ee4CAS | 24830779PubMed |
Meirow, D., and Nugent, D. (2001). The effects of radiotherapy and chemotherapy on female reproduction. Hum. Reprod. Update 7, 535–543.
| The effects of radiotherapy and chemotherapy on female reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnotFKisQ%3D%3D&md5=7e78ab8d8ace38877379841f32f6d1bfCAS | 11727861PubMed |
Menezes, V. G., Santos, J., Macedo, T., Lins, T., Barberino, R. S., Gouveia, B. B., Bezerra, M., Cavalcante, A., Queiroz, M., Palheta, R. C., and Matos, M. (2017). Use of protocatechuic acid as the sole antioxidant in the base medium for IVC of ovine isolated secondary follicles. Reprod. Domest. Anim. 52, 890–898.
| Use of protocatechuic acid as the sole antioxidant in the base medium for IVC of ovine isolated secondary follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsFSks7rM&md5=c57ea0f6255a7ccd04c23c84f4362c4cCAS | 28556248PubMed |
Mihm, M., and Evans, A. C. (2008). Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women. Reprod. Domest. Anim. 43, 48–56.
| Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women.Crossref | GoogleScholarGoogle Scholar | 18638104PubMed |
Monniaux, D. (2016). Driving folliculogenesis by the oocyte–somatic cell dialog: lessons from genetic models. Theriogenology 86, 41–53.
| Driving folliculogenesis by the oocyte–somatic cell dialog: lessons from genetic models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsVWgu78%3D&md5=8db11b8cfea012fed395d24e66c734c2CAS | 27155734PubMed |
Morohaku, K., Hirao, Y., and Obata, Y. (2016a). Developmental competence of oocytes grown in vitro: has it peaked already? J. Reprod. Dev. 62, 1–5.
| Developmental competence of oocytes grown in vitro: has it peaked already?Crossref | GoogleScholarGoogle Scholar | 26685717PubMed |
Morohaku, K., Tanimoto, R., Sasaki, K., Kawahara-Miki, R., Kono, T., Hayashi, K., Hirao, Y., and Obata, Y. (2016b). Complete in vitro generation of fertile oocytes from mouse primordial germ cells. Proc. Natl Acad. Sci. USA 113, 9021–9026.
| Complete in vitro generation of fertile oocytes from mouse primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1ehurjK&md5=a6fe0545cbc1ee67f93a0af361fa7ea7CAS | 27457928PubMed |
Morohaku, K., Hirao, Y., and Obata, Y. (2017a). Development of fertile mouse oocytes from mitotic germ cells in vitro. Nat. Protoc. 12, 1817–1829.
| Development of fertile mouse oocytes from mitotic germ cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtlSrsL3N&md5=5d9aeeb1f956a0d1a3804ef9ba5769b1CAS | 28796235PubMed |
Morohaku, K., Hirao, Y., and Obata, Y. (2017b). Differentiation of mouse primordial germ cells into functional oocytes in vitro. Ann. Biomed. Eng. 45, 1608–1619.
| Differentiation of mouse primordial germ cells into functional oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 28243826PubMed |
Munakata, Y., Kawahara-Miki, R., Shiratsuki, S., Tasaki, H., Itami, N., Shirasuna, K., Kuwayama, T., and Iwata, H. (2016). Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes. J. Reprod. Dev. 62, 359–366.
| Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes.Crossref | GoogleScholarGoogle Scholar | 27108636PubMed |
Murray, A. A., Molinek, M. D., Baker, S. J., Kojima, F. N., Smith, M. F., Hillier, S. G., and Spears, N. (2001). Role of ascorbic acid in promoting follicle integrity and survival in intact mouse ovarian follicles in vitro. Reproduction 121, 89–96.
| Role of ascorbic acid in promoting follicle integrity and survival in intact mouse ovarian follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslarsw%3D%3D&md5=fa34704f3f6e81f488d90cb445f1e3d9CAS | 11226031PubMed |
Nayudu, P. L., and Osborn, S. M. (1992). Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro. J. Reprod. Fertil. 95, 349–362.
| Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1Cqurs%3D&md5=58416555f441ed5cb3b7b3b1aa61b2adCAS | 1517993PubMed |
Nayudu, P. L., Wu, J., and Michelmann, H. W. (2003). In vitro development of marmoset monkey oocytes by pre-antral follicle culture. Reprod. Domest. Anim. 38, 90–96.
| In vitro development of marmoset monkey oocytes by pre-antral follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7nvFyitg%3D%3D&md5=3f0f3af2e50037dcd28093b7d061673cCAS | 12654018PubMed |
Nottola, S. A., Cecconi, S., Bianchi, S., Motta, C., Rossi, G., Continenza, M. A., and Macchiarelli, G. (2011). Ultrastructure of isolated mouse ovarian follicles cultured in vitro. Reprod. Biol. Endocrinol. 9, 3.
| Ultrastructure of isolated mouse ovarian follicles cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kks7c%3D&md5=e8a4e5c098d3e1a19c122a9c8c0eefc5CAS | 21232101PubMed |
Novella-Maestre, E., Herraiz, S., Rodríguez-Iglesias, B., Díaz-García, C., and Pellicer, A. (2015). Short-term PTEN inhibition improves in vitro activation of primordial follicles, preserves follicular viability, and restores AMH levels in cryopreserved ovarian tissue from cancer patients. PLoS One 10, e0127786.
| Short-term PTEN inhibition improves in vitro activation of primordial follicles, preserves follicular viability, and restores AMH levels in cryopreserved ovarian tissue from cancer patients.Crossref | GoogleScholarGoogle Scholar | 26024525PubMed |
O’Brien, M. J., Pendola, J. K., and Eppig, J. J. (2003). A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol. Reprod. 68, 1682–1686.
| A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12ltrY%3D&md5=a590a0f35f8c05c4393345381a3f539bCAS | 12606400PubMed |
Oktem, O., and Oktay, K. (2007). The role of extracellular matrix and activin-A in in vitro growth and survival of murine preantral follicles. Reprod. Sci. 14, 358–366.
| The role of extracellular matrix and activin-A in in vitro growth and survival of murine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsF2rsL4%3D&md5=353565199ebd5307be8abda91c750ac8CAS | 17644808PubMed |
Pacchierotti, F., and Eichenlaub-Ritter, U. (2011). Environmental hazard in the aetiology of somatic and germ cell aneuploidy. Cytogenet. Genome Res. 133, 254–268.
| Environmental hazard in the aetiology of somatic and germ cell aneuploidy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MvivV2isg%3D%3D&md5=f3ebd1b6df15b04e69f171e52db15a9cCAS | 21228560PubMed |
Park, C. E., Cha, K. Y., Kim, K., and Lee, K. A. (2005a). Expression of cell cycle regulatory genes during primordial–primary follicle transition in the mouse ovary. Fertil. Steril. 83, 410–418.
| Expression of cell cycle regulatory genes during primordial–primary follicle transition in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1Wgtb8%3D&md5=073fbefc332e756d163275a695e5e282CAS | 15705383PubMed |
Park, J. I., Hong, J. Y., Yong, H. Y., Hwang, W. S., Lim, J. M., and Lee, E. S. (2005b). High oxygen tension during oocyte maturation improves development of porcine oocytes after fertilization. Anim. Reprod. Sci. 87, 133–141.
| High oxygen tension during oocyte maturation improves development of porcine oocytes after fertilization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3ks1Cgsg%3D%3D&md5=8637834f76f860a90c278a394122ee30CAS | 15885446PubMed |
Park, B., Lee, H., Lee, Y., Elahi, F., Lee, J., Lee, S. T., Park, C. K., Hyun, S. H., and Lee, E. (2016). Cilostamide and forskolin treatment during pre-IVM improves preimplantation development of cloned embryos by influencing meiotic progression and gap junction communication in pigs. Theriogenology 86, 757–765.
| Cilostamide and forskolin treatment during pre-IVM improves preimplantation development of cloned embryos by influencing meiotic progression and gap junction communication in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xks1yht78%3D&md5=d8301c8bbeec1f145847e5a6affa8d68CAS | 27056415PubMed |
Peretz, J., and Flaws, J. A. (2013). Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles. Toxicol. Appl. Pharmacol. 271, 249–256.
| Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1aqt77N&md5=871abf128c7179776e7e4edbaef1a490CAS | 23707772PubMed |
Peretz, J., Gupta, R. K., Singh, J., Hernández-Ochoa, I., and Flaws, J. A. (2011). Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway. Toxicol. Sci. 119, 209–217.
| Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2rsbnF&md5=e2faefa580c9425038bbfa5102cb3e68CAS | 20956811PubMed |
Perreault, S. D., Barbee, R. R., and Slott, V. L. (1988). Importance of glutathione in the acquisition and maintenance of sperm nuclear decondensing activity in maturing hamster oocytes. Dev. Biol. 125, 181–186.
| Importance of glutathione in the acquisition and maintenance of sperm nuclear decondensing activity in maturing hamster oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvFOltw%3D%3D&md5=e3d5be36b280ef292ea72b7ff831ed57CAS | 3334716PubMed |
Persani, L., Rossetti, R., Di Pasquale, E., Cacciatore, C., and Fabre, S. (2014). The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum. Reprod. Update 20, 869–883.
| The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders.Crossref | GoogleScholarGoogle Scholar | 24980253PubMed |
Peters, H., Byskov, A. G., Himelstein-Braw, R., and Faber, M. (1975). Follicular growth: the basic event in the mouse and human ovary. J. Reprod. Fertil. 45, 559–566.
| Follicular growth: the basic event in the mouse and human ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktFCjtA%3D%3D&md5=8e3881f937e9eafeda3239d9af02d4ccCAS | 128630PubMed |
Pfender, S., Kuznetsov, V., Pasternak, M., Tischer, T., Santhanam, B., and Schuh, M. (2015). Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes. Nature 524, 239–242.
| Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFyltLrL&md5=45cb82c61f89d937806247d0db8ebb97CAS | 26147080PubMed |
Picton, H. M., Danfour, M. A., Harris, S. E., Chambers, E. L., and Huntriss, J. (2003). Growth and maturation of oocytes in vitro. Reprod. Suppl. 61, 445–462.
| 1:CAS:528:DC%2BD3sXptFKht74%3D&md5=066a4d6adf6d5727ad3be74d16e17112CAS | 14635954PubMed |
Picton, H. M., Harris, S. E., Muruvi, W., and Chambers, E. L. (2008). The in vitro growth and maturation of follicles. Reproduction 136, 703–715.
| The in vitro growth and maturation of follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1CktA%3D%3D&md5=6f52dbf0cc48d26452bd0da777101260CAS | 19074213PubMed |
Pirino, G., Wescott, M. P., and Donovan, P. J. (2009). Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle 8, 665–670.
| Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFWjtbg%3D&md5=91e41466a286d3cb94dee1eac91ac27fCAS | 19223768PubMed |
Polanski, Z. (2013). Spindle assembly checkpoint regulation of chromosome segregation in mammalian oocytes. Reprod. Fertil. Dev. 25, 472–483.
| 22951024PubMed |
Ramesh, H. S., Gupta, P. S., Nandi, S., Manjunatha, B. M., Kumar, V. G., and Ravindra, J. P. (2008). Co-culture of buffalo preantral follicles with different somatic cells. Reprod. Domest. Anim. 43, 520–524.
| Co-culture of buffalo preantral follicles with different somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnksVensg%3D%3D&md5=2b205f38701cac59548eda18255dc892CAS | 18298404PubMed |
Reader, K. L., Mottershead, D. G., Martin, G. A., Gilchrist, R. B., Heath, D. A., McNatty, K. P., and Juengel, J. L. (2016). Signaling pathways involved in the synergistic effects of human growth differentiation factor 9 and bone morphogenetic protein 15. Reprod. Fertil. Dev. 28, 491–498.
| Signaling pathways involved in the synergistic effects of human growth differentiation factor 9 and bone morphogenetic protein 15.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjtFKnu74%3D&md5=1b589424299219025c9efcde1f82bb76CAS | 25155366PubMed |
Revenkova, E., Herrmann, K., Adelfalk, C., and Jessberger, R. (2010). Oocyte cohesin expression restricted to predictyate stages provides full fertility and prevents aneuploidy. Curr. Biol. 20, 1529–1533.
| Oocyte cohesin expression restricted to predictyate stages provides full fertility and prevents aneuploidy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGgsL7P&md5=c9a2955a40c56856738c741dd89af529CAS | 20817531PubMed |
Reyes, J. M., and Ross, P. J. (2016). Cytoplasmic polyadenylation in mammalian oocyte maturation. Wiley Interdiscip. Rev. RNA 7, 71–89.
| Cytoplasmic polyadenylation in mammalian oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVejtg%3D%3D&md5=35a9f81fd44f413d39b5ba2e6900dce1CAS | 26596258PubMed |
Richani, D., Sutton-McDowall, M. L., Frank, L. A., Gilchrist, R. B., and Thompson, J. G. (2014a). Effect of epidermal growth factor-like peptides on the metabolism of in vitro-matured mouse oocytes and cumulus cells. Biol. Reprod. 90, 49.
| Effect of epidermal growth factor-like peptides on the metabolism of in vitro-matured mouse oocytes and cumulus cells.Crossref | GoogleScholarGoogle Scholar | 24451986PubMed |
Richani, D., Wang, X., Zeng, H. T., Smitz, J., Thompson, J. G., and Gilchrist, R. B. (2014b). Pre-maturation with cAMP modulators in conjunction with EGF-like peptides during IVM enhances mouse oocyte developmental competence. Mol. Reprod. Dev. 81, 422–435.
| Pre-maturation with cAMP modulators in conjunction with EGF-like peptides during IVM enhances mouse oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFais74%3D&md5=73d13cb768a8fcd3b37beec9d29988bdCAS | 24488930PubMed |
Robinson, J. W., Zhang, M., Shuhaibar, L. C., Norris, R. P., Geerts, A., Wunder, F., Eppig, J. J., Potter, L. R., and Jaffe, L. A. (2012). Luteinizing hormone reduces the activity of the NPR2 guanylyl cyclase in mouse ovarian follicles, contributing to the cyclic GMP decrease that promotes resumption of meiosis in oocytes. Dev. Biol. 366, 308–316.
| Luteinizing hormone reduces the activity of the NPR2 guanylyl cyclase in mouse ovarian follicles, contributing to the cyclic GMP decrease that promotes resumption of meiosis in oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms12lu7o%3D&md5=ec3208eb7217def39e6c915ca622f06eCAS | 22546688PubMed |
Rocha, R. M., Lima, L. F., Alves, A. M., Celestino, J. J., Matos, M. H., Lima-Verde, I. B., Bernuci, M. P., Lopes, C. A., Báo, S. N., Campello, C. C., Rodrigues, A. P., and Figueiredo, J. R. (2013). Interaction between melatonin and follicle-stimulating hormone promotes in vitro development of caprine preantral follicles. Domest. Anim. Endocrinol. 44, 1–9.
| Interaction between melatonin and follicle-stimulating hormone promotes in vitro development of caprine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ekur%2FN&md5=93336168c84ef8a54204aa723f628778CAS | 22920266PubMed |
Romasko, E. J., Amarnath, D., Midic, U., and Latham, K. E. (2013). Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: localized translational control supporting female meiosis in mammals. Genetics 195, 349–358.
| Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: localized translational control supporting female meiosis in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFeisbjF&md5=25b53761cf2b51eed43f436a9be8b059CAS | 23852387PubMed |
Romero, S., Sánchez, F., Lolicato, F., Van Ranst, H., and Smitz, J. (2016). Immature oocytes from unprimed juvenile mice become a valuable source for embryo production when using C-type natriuretic peptide as essential component of culture medium. Biol. Reprod. 95, 64.
| Immature oocytes from unprimed juvenile mice become a valuable source for embryo production when using C-type natriuretic peptide as essential component of culture medium.Crossref | GoogleScholarGoogle Scholar | 27488026PubMed |
Rossetto, R., Lima-Verde, I. B., Matos, M. H., Saraiva, M. V., Martins, F. S., Faustino, L. R., Araújo, V. R., Silva, C. M., Name, K. P., Bao SN, S. N., Campello, C. C., Figueiredo, J. R., and Blume, H. (2009). Interaction between ascorbic acid and follicle-stimulating hormone maintains follicular viability after long-term IVC of caprine preantral follicles. Domest. Anim. Endocrinol. 37, 112–123.
| Interaction between ascorbic acid and follicle-stimulating hormone maintains follicular viability after long-term IVC of caprine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvValu7c%3D&md5=a5ee1fc14db2977be01c094fbe1ab3bcCAS | 19493642PubMed |
Roy, S. K., and Treacy, B. J. (1993). Isolation and long-term culture of human preantral follicles. Fertil. Steril. 59, 783–790.
| Isolation and long-term culture of human preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3gvFCnug%3D%3D&md5=34701b56a6196ac54d13062dc6883e4aCAS | 8458497PubMed |
Russell, D. L., Gilchrist, R. B., Brown, H. M., and Thompson, J. G. (2016). Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology 86, 62–68.
| Bidirectional communication between cumulus cells and the oocyte: old hands and new players?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmslKru7s%3D&md5=e907f83a632e00b6516a4db3938364ecCAS | 27160446PubMed |
Sadeu, J. C., and Foster, W. G. (2011). Cigarette smoke condensate exposure delays follicular development and function in a stage-dependent manner. Fertil. Steril. 95, 2410–2417.
| Cigarette smoke condensate exposure delays follicular development and function in a stage-dependent manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFWnsbo%3D&md5=c2dbf7066ce46f236a37a66210215a29CAS | 21514584PubMed |
Sadr, S. Z., Ebrahimi, B., Shahhoseini, M., Fatehi, R., and Favaedi, R. (2015). Mouse preantral follicle development in two-dimensional and three dimensional culturesystems after ovarian tissue vitrification. Eur. J. Obstet. Gynecol. Reprod. Biol. 194, 206–211.
| Mouse preantral follicle development in two-dimensional and three dimensional culturesystems after ovarian tissue vitrification.Crossref | GoogleScholarGoogle Scholar | 26444332PubMed |
Saenz-de-Juano, M. D., Billooye, K., Smitz, J., and Anckaert, E. (2016). The loss of imprinted DNA methylation in mouse blastocysts is inflicted to a similar extent by in vitro follicle culture and ovulation induction. Mol. Hum. Reprod. 22, 427–441.
| The loss of imprinted DNA methylation in mouse blastocysts is inflicted to a similar extent by in vitro follicle culture and ovulation induction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28jjvVOmsw%3D%3D&md5=c4e7c702159b8dbc76de7b7902f74dc0CAS | 26908643PubMed |
Sánchez, F., and Smitz, J. (2012). Molecular control of oogenesis. Biochim. Biophys. Acta 1822, 1896–1912.
| Molecular control of oogenesis.Crossref | GoogleScholarGoogle Scholar | 22634430PubMed |
Sánchez, F., Romero, S., and Smitz, J. (2011). Oocyte and cumulus cell transcripts from cultured mouse follicles are induced to deviate from normal in vivo conditions by combinations of insulin, follicle-stimulating hormone, and human chorionic gonadotropin. Biol. Reprod. 85, 565–574.
| Oocyte and cumulus cell transcripts from cultured mouse follicles are induced to deviate from normal in vivo conditions by combinations of insulin, follicle-stimulating hormone, and human chorionic gonadotropin.Crossref | GoogleScholarGoogle Scholar | 21565993PubMed |
Sánchez, F., Romero, S., Albuz, F. K., and Smitz, J. (2012a). In vitro follicle growth under non-attachment conditions and decreased FSH levels reduces Lhcgr expression in cumulus cells and promotes oocyte developmental competence. J. Assist. Reprod. Genet. 29, 141–152.
| In vitro follicle growth under non-attachment conditions and decreased FSH levels reduces Lhcgr expression in cumulus cells and promotes oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 22190081PubMed |
Sánchez, F., Romero, S., De Vos, M., Verheyen, G., and Smitz, J. (2015). Human cumulus-enclosed germinal vesicle oocytes from early antral follicles reveal heterogeneous cellular and molecular features associated with IVM capacity. Hum. Reprod. 30, 1396–1409.
| Human cumulus-enclosed germinal vesicle oocytes from early antral follicles reveal heterogeneous cellular and molecular features associated with IVM capacity.Crossref | GoogleScholarGoogle Scholar | 25904637PubMed |
Sánchez, F., Lolicato, F., Romero, S., De Vos, M., Van Ranst, H., Verheyen, G., Anckaert, E., and Smitz, J. E. J. (2017). An improved IVM method for cumulus–oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield. Hum. Reprod. 32, 2056–2068.
| An improved IVM method for cumulus–oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield.Crossref | GoogleScholarGoogle Scholar | 28938744PubMed |
Schatten, H., Sun, Q. Y., and Prather, R. (2014). The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod. Biol. Endocrinol. 12, 111.
| The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility.Crossref | GoogleScholarGoogle Scholar | 25421171PubMed |
Segers, I., Adriaenssens, T., Coucke, W., Cortvrindt, R., and Smitz, J. (2008). Timing of nuclear maturation and postovulatory aging in oocytes of in vitro-grown mouse follicles with or without oil overlay. Biol. Reprod. 78, 859–868.
| Timing of nuclear maturation and postovulatory aging in oocytes of in vitro-grown mouse follicles with or without oil overlay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVOnsr0%3D&md5=7cb419dffcc1c1ac55b7051f8fa150f2CAS | 18184922PubMed |
Segers, I., Adriaenssens, T., Ozturk, E., and Smitz, J. (2010). Acquisition and loss of oocyte meiotic and developmental competence during in vitro antral follicle growth in mouse. Fertil. Steril. 93, 2695–2700.
| Acquisition and loss of oocyte meiotic and developmental competence during in vitro antral follicle growth in mouse.Crossref | GoogleScholarGoogle Scholar | 20056201PubMed |
Shen, Y., Betzendahl, I., Tinneberg, H. R., and Eichenlaub-Ritter, U. (2008). Enhanced polarizing microscopy as a new tool in aneuploidy research in oocytes. Mutat. Res. 651, 131–140.
| Enhanced polarizing microscopy as a new tool in aneuploidy research in oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGmtrg%3D&md5=6710475b536cbfa9a0994cededb29e09CAS | 18160331PubMed |
Shikanov, A., Xu, M., Woodruff, T. K., and Shea, L. D. (2009). Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development. Biomaterials 30, 5476–5485.
| Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFCgtbk%3D&md5=81c71b78b207fb3f70e3553090f24627CAS | 19616843PubMed |
Shu, Y. M., Zeng, H. T., Ren, Z., Zhuang, G. L., Liang, X. Y., Shen, H. W., Yao, S. Z., Ke, P. Q., and Wang, N. N. (2008). Effects of cilostamide and forskolin on the meiotic resumption and embryonic development of immature human oocytes. Hum. Reprod. 23, 504–513.
| Effects of cilostamide and forskolin on the meiotic resumption and embryonic development of immature human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVOhtr0%3D&md5=d1d6036d7ceea6bc5f055b85e368b73aCAS | 18216034PubMed |
Shuhaibar, L. C., Egbert, J. R., Edmund, A. B., Uliasz, T. F., Dickey, D. M., Yee, S. P., Potter, L. R., and Jaffe, L. A. (2016). Dephosphorylation of juxtamembrane serines and threonines of the NPR2 guanylyl cyclase is required for rapid resumption of oocyte meiosis in response to luteinizing hormone. Dev. Biol. 409, 194–201.
| Dephosphorylation of juxtamembrane serines and threonines of the NPR2 guanylyl cyclase is required for rapid resumption of oocyte meiosis in response to luteinizing hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslGlu7fI&md5=d609419a604a412732ee4bb1e2b8bd98CAS | 26522847PubMed |
Silva, J. R., van den Hurk, R., de Matos, M. H., dos Santos, R. R., Pessoa, C., de Moraes, M. O., and de Figueiredo, J. R. (2004). Influences of FSH and EGF on primordial follicles during IVC of caprine ovarian cortical tissue. Theriogenology 61, 1691–1704.
| Influences of FSH and EGF on primordial follicles during IVC of caprine ovarian cortical tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslWnu7o%3D&md5=8182455878dedf9b322f803b79cd3d2dCAS | 15019464PubMed |
Silva, C. M. G., Matos, M. H. T., Rodrigues, G. Q., Faustino, L. R., Pinto, L. C., Chaves, R. N., Araújo, V. R., Campello, C. C., and Figueiredo, J. R. (2010). In vitro survival and development of goat preantral follicles in two different oxygen tensions. Anim. Reprod. Sci. 117, 83–89.
| In vitro survival and development of goat preantral follicles in two different oxygen tensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyjt7nN&md5=1074e610af9e68d225cf373918f0a562CAS |
Silva, G. M., Rossetto, R., Chaves, R. N., Duarte, A. B., Araújo, V. R., Feltrin, C., Bernuci, M. P., Anselmo-Franci, J. A., Xu, M., Woodruff, T. K., Campello, C. C., and Figueiredo, J. R. (2015). In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems. Zygote 23, 475–484.
| In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtF2isrbO&md5=38b445e6b7441ba5d9deedbcef7f11c7CAS | 24666604PubMed |
Silva, J. R., van den Hurk, R., and Figueiredo, J. R. (2016). Ovarian follicle development in vitro and oocyte competence: advances and challenges for farm animals. Domest. Anim. Endocrinol. 55, 123–135.
| Ovarian follicle development in vitro and oocyte competence: advances and challenges for farm animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28nmsVelsg%3D%3D&md5=3e3750a2e983e88e7be89944c78fccf5CAS | 26836404PubMed |
Sirotkin, A. V., Florkovičová Koničková, I., Schaeffer, H. J., Laurincik, J., and Harrath, A. H. (2017). Interrelationships between ovarian follicles grown in culture and possible mediators. Reprod. Biol. 17, 97–104.
| Interrelationships between ovarian follicles grown in culture and possible mediators.Crossref | GoogleScholarGoogle Scholar | 28163019PubMed |
Skinner, M. K. (2005). Regulation of primordial follicle assembly and development. Hum. Reprod. Update 11, 461–471.
| Regulation of primordial follicle assembly and development.Crossref | GoogleScholarGoogle Scholar | 16006439PubMed |
Skory, R. M., Xu, Y., Shea, L. D., and Woodruff, T. K. (2015). Engineering the ovarian cycle using in vitro follicle culture. Hum. Reprod. 30, 1386–1395.
| Engineering the ovarian cycle using in vitro follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsF2nt7bJ&md5=4eb1adcf55377108b2cf4a6bc0eed660CAS | 25784584PubMed |
Smitz, J., Cortvrindt, R., and Van Steirteghem, A. C. (1996). Normal oxygen atmosphere is essential for the solitary long-term culture of early preantral mouse follicles. Mol. Reprod. Dev. 45, 466–475.
| Normal oxygen atmosphere is essential for the solitary long-term culture of early preantral mouse follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsVWgs7g%3D&md5=438d696f819ff5c429ff13e8e595ff99CAS | 8956285PubMed |
Smitz, J., Cortvrindt, R., and Hu, Y. (1998). Epidermal growth factor combined with recombinant human chorionic gonadotrophin improves meiotic progression in mouse follicle-enclosed oocyte culture. Hum. Reprod. 13, 664–669.
| Epidermal growth factor combined with recombinant human chorionic gonadotrophin improves meiotic progression in mouse follicle-enclosed oocyte culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivF2jtrY%3D&md5=564d3ac19de8b9c57f2beffdbb8fb1f5CAS | 9572431PubMed |
Smitz, J., Dolmans, M. M., Donnez, J., Fortune, J. E., Hovatta, O., Jewgenow, K., Picton, H. M., Plancha, C., Shea, L. D., Stouffer, R. L., Telfer, E. E., Woodruff, T. K., and Zelinski, M. B. (2010). Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum. Reprod. Update 16, 395–414.
| Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvhtlymtQ%3D%3D&md5=e5488fc285a9caad8692259894ac4b30CAS | 20124287PubMed |
Soares, A. C., Lodde, V., Barros, R. G., Price, C. A., Luciano, A. M., and Buratini, J. (2017). Steroid hormones interact with natriuretic peptide C to delay nuclear maturation, to maintain oocyte–cumulus communication and to improve the quality of in vitro-produced embryos in cattle. Reprod. Fertil. Dev. 29, 2217–2224.
| 1:CAS:528:DC%2BC2sXhsFylsrjO&md5=47b5ac6da97e7a6475cc43596eb6bb14CAS | 28356185PubMed |
Songsasen, N., Guzy, C., and Wildt, D. E. (2012). Alginate–fibrin gel matrix promotes in vitro growth of dog secondary follicles. Reprod. Fertil. Dev. 24, 173.
| Alginate–fibrin gel matrix promotes in vitro growth of dog secondary follicles.Crossref | GoogleScholarGoogle Scholar |
Songsasen, N., Thongkittidilok, C., Yamamizu, K., Wildt, D. E., and Comizzoli, P. (2017). Short-term hypertonic exposure enhances in vitro follicle growth and meiotic competence of enclosed oocytes while modestly affecting mRNA expression of aquaporin and steroidogenic genes in the domestic cat model. Theriogenology 90, 228–236.
| Short-term hypertonic exposure enhances in vitro follicle growth and meiotic competence of enclosed oocytes while modestly affecting mRNA expression of aquaporin and steroidogenic genes in the domestic cat model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFOhsr7I&md5=0a118fee804ccfc68b04302d623690c6CAS | 28166973PubMed |
Spears, N., Boland, N. I., Murray, A. A., and Gosden, R. G. (1994). Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile. Hum. Reprod. 9, 527–532.
| Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3nsVymsQ%3D%3D&md5=73b8ee6eee2b9677757ead342e878d72CAS | 8006146PubMed |
Spears, N., de Bruin, J. P., and Gosden, R. G. (1996). The establishment of follicular dominance in co-cultured mouse ovarian follicles. J. Reprod. Fertil. 106, 1–6.
| The establishment of follicular dominance in co-cultured mouse ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVCnsg%3D%3D&md5=dfb14736be663ec260034c15ac8bd6fbCAS | 8667332PubMed |
Srividya, D., Praveen Chakravarthi, V., Kona, S., Siva Kumar, A., Brahmaiah, K. V., and Rao, V. H. (2017). Expression of kit ligand and insulin-like growth factor binding protein 3 during in vivo or in vitro development of ovarian follicles in sheep. Reprod. Domest. Anim. 52, 661–671.
| Expression of kit ligand and insulin-like growth factor binding protein 3 during in vivo or in vitro development of ovarian follicles in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtFCktb%2FM&md5=532b562b3ff21aa945e15d7e8591b0adCAS | 28370770PubMed |
Stefansdottir, A., Fowler, P. A., Powles-Glover, N., Anderson, R. A., and Spears, N. (2014). Use of ovary culture techniques in reproductive toxicology. Reprod. Toxicol. 49, 117–135.
| Use of ovary culture techniques in reproductive toxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVGgt7bJ&md5=9df2c8219880ae126d72d2f83b451d8bCAS | 25150138PubMed |
Su, Y. Q., Sugiura, K., and Eppig, J. J. (2009). Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin. Reprod. Med. 27, 32–42.
| Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVGntr0%3D&md5=6f5da2615f7313f889810c380229bc1aCAS | 19197803PubMed |
Sugimura, S., Ritter, L. J., Sutton-McDowall, M. L., Mottershead, D. G., Thompson, J. G., and Gilchrist, R. B. (2014). Amphiregulin co-operates with bone morphogenetic protein 15 to increase bovine oocyte developmental competence: effects on gap junction-mediated metabolite supply. Mol. Hum. Reprod. 20, 499–513.
| Amphiregulin co-operates with bone morphogenetic protein 15 to increase bovine oocyte developmental competence: effects on gap junction-mediated metabolite supply.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotF2ku78%3D&md5=28032182af3fd4b28129c24d29413f74CAS | 24557840PubMed |
Sugimura, S., Ritter, L. J., Rose, R. D., Thompson, J. G., Smitz, J., Mottershead, D. G., and Gilchrist, R. B. (2015). Promotion of EGF receptor signaling improves the quality of low developmental competence oocytes. Dev. Biol. 403, 139–149.
| Promotion of EGF receptor signaling improves the quality of low developmental competence oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXos1elsbY%3D&md5=aba3a37226bc3a321796f5c995836307CAS | 25981108PubMed |
Sugimura, S., Kobayashi, N., Okae, H., Yamanouchi, T., Matsuda, H., Kojima, T., Yajima, A., Hashiyada, Y., Kaneda, M., Sato, K., Imai, K., Tanemura, K., Arima, T., and Gilchrist, R. B. (2017). Transcriptomic signature of the follicular somatic compartment surrounding an oocyte with high developmental competence. Sci. Rep. 7, 6815.
| Transcriptomic signature of the follicular somatic compartment surrounding an oocyte with high developmental competence.Crossref | GoogleScholarGoogle Scholar | 28755009PubMed |
Sugiura, K., Su, Y. Q., Li, Q., Wigglesworth, K., Matzuk, M. M., and Eppig, J. J. (2010). Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15. Mol. Endocrinol. 24, 2303–2314.
| Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVenu78%3D&md5=4e6b77d2221ff68fa53f8dda3fd82988CAS | 21047911PubMed |
Sun, F., Betzendahl, I., Shen, Y., Cortvrindt, R., Smitz, J., and Eichenlaub-Ritter, U. (2004). Preantral follicle culture as a novel in vitro assay in reproductive toxicology testing in mammalian oocytes. Mutagenesis 19, 13–25.
| Preantral follicle culture as a novel in vitro assay in reproductive toxicology testing in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVShsbvE&md5=3e4fb399b155b1ce8a7d5a10b669fcccCAS | 14681309PubMed |
Sun, F., Betzendahl, I., Pacchierotti, F., Ranaldi, R., Smitz, J., Cortvrindt, R., and Eichenlaub-Ritter, U. (2005). Aneuploidy in mouse metaphase II oocytes exposed in vivo and in vitro in preantral follicle culture to nocodazole. Mutagenesis 20, 65–75.
| Aneuploidy in mouse metaphase II oocytes exposed in vivo and in vitro in preantral follicle culture to nocodazole.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFSnsLo%3D&md5=77e888dc37aebf6b118ef8a9a5442aa1CAS | 15701686PubMed |
Sun, F., Betzendahl, I., Van Wemmel, K., Cortvrindt, R., Smitz, J., Pacchierotti, F., and Eichenlaub-Ritter, U. (2008). Trichlorfon-induced polyploidy and nondisjunction in mouse oocytes from preantral follicle culture. Mutat. Res. 651, 114–124.
| Trichlorfon-induced polyploidy and nondisjunction in mouse oocytes from preantral follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGmtro%3D&md5=ccf4d268c3ab35d6a5a71283020436dfCAS | 18065258PubMed |
Sun, X., Su, Y., He, Y., Zhang, J., Liu, W., Zhang, H., Hou, Z., Liu, J., and Li, J. (2015). New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators. Cell Cycle 14, 721–731.
| New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFyksLzO&md5=a23f3e8c9a5ed71d70b218e37a9b2022CAS | 25590233PubMed |
Sutton, M. L., Gilchrist, R. B., and Thompson, J. G. (2003). Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update 9, 35–48.
| Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVelt7Y%3D&md5=473ece3b9c541a7afa871571d18ed002CAS | 12638780PubMed |
Sutton-McDowall, M. L., Purdey, M., Brown, H. M., Abell, A. D., Mottershead, D. G., Cetica, P. D., Dalvit, G. C., Goldys, E. M., Gilchrist, R. B., Gardner, D. K., and Thompson, J. G. (2015). Redox and anti-oxidant state within cattle oocytes following IVM with bone morphogenetic protein 15 and follicle stimulating hormone. Mol. Reprod. Dev. 82, 281–294.
| Redox and anti-oxidant state within cattle oocytes following IVM with bone morphogenetic protein 15 and follicle stimulating hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVSmsL4%3D&md5=3d1e61eee0e86f501d85f2c606b19d8eCAS | 25721374PubMed |
Tadros, W., and Lipshitz, H. D. (2009). The maternal-to-zygotic transition: a play in two acts. Development 136, 3033–3042.
| The maternal-to-zygotic transition: a play in two acts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSisbfM&md5=f248c90c3f53075fcf9dc92a7440209cCAS | 19700615PubMed |
Tagler, D., Tu, T., Smith, R. M., Anderson, N. R., Tingen, C. M., Woodruff, T. K., and Shea, L. D. (2012). Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels. Tissue Eng. Part A 18, 1229–1238.
| Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVOisLg%3D&md5=b60e35d2cde79babed2459cf08c7b9b8CAS | 22296562PubMed |
Tan, J. H., Wang, H. L., Sun, X. S., Liu, Y., Sui, H. S., and Zhang, J. (2009). Chromatin configurations in the germinal vesicle of mammalian oocytes. Mol. Hum. Reprod. 15, 1–9.
| Chromatin configurations in the germinal vesicle of mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Omtb8%3D&md5=3c9e7bd28d5e4e65d97f12e51a388a5fCAS | 19019837PubMed |
Tatone, C., Heizenrieder, T., Di Emidio, G., Treffon, P., Amicarelli, F., Seidel, T., and Eichenlaub-Ritter, U. (2011). Evidence that carbonyl stress by methylglyoxal exposure induces DNA damage and spindle aberrations, affects mitochondrial integrity in mammalian oocytes and contributes to oocyte ageing. Hum. Reprod. 26, 1843–1859.
| Evidence that carbonyl stress by methylglyoxal exposure induces DNA damage and spindle aberrations, affects mitochondrial integrity in mammalian oocytes and contributes to oocyte ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFantb0%3D&md5=717347645e7ecb4e4109bbf57e197cfaCAS | 21558076PubMed |
Telfer, E. E., and Zelinski, M. B. (2013). Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil. Steril. 99, 1523–1533.
| Ovarian follicle culture: advances and challenges for human and nonhuman primates.Crossref | GoogleScholarGoogle Scholar | 23635350PubMed |
Telfer, E. E., McLaughlin, M., Ding, C., and Thong, K. J. (2008). A two step serum free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum. Reprod. 23, 1151–1158.
| A two step serum free culture system supports development of human oocytes from primordial follicles in the presence of activin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1ags7o%3D&md5=76f8822510de1174df25e85bfd3b8323CAS | 18326514PubMed |
Thomas, F. H., Walters, K. A., and Telfer, E. E. (2003). How to make a good oocyte: an update on in-vitro models to study follicle regulation. Hum. Reprod. Update 9, 541–555.
| How to make a good oocyte: an update on in-vitro models to study follicle regulation.Crossref | GoogleScholarGoogle Scholar | 14714591PubMed |
Thomas, R. E., Thompson, J. G., Armstrong, D. T., and Gilchrist, R. B. (2004a). Effect of specific phosphodiesterase isoenzyme inhibitors during IVM of bovine oocytes on meiotic and developmental capacity. Biol. Reprod. 71, 1142–1149.
| Effect of specific phosphodiesterase isoenzyme inhibitors during IVM of bovine oocytes on meiotic and developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqt7Y%3D&md5=55966a25bfccb30c29410dcef5642cf2CAS | 15189837PubMed |
Thomas, R. E., Armstrong, D. T., and Gilchrist, R. B. (2004b). Bovine cumulus cell–oocyte gap junctional communication during IVM in response to manipulation of cell-specific cyclic adenosine 3′,5′-monophosophate levels. Biol. Reprod. 70, 548–556.
| Bovine cumulus cell–oocyte gap junctional communication during IVM in response to manipulation of cell-specific cyclic adenosine 3′,5′-monophosophate levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Chsrs%3D&md5=850b6e1931f3a117a98fbd37bbe887a5CAS | 14568915PubMed |
Thomas, F. H., Armstrong, D. G., Campbell, B. K., and Telfer, E. E. (2007). Effects of insulin-like growth factor-1 bioavailability on bovine preantral follicular development in vitro. Reproduction 133, 1121–1128.
| Effects of insulin-like growth factor-1 bioavailability on bovine preantral follicular development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGmsr8%3D&md5=c2c3bebcc5a2cc3b2584c50862496a35CAS | 17636166PubMed |
Tingen, C. M., Kiesewetter, S. E., Jozefik, J., Thomas, C., Tagler, D., Shea, L., and Woodruff, T. K. (2011). A macrophage and theca cell-enriched stromal cell population influences growth and survival of immature murine follicles in vitro. Reproduction 141, 809–820.
| A macrophage and theca cell-enriched stromal cell population influences growth and survival of immature murine follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVCktLY%3D&md5=f88a5222113f3f579f1c8222a87077a4CAS | 21389078PubMed |
Touati, S. A., and Wassmann, K. (2016). How oocytes try to get it right: spindle checkpoint control in meiosis. Chromosoma 125, 321–335.
| How oocytes try to get it right: spindle checkpoint control in meiosis.Crossref | GoogleScholarGoogle Scholar | 26255654PubMed |
Trapphoff, T., El Hajj, N., Zechner, U., Haaf, T., and Eichenlaub-Ritter, U. (2010). DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum. Reprod. 25, 3025–3042.
| DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSgsbbF&md5=955de7c875f17f84c8e1d15b2be3c31eCAS | 20940142PubMed |
Trapphoff, T., Heiligentag, M., El Hajj, N., Haaf, T., and Eichenlaub-Ritter, U. (2013). Chronic exposure to a low concentration of bisphenol A during follicle culture affects the epigenetic status of germinal vesicles and metaphase II oocytes. Fertil. Steril. 100, 1758–1767.e1.
| Chronic exposure to a low concentration of bisphenol A during follicle culture affects the epigenetic status of germinal vesicles and metaphase II oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVKktLrP&md5=66c2f0c5b3c31db9ce2e2acd34f1a65eCAS | 24034936PubMed |
Trapphoff, T., Heiligentag, M., Simon, J., Staubach, N., Seidel, T., Otte, K., Fröhlich, T., Arnold, G. J., and Eichenlaub-Ritter, U. (2016a). Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Mol. Hum. Reprod. 22, 867–881.
| 27604460PubMed |
Trapphoff, T., Heiligentag, M., Dankert, D., Demond, H., Deutsch, D., Fröhlich, T., Arnold, G. J., Grümmer, R., Horsthemke, B., and Eichenlaub-Ritter, U. (2016b). Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum. Reprod. 31, 133–149.
| Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28vis1KmtA%3D%3D&md5=891603e7c59b759dc57793972dd30632CAS | 26577303PubMed |
Valckx, S. D., Van Hoeck, V., Arias-Alvarez, M., Maillo, V., Lopez-Cardona, A. P., Gutierrez-Adan, A., Berth, M., Cortvrindt, R., Bols, P. E., and Leroy, J. L. (2014). Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence. Fertil. Steril. 102, 1769–1776.e1.
| Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Wiu7bN&md5=bc53686c30e0463feaa2893fb020e68cCAS | 25256931PubMed |
Valero, T. (2014). Mitochondrial biogenesis: pharmacological approaches. Curr. Pharm. Des. 20, 5507–5509.
| Mitochondrial biogenesis: pharmacological approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCgtb%2FI&md5=f84c152e7fc2cb89575c1fddfa30a3d7CAS | 24606795PubMed |
Van Blerkom, J. (2011). Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11, 797–813.
| Mitochondrial function in the human oocyte and embryo and their role in developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWrsrzM&md5=3fffd801fbf150a045c4a5cc7fd506a4CAS | 20933103PubMed |
van den Berg, I. M., Eleveld, C., van der Hoeven, M., Birnie, E., Steegers, E. A., Galjaard, R. J., Laven, J. S., and van Doorninck, J. H. (2011). Defective deacetylation of histone 4 K12 in human oocytes is associated with advanced maternal age and chromosome misalignment. Hum. Reprod. 26, 1181–1190.
| Defective deacetylation of histone 4 K12 in human oocytes is associated with advanced maternal age and chromosome misalignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlehtL4%3D&md5=349e1faedd1d641c285108dc77c4ca73CAS | 21349858PubMed |
Van Hoeck, V., Bols, P. E., Binelli, M., and Leroy, J. L. (2014). Reduced oocyte and embryo quality in response to elevated non-esterified fatty acid concentrations: a possible pathway to subfertility? Anim. Reprod. Sci. 149, 19–29.
| Reduced oocyte and embryo quality in response to elevated non-esterified fatty acid concentrations: a possible pathway to subfertility?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGnu7jI&md5=a0d08581e6598a0fa6a2fe876862a10fCAS | 25129636PubMed |
Van Merris, V., Van Wemmel, K., and Cortvrindt, R. (2007). In vitro effects of dexamethasone on mouse ovarian function and pre-implantation embryo development. Reprod. Toxicol. 23, 32–41.
| In vitro effects of dexamethasone on mouse ovarian function and pre-implantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisValtQ%3D%3D&md5=e98495a7ceccd037725f47bec25f48afCAS | 17000079PubMed |
Van Wemmel, K., Gobbers, E., Eichenlaub-Ritter, U., Smitz, J., and Cortvrindt, R. (2005). Ovarian follicle bioassay reveals adverse effects of diazepam exposure upon follicle development and oocyte quality. Reprod. Toxicol. 20, 183–193.
| Ovarian follicle bioassay reveals adverse effects of diazepam exposure upon follicle development and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Oisbs%3D&md5=a9eeccd7fea22ff8c11104ac0f9d083cCAS | 15907652PubMed |
Vanacker, J., and Amorim, C. A. (2017). Alginate: a versatile biomaterial to encapsulate isolated ovarian follicles. Ann. Biomed. Eng. 45, 1633–1649.
| Alginate: a versatile biomaterial to encapsulate isolated ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 28247039PubMed |
Vigone, G., Merico, V., Redi, C. A., Mazzini, G., Garagna, S., and Zuccotti, M. (2015). FSH and LH receptors are differentially expressed in cumulus cells surrounding developmentally competent and incompetent mouse fully grown antral oocytes. Reprod. Fertil. Dev. 27, 497–503.
| FSH and LH receptors are differentially expressed in cumulus cells surrounding developmentally competent and incompetent mouse fully grown antral oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVSltrk%3D&md5=9c98835f0416ccf4172e2b5d7a341b99CAS | 24476692PubMed |
Vogt, E., Kirsch-Volders, M., Parry, J., and Eichenlaub-Ritter, U. (2008). Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat. Res. 651, 14–29.
| Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGmtrk%3D&md5=be091261b9500b83a5a22b1c0c5dad97CAS | 18096427PubMed |
Vogt, E., Sanhaji, M., Klein, W., Seidel, T., Wordeman, L., and Eichenlaub-Ritter, U. (2010). MCAK is present at centromeres, midspindle and chiasmata and involved in silencing of the spindle assembly checkpoint in mammalian oocytes. Mol. Hum. Reprod. 16, 665–684.
| MCAK is present at centromeres, midspindle and chiasmata and involved in silencing of the spindle assembly checkpoint in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFaiu7zF&md5=1b57078845bbe39b56879231247dbf77CAS | 20406800PubMed |
Walters, K. A., Binnie, J. P., Campbell, B. K., Armstrong, D. G., and Telfer, E. E. (2006). The effects of IGF-I on bovine follicle development and IGFBP-2 expression are dose and stage dependent. Reproduction 131, 515–523.
| The effects of IGF-I on bovine follicle development and IGFBP-2 expression are dose and stage dependent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs12jsL0%3D&md5=8e1e16a99ece4a375cea39db924331bcCAS | 16514194PubMed |
Wan, X., Zhu, Y., Ma, X., Zhu, J., Zheng, Y., Hou, J., Wang, F., Liu, Z., and Zhang, T. (2010). Effect of DEHP and its metabolite MEHP on in vitro rat follicular development. Wei Sheng Yan Jiu 39, 268–270, 274.
| 1:CAS:528:DC%2BC3cXht1Cnt7%2FK&md5=a8b14121854bb29a6acadcde3a6d7dc3CAS | 20568449PubMed |
Wang, T. R., Yan, L. Y., Yan, J., Lu, C. L., Xia, X., Yin, T. L., Zhu, X. H., Gao, J. M., Ding, T., Hu, W. H., Guo, H. Y., Li, R., and Qiao, J. (2014). Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro. Hum. Reprod. 29, 568–576.
| Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1Cht78%3D&md5=c34bfba5ca353c76a37268fe7af2e9a0CAS | 24408318PubMed |
West, E. R., Shea, L. D., and Woodruff, T. K. (2007). Engineering the follicle microenvironment. Semin. Reprod. Med. 25, 287–299.
| Engineering the follicle microenvironment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXoslGksLw%3D&md5=e4493cd03f86466040501e7e2097bfecCAS | 17594609PubMed |
Winterhager, E., and Kidder, G. M. (2015). Gap junction connexins in female reproductive organs: implications for women’s reproductive health. Hum. Reprod. Update 21, 340–352.
| Gap junction connexins in female reproductive organs: implications for women’s reproductive health.Crossref | GoogleScholarGoogle Scholar | 25667189PubMed |
Wrenzycki, C., and Stinshoff, H. (2013). Maturation environment and impact on subsequent developmental competence of bovine oocytes. Reprod. Domest. Anim. 48, 38–43.
| Maturation environment and impact on subsequent developmental competence of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 23962213PubMed |
Wu, J., Emery, B. R., and Carrell, D. T. (2001). In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles. Biol. Reprod. 64, 375–381.
| In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFCruw%3D%3D&md5=2df02e255368683c2a68b93dfcf4074aCAS | 11133696PubMed |
Wu, L. L., Russell, D. L., Wong, S. L., Chen, M., Tsai, T. S., St John, J. C., Norman, R. J., Febbraio, M. A., Carroll, J., and Robker, R. L. (2015). Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 142, 681–691.
| Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtlSjtrg%3D&md5=071719572886b5365c0eaec275ea2562CAS | 25670793PubMed |
Xiao, S., Duncan, F. E., Bai, L., Nguyen, C. T., Shea, L. D., and Woodruff, T. K. (2014a). Size-specific follicle selection improves mouse oocyte reproductive outcomes. Reproduction 150, 183–192.
| Size-specific follicle selection improves mouse oocyte reproductive outcomes.Crossref | GoogleScholarGoogle Scholar |
Xiao, S., Zhang, J., Romero, M. M., Smith, K. N., Shea, L., and Woodruff, T. K. (2015b). In vitro follicle growth supports human oocyte meiotic maturation. Sci. Rep. 5, 17323.
| In vitro follicle growth supports human oocyte meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGisr7O&md5=bcb8fee22926fae66ca767bed8b078c1CAS | 26612176PubMed |
Xu, M., Kreeger, P. K., Shea, L. D., and Woodruff, T. K. (2006a). Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 12, 2739–2746.
| Tissue-engineered follicles produce live, fertile offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSht7fF&md5=909611aafada3cd8c63ef4ef865444d4CAS | 17518643PubMed |
Xu, M., West, E., Shea, L. D., and Woodruff, T. K. (2006b). Identification of a stage-specific permissive IVC environment for follicle growth and oocyte development. Biol. Reprod. 75, 916–923.
| Identification of a stage-specific permissive IVC environment for follicle growth and oocyte development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjtr7O&md5=fb006c6d96add74d9161c87c141b92a3CAS | 16957022PubMed |
Xu, M., West-Farrell, E. R., Stouffer, R. L., Shea, L. D., Woodruff, T. K., and Zielinski, M. B. (2009a). Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol. Reprod. 81, 587–594.
| Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7zL&md5=93d8056216785b3f817028fdced7b603CAS | 19474063PubMed |
Xu, M., Barrett, S. L., West-Farrell, E. R., Kondipalli, L. A., Kieswetter, S. E., Shea, L. D., and Woodruff, T. K. (2009b). In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum. Reprod. 24, 2531–2540.
| In vitro grown human ovarian follicles from cancer patients support oocyte growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOqurnE&md5=a2481387bf9da9c070f715f1b11e8c6fCAS | 19597190PubMed |
Xu, J., Bernuci, M. P., Lawson, M. S., Yeoman, R. R., Fisher, T. E., Zelinski, M. B., and Stouffer, R. L. (2010). Survival, growth, and maturation of secondary follicles from prepubertal, young and older adult, rhesus monkeys during encapsulated three-dimensional (3D) culture: effects of gonadotropins and insulin. Reproduction 140, 685–697.
| Survival, growth, and maturation of secondary follicles from prepubertal, young and older adult, rhesus monkeys during encapsulated three-dimensional (3D) culture: effects of gonadotropins and insulin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCnsbfK&md5=ac95599fb4eff801085ff1245d5f844eCAS | 20729335PubMed |
Xu, J., Lawson, M. S., Yeoman, R. R., Pau, K. Y., Barrett, S. L., Zelinski, M. B., and Stouffer, R. L. (2011a). Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin. Hum. Reprod. 26, 1061–1072.
| Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltleht7c%3D&md5=77db8849901b2e0e4fdf5628bb1fc5a4CAS | 21362681PubMed |
Xu, M., Fazleabas, A. T., Shikanov, A., Jackson, E., Barrett, S. L., Hirshfeld-Cytron, J., Kiesewetter, S. E., Shea, L. D., and Woodruff, T. K. (2011b). In vitro oocyte maturation and preantral follicle culture from the luteal-phase baboon ovary produce mature oocytes. Biol. Reprod. 84, 689–697.
| In vitro oocyte maturation and preantral follicle culture from the luteal-phase baboon ovary produce mature oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFanurs%3D&md5=766badae8fb13ad91ebb79b6c291e495CAS | 21123815PubMed |
Xu, J., Lawson, M. S., Yeoman, R. R., Molskness, T. A., Ting, A. Y., Stouffer, R. L., and Zelinsky, M. B. (2013). Fibrin promotes development and function of macaque primary follicles during encapsulated three-dimensional culture. Hum. Reprod. 28, 2187–2200.
| Fibrin promotes development and function of macaque primary follicles during encapsulated three-dimensional culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOgtrrL&md5=2d7f5be48bea910008ebd9faf4ece1f7CAS | 23608357PubMed |
Xu, Y., Duncan, F. E., Xu, M., and Woodruff, T. K. (2016). Use of an organotypic mammalian in vitro follicle growth assay to facilitate female reproductive toxicity screening. Reprod. Fertil. Dev. 28, 1295–1306.
| Use of an organotypic mammalian in vitro follicle growth assay to facilitate female reproductive toxicity screening.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Gjt77M&md5=7c29af4b9311555e8552d0ecacaac3deCAS |
Yan, C., Wang, P., DeMayo, J., DeMayo, F. J., Elvin, J. A., Carino, C., Prasad, S. V., Skinner, S. S., Dunbar, B. S., Dube, J. L., Celeste, A. J., and Matzuk, M. M. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15, 854–866.
| Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFKjs7o%3D&md5=2fa80a9c401e13a3c246f8e6f40185b1CAS | 11376106PubMed |
Yang, M. Y., and Fortune, J. E. (2015). Changes in the transcriptome of bovine ovarian cortex during follicle activation in vitro. Physiol. Genomics 47, 600–611.
| 1:CAS:528:DC%2BC28Xht1ylurfO&md5=1b04784e618867b7090c95c34e7fb081CAS | 26443523PubMed |
Yang, Y., Yang, C. R., Han, S. J., Daldello, E. M., Cho, A., Martins, J. P. S., Xia, G., and Conti, M. (2017). Maternal mRNAs with distinct 3′ UTRs define the temporal pattern of Ccnb1 synthesis during mouse oocyte meiotic maturation. Genes Dev. 31, 1302–1307.
| Maternal mRNAs with distinct 3′ UTRs define the temporal pattern of Ccnb1 synthesis during mouse oocyte meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 28808066PubMed |
Yding Andersen, C. (2017). Inhibin-B secretion and FSH isoform distribution may play an integral part of follicular selection in the natural menstrual cycle. Mol. Hum. Reprod. 23, 16–24.
| Inhibin-B secretion and FSH isoform distribution may play an integral part of follicular selection in the natural menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2srjtlSntw%3D%3D&md5=7ed2aa71c0a4f5747cf5c8cef50ab6c1CAS | 27756855PubMed |
Yin, H., Baart, E., Betzendahl, I., and Eichenlaub-Ritter, U. (1998a). Diazepam induces meiotic delay, aneuploidy and predivision of homologues and chromatids in mammalian oocytes. Mutagenesis 13, 567–580.
| Diazepam induces meiotic delay, aneuploidy and predivision of homologues and chromatids in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVCnt7g%3D&md5=49d17b0cd4e74703f3213f1503bcff9aCAS | 9862187PubMed |
Yin, H., Cukurcam, S., Betzendahl, I., Adler, I. D., and Eichenlaub-Ritter, U. (1998b). Trichlorfon exposure, spindle aberrations and nondisjunction in mammalian oocytes. Chromosoma 107, 514–522.
| Trichlorfon exposure, spindle aberrations and nondisjunction in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlWrug%3D%3D&md5=ef4f5459dc477e43a754e3bd4341ea6aCAS | 9914385PubMed |
Yin, H., Kristensen, S. G., Jiang, H., Rasmussen, A., and Andersen, C. Y. (2016). Survival and growth of isolated pre-antral follicles from human ovarian medulla tissue during long-term 3D culture. Hum. Reprod. 31, 1531–1539.
| Survival and growth of isolated pre-antral follicles from human ovarian medulla tissue during long-term 3D culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28bjt1SisA%3D%3D&md5=4d849ae75313e736a0719fbed3f23e20CAS | 27112699PubMed |
Zhang, H., and Liu, K. (2015). Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood. Hum. Reprod. Update 21, 779–786.
| Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood.Crossref | GoogleScholarGoogle Scholar | 26231759PubMed |
Zhang, K., and Smith, G. W. (2015). Maternal control of early embryogenesis in mammals. Reprod. Fertil. Dev. 27, 880–896.
| Maternal control of early embryogenesis in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOlsbnE&md5=b066e949190e327bc7248c85f7f59af7CAS | 25695370PubMed |
Zhang, Y., Zhang, Z., Xu, X. Y., Li, X. S., Yu, M., Yu, A. M., Zong, Z. H., and Yu, B. Z. (2008). Protein kinase A modulates Cdc25B activity during meiotic resumption of mouse oocytes. Dev. Dyn. 237, 3777–3786.
| Protein kinase A modulates Cdc25B activity during meiotic resumption of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvFWhtQ%3D%3D&md5=58f07e2867486720da7e37a7700b080dCAS | 19035343PubMed |
Zhang, W., Chen, Q., Yang, Y., Liu, W., Zhang, M., Xia, G., and Wang, C. (2014). Epidermal growth factor-network signaling mediates luteinizing hormone regulation of BNP and CNP and their receptor NPR2 during porcine oocyte meiotic resumption. Mol. Reprod. Dev. 81, 1030–1041.
| Epidermal growth factor-network signaling mediates luteinizing hormone regulation of BNP and CNP and their receptor NPR2 during porcine oocyte meiotic resumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVykt7%2FM&md5=09d326f1e83fd26aed48e81ada5db8f8CAS | 25348585PubMed |
Zhang, Y., Wang, H., Liu, W., Yang, Y., Wang, X., Zhang, Z., Guo, Q., Wang, C., and Xia, G. (2017a). Natriuretic peptides improve the developmental competence of IVCd porcine oocytes. Reprod. Biol. Endocrinol. 15, 41.
| Natriuretic peptides improve the developmental competence of IVCd porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 28558842PubMed |
Zhang, T., Zhang, C., Fan, X., Li, R., and Zhang, J. (2017b). Effect of C-type natriuretic peptide pretreatment on in vitro bovine oocyte maturation. In Vitro Cell. Dev. Biol. Anim. 53, 199–206.
| Effect of C-type natriuretic peptide pretreatment on in vitro bovine oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslCgtL7P&md5=8181a14fdc0d909ade1890c81facb275CAS | 27761784PubMed |
Zhao, J., Taverne, M. A., van der Weijden, G. C., Bevers, M. M., and van den Hurk, R. (2001). Effect of activin A on in vitro development of rat preantral follicles and localization of activin A and activin receptor II. Biol. Reprod. 65, 967–977.
| Effect of activin A on in vitro development of rat preantral follicles and localization of activin A and activin receptor II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFemsbs%3D&md5=40328c630241808cc7295597198c29d1CAS | 11514365PubMed |
Zhao, Y., Zhang, Y., Li, J., Zheng, N., Xu, X., Yang, J., Xia, G., and Zhang, M. (2018). MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling. J. Cell. Physiol. 233, 226–237.
| MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXkvVWqtr8%3D&md5=e69489751c1cc2f5e21a0bc01e281750CAS | 28218391PubMed |
Zhou, H., Malik, M. A., Arab, A., Hill, M. T., and Shikanov, A. (2015). Hydrogel based 3-dimensional (3D) system for toxicity and high-throughput (HTP) analysis for cultured murine ovarian follicles. PLoS One 10, e0140205.
| Hydrogel based 3-dimensional (3D) system for toxicity and high-throughput (HTP) analysis for cultured murine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 26451950PubMed |
Zoheir, K. M., Harisa, G. I., Allam, A. A., Yang, L., Li, X., Liang, A., Abd-Rabou, A. A., and Harrath, A. H. (2017). Effect of alpha lipoic acid on in vitro development of bovine secondary preantral follicles. Theriogenology 88, 124–130.
| Effect of alpha lipoic acid on in vitro development of bovine secondary preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1Sls7%2FF&md5=29aa7d032afab45c5d7eba63b8e60b0dCAS | 27743686PubMed |
Zuccotti, M., Merico, V., Cecconi, S., Redi, C. A., and Garagna, S. (2011). What does it take to make a developmentally competent mammalian egg? Hum. Reprod. Update 17, 525–540.
| What does it take to make a developmentally competent mammalian egg?Crossref | GoogleScholarGoogle Scholar | 21444328PubMed |
Zuelke, K. A., Jeffay, S. C., Zucker, R. M., and Perreault, S. D. (2003). Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos. Mol. Reprod. Dev. 64, 106–112.
| Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos.Crossref | GoogleScholarGoogle Scholar | 12420305PubMed |