Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Linoleic (LA) and linolenic (ALA) acid concentrations in follicular fluid of prepubertal goats and their effect on oocyte in vitro maturation and embryo development

Montserrat Roura A , María G. Catalá A , Sandra Soto-Heras A , Sondes Hammami A , Dolors Izquierdo A , Ali Fouladi-Nashta B and Maria-Teresa Paramio A C
+ Author Affiliations
- Author Affiliations

A Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons s/n, 08193, Bellaterra, Barcelona, Catalonia, Spain.

B Reproduction Genes and Development Group, Department of Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane Hatfield, Herts AL97TA, UK.

C Corresponding author. Email: teresa.paramio@uab.cat

Reproduction, Fertility and Development 30(2) 286-296 https://doi.org/10.1071/RD17174
Submitted: 7 February 2017  Accepted: 7 June 2017   Published: 6 July 2017

Abstract

In this study we assessed the concentration of linoleic acid (LA) and linolenic acid (ALA) in follicular fluid of prepubertal goats according to follicle size (<3 mm or ≥3 mm) by gas chromatography and tested the addition of different LA and ALA (LA : ALA) concentration ratios (50 : 50, 100 : 50 and 200 : 50 µM) to the IVM medium on embryo development, mitochondrial activity, ATP concentration and relative gene expression (RPL19, ribosomal protein L19; SLC2A1, facilitated glucose transporter 1; ATF4, activating transcription factor 4; GPX1, glutathione peroxidase 1; HSPA5, heat-shock protein family A 70 kDa; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; DNMT1, DNA methyltransferase 1; GCLC, glutamate–cysteine ligase catalytic subunit; SOD1, superoxide dismutase 1). Oocytes were in vitro matured, fertilised or parthenogenetically activated and zygotes were cultured following conventional protocols. LA concentration ranged from 247 to 319 µM and ALA concentration from 8.39 to 41.19 µM without any effect of follicle size. Blastocyst production from the different groups was: control FCS (22.33%) and BSA (19.63%), treatments 50 : 50 (22.58%), 100 : 50 (21.01%) and 200 : 50 (9.60%). Oocytes from the 200 : 50 group presented higher polyspermy and mitochondrial activity compared with controls and the rest of the treatment groups. No differences were observed in ATP concentration or relative expression of the genes measured between treatment groups. In conclusion, the low number of blastocysts obtained in the 200 : 50 group was caused by a high number of polyspermic zygotes, which could suggest that high LA concentration impairs oocyte membranes.

Additional keywords: blastocysts, embryo production, omega-3 and omega-6 PUFAs, oocyte membrane.


References

Alves, J. P. M., Bertolini, M., Bertolini, L. R., Silva, C. M. G., and Rondina, D. (2015). Lipotoxicity : impact on oocyte quality and reproductive efficiency in mammals. Anim. Reprod. 12, 291–297.

Amini, E., Asadpour, R., Roshangar, L., and Jafari-joozani, R. (2016). Effect of linoleic acid supplementation on in vitro maturation, embryo development and apoptotic related gene expression in ovine. Int. J Reprod Biomed (Yazd) 14, 255–262.

Armstrong, D. T. (2001). Effects of maternal age on oocyte developmental competence. Theriogenology 55, 1303–1322.
Effects of maternal age on oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSis78%3D&md5=008097b7bf4f49287a60b4a5873b57b4CAS |

Bender, K., Walsh, S., Evans, A. C. O., Fair, T., and Brennan, L. (2010). Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 139, 1047–1055.
Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns12qsbs%3D&md5=5820a9bf4f70fa1593967d87490f0874CAS |

Brevini, T. A. L. (2005). Role of adenosine triphosphate, active mitochondria, and microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes. Biol. Reprod. 72, 1218–1223.
Role of adenosine triphosphate, active mitochondria, and microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslSntrc%3D&md5=c6961018cf067bf1cb0bd715ed318c17CAS |

Bryan, D. L., Hart, P., Forsyth, K., and Gibson, R. (2001). Incorporation of alpha-linolenic acid and linoleic acid into human respiratory epithelial cell lines. Lipids 36, 713–717.
Incorporation of alpha-linolenic acid and linoleic acid into human respiratory epithelial cell lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFKltL4%3D&md5=4a58879e204dcffdedb307919b647251CAS |

Carro, M., Buschiazzo, J., Ríos, G. L., Oresti, G. M., and Alberio, R. H. (2013). Linoleic acid stimulates neutral lipid accumulation in lipid droplets of maturing bovine oocytes. Theriogenology 79, 687–694.
Linoleic acid stimulates neutral lipid accumulation in lipid droplets of maturing bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFWgsr3L&md5=626ee0f4297fd49a455af27d3e6177d0CAS |

Cole, M. A., Murray, A. J., Cochlin, L. E., Heather, L. C., McAleese, S., Knight, N. S., Sutton, E., Jamil, A. A., Parassol, N., and Clarke, K. (2011). A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res. Cardiol. 106, 447–457.
A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt12rtLY%3D&md5=0d139f77dcc99e5e46c39944d73dec63CAS |

Colell, A., Ricci, J., Green, D. R., and Ricci, J. (2009). Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 16, 1573–1581.
Novel roles for GAPDH in cell death and carcinogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWlsrzF&md5=17cc075bf168eabac5f767302e898bd3CAS |

Childs, S., Hennessy, A. A., Sreenan, J. M., Wathes, D. C., Cheng, Z., Stanton, C., Diskin, M. G., and Kenny, D. A. (2008). Effect of level of dietary n-3 polyunsaturated fatty acid supplementation on systemic and tissue fatty acid concentrations and on selected reproductive variables in cattle. Theriogenology 70, 595–611.
Effect of level of dietary n-3 polyunsaturated fatty acid supplementation on systemic and tissue fatty acid concentrations and on selected reproductive variables in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVCrtbs%3D&md5=4efa3a8205bf509dc40293657faf47adCAS |

Dickinson, D. A., Levonen, A. L., Moellering, D. R., Arnold, E. K., Zhang, H., Darley-Usmar, V. M., and Forman, H. J. (2004). Human glutamate cysteine ligase gene regulation through the electrophile response element. Free Radic. Biol. Med. 37, 1152–1159.
Human glutamate cysteine ligase gene regulation through the electrophile response element.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFaitbo%3D&md5=c6bb6f6bd419cb612d9768cacc6d9786CAS |

Dumesic, D. A., Meldrum, D. R., Katz-Jaffe, M. G., Krisher, R. L., and Schoolcraft, W. B. (2015). Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil. Steril. 103, 303–316.
Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health.Crossref | GoogleScholarGoogle Scholar |

Dunham, W. R., Klein, S. B., Rhodes, L. M., and Marcelo, C. L. (1996). Oleic acid and linoleic acid are the major determinants of changes in keratinocyte plasma membrane viscosity. J. Invest. Dermatol. 107, 332–335.
Oleic acid and linoleic acid are the major determinants of changes in keratinocyte plasma membrane viscosity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVOgu7c%3D&md5=e8b4eaedb80044e79bffae2fced45392CAS |

Dunning, K. R., Cashman, K., Russell, D. L., Thompson, J. G., Norman, R. J., and Robker, R. L. (2010). Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol. Reprod. 83, 909–918.
Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahurfN&md5=548d00de5e7460a39941122d18d3ff0fCAS |

Ghaffarilaleh, V., Fouladi-Nashta, A., and Paramio, M.-T. (2014). Effect of α-linolenic acid on oocyte maturation and embryo development of prepubertal sheep oocytes. Theriogenology 82, 686–696.
Effect of α-linolenic acid on oocyte maturation and embryo development of prepubertal sheep oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFentb%2FP&md5=35ec793f84da397562b39d2877384e30CAS |

Heinzmann, J., Hansmann, T., Herrmann, D., Wrenzycki, C., Zechner, U., Haaf, T., and Niemann, H. (2011). Epigenetic profile of developmentally important genes in bovine oocytes. Mol. Reprod. Dev. 78, 188–201.
Epigenetic profile of developmentally important genes in bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVKmsL8%3D&md5=ceda4ca68f6096f6889a60f69688c730CAS |

Holm, P., Booth, P. J., Schmidt, M. H., Greve, T., and Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.
High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVGnsw%3D%3D&md5=4b5bf1ef366000f0c309b3ada47205f5CAS |

Homa, S. T., and Brown, C. A. (1992). Changes in linoleic-acid during follicular development and inhibition of spontaneous breakdown of germinal vesicles in cumulus-free bovine oocytes. J. Reprod. Fertil. 94, 153–160.
Changes in linoleic-acid during follicular development and inhibition of spontaneous breakdown of germinal vesicles in cumulus-free bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhslWjtLs%3D&md5=e4940c76fbd562d9801ff7757a2e88ceCAS |

Hong, M., Kim, H., and Kim, I. (2014). Ribosomal protein L19 overexpression activates the unfolded protein response and sensitizes MCF7 breast cancer cells to endoplasmic reticulum stress-induced cell death. Biochem. Biophys. Res. Commun. 450, 673–678.
Ribosomal protein L19 overexpression activates the unfolded protein response and sensitizes MCF7 breast cancer cells to endoplasmic reticulum stress-induced cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKhtb7E&md5=d818ad9862446356c6a08102ac460bbdCAS |

Hou, Y.-J., Zhu, C.-C., Duan, X., Liu, H.-L., Wang, Q., and Sun, S.-C. (2016). Both diet and gene mutation induced obesity affect oocyte quality in mice. Sci. Rep. 6, 18858.
Both diet and gene mutation induced obesity affect oocyte quality in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltFGhtg%3D%3D&md5=08da72d40f0d74f34db701cb9c77a8c3CAS |

Jansen, R. P. S., and Burton, G. J. (2004). Mitochondrial dysfunction in reproduction. Mitochondrion 4, 577–600.
Mitochondrial dysfunction in reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCgs7nL&md5=a2301e35e12e4ec9db49443acb6bc30eCAS |

Jeseta, M., Ctvrtlikova Knitlova, D., Hanzalova, K., Hulinska, P., Hanulakova, S., Milakovic, I., Nemcova, L., Kanka, J., and Machatkova, M. (2014). Mitochondrial patterns in bovine oocytes with different meiotic competence related to their in vitro maturation. Reprod. Domest. Anim. 49, 469–475.
Mitochondrial patterns in bovine oocytes with different meiotic competence related to their in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns12lsbg%3D&md5=5b1667e557f6ea232f5004485195173bCAS |

Latham, K. E. (2016). Stress signaling in mammalian oocytes and embryos: a basis for intervention and improvement of outcomes. Cell Tissue Res. 363, 159–167.
Stress signaling in mammalian oocytes and embryos: a basis for intervention and improvement of outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1Ogsb8%3D&md5=ab0f62d7c59a457fcc0368939e067e81CAS |

Leoni, G. G., Palmerini, M. G., Satta, V., Succu, S., Pasciu, V., Zinellu, A., Carru, C., Macchiarelli, G., Nottola, S. A., Naitana, S., and Berlinguer, F. (2015). Differences in the kinetic of the first meiotic division and in active mitochondrial distribution between prepubertal and adult oocytes mirror differences in their developmental competence in a sheep model. PLoS One 10, e0124911.
Differences in the kinetic of the first meiotic division and in active mitochondrial distribution between prepubertal and adult oocytes mirror differences in their developmental competence in a sheep model.Crossref | GoogleScholarGoogle Scholar |

Li, X., Higashida, K., Kawamura, T., and Higuchi, M. (2016). Alternate-day high-fat diet induces an increase in mitochondrial enzyme activities and protein content in rat skeletal muscle. Nutrients 8, 203.
Alternate-day high-fat diet induces an increase in mitochondrial enzyme activities and protein content in rat skeletal muscle.Crossref | GoogleScholarGoogle Scholar |

Liu, L., Trimarchi, J. R., and Keefe, D. L. (2000). Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol. Reprod. 62, 1745–1753.
Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2hsbg%3D&md5=5388951edb83c29c7c59ace6280ac832CAS |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. 408, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method.Crossref | GoogleScholarGoogle Scholar |

Luderer, U., Diaz, D., Faustman, E. M., and Kavanagh, T. J. (2003). Localization of glutamate cysteine ligase subunit mRNA within the rat ovary and relationship to follicular apoptosis. Mol. Reprod. Dev. 65, 254–261.
Localization of glutamate cysteine ligase subunit mRNA within the rat ovary and relationship to follicular apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOitLc%3D&md5=f20bc1bf0eb00273f76f5c5ad8d22fe3CAS |

Marei, W. F., Wathes, D. C., and Fouladi-Nashta, A. A. (2009). The effect of linolenic acid on bovine oocyte maturation and development. Biol. Reprod. 81, 1064–1072.
The effect of linolenic acid on bovine oocyte maturation and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lt7vL&md5=c394981d0786b60f609596a194155ec4CAS |

Marei, W. F., Wathes, D. C., and Fouladi-Nashta, A. A. (2010). Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction 139, 979–988.
Impact of linoleic acid on bovine oocyte maturation and embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns12qsLY%3D&md5=49e049e7699f3bbe6ac521c184f81ee8CAS |

Marei, W. F., Wathes, D. C., and Fouladi-Nashta, A. A. (2012). Differential effects of linoleic and alpha-linolenic fatty acids on spatial and temporal mitochondrial distribution and activity in bovine oocytes. Reprod. Fertil. Dev. 24, 679–690.
Differential effects of linoleic and alpha-linolenic fatty acids on spatial and temporal mitochondrial distribution and activity in bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFehu74%3D&md5=e026593a30d2e6aa87361044f6fdc93eCAS |

Matoba, S., Bender, K., Fahey, A. G., Mamo, S., Brennan, L., Lonergan, P., and Fair, T. (2014). Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod. Fertil. Dev. 26, 337–345.
Predictive value of bovine follicular components as markers of oocyte developmental potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtFCmtg%3D%3D&md5=96f083dbb5602e1c88c763d7bee518eeCAS |

McKeegan, P. J., and Sturmey, R. G. (2012). The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev. 24, 59–67.
The role of fatty acids in oocyte and early embryo development.Crossref | GoogleScholarGoogle Scholar |

Montgomery, M. K., and Turner, N. (2015). Mitochondrial dysfunction and insulin resistance: an update. Endocr. Connect. 4, R1–R15.
Mitochondrial dysfunction and insulin resistance: an update.Crossref | GoogleScholarGoogle Scholar |

Morton, K. M., Catt, S. L., Maxwell, W. M. C., and Evans, G. (2005). Effects of lamb age, hormone stimulation and response to hormone stimulation on the yield and in vitro developmental competence of prepubertal lamb oocytes. Reprod. Fertil. Dev. 17, 593–601.
Effects of lamb age, hormone stimulation and response to hormone stimulation on the yield and in vitro developmental competence of prepubertal lamb oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yhtLc%3D&md5=fcc298d1793a4967f5b71e6de8ef5609CAS |

Parrish, J. J., Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Crister, E. S., Eyeston, W. H., and First, N. L. (1986). Bovine in vitro fertilization with frozen thawed semen. Theriogenology 25, 591–600.
Bovine in vitro fertilization with frozen thawed semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvV2itQ%3D%3D&md5=c238a263d539c324481592d69c9c168bCAS |

Renaville, B., Bacciu, N., Comin, A., Motta, M., Poli, I., Vanini, G., and Prandi, A. (2010). Plasma and follicular fluid fatty acid profiles in dairy cows. Reprod. Domest. Anim. 45, 118–121.
Plasma and follicular fluid fatty acid profiles in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislagu7w%3D&md5=83e09c378e6d16ad0d9fb05cf9dbde6dCAS |

Romaguera, R., Casanovas, A., Morato, R., Izquierdo, D., Catala, M., Jimenez-Macedo, A. R., Mogas, T., and Paramio, M. T. (2010). Effect of follicle diameter on oocyte apoptosis, embryo development and chromosomal ploidy in prepubertal goats. Theriogenology 74, 364–373.
Effect of follicle diameter on oocyte apoptosis, embryo development and chromosomal ploidy in prepubertal goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnntVGltA%3D%3D&md5=c3591e02426a526e2664683385c4513bCAS |

Romaguera, R., Moll, X., Morató, R., Roura, M., Palomo, M. J., Catalá, M. G., Jiménez-Macedo, A. R., Hammami, S., Izquierdo, D., Mogas, T., and Paramio, M. T. (2011). Prepubertal goat oocytes from large follicles result in similar blastocyst production and embryo ploidy than those from adult goats. Theriogenology 76, 1–11.
Prepubertal goat oocytes from large follicles result in similar blastocyst production and embryo ploidy than those from adult goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MrntlCqtA%3D%3D&md5=4eb7da323c0fe79f508bbe24a2e6d92dCAS |

Salavati, M., Ghafari, F., Zhang, T., and Fouladi-Nashta, A. A. (2012). Effects of oxygen concentration on in vitro maturation of canine oocytes in a chemically defined serum-free medium. Reproduction 144, 547–556.
Effects of oxygen concentration on in vitro maturation of canine oocytes in a chemically defined serum-free medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslClt73F&md5=128481142c1993f2e900a44164094e66CAS |

Schatten, H., Sun, Q.-Y., and Prather, R. (2014). The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod. Biol. Endocrinol. 12, 111.
The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility.Crossref | GoogleScholarGoogle Scholar |

Seifert, E. L., Estey, C., Xuan, J. Y., and Harper, M. E. (2010). Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J. Biol. Chem. 285, 5748–5758.
Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFCru70%3D&md5=7f08a5ab7e2b8584e580769ac225d621CAS |

Stojkovic, M., Machado, S. A., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Goncalves, P. B., and Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64, 904–909.
Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtrk%3D&md5=8b7cf000f9af1a1d5cf28bb11a06283eCAS |

Subbaiah, P. V., Gould, I. G., Lal, S., and Aizezi, B. (2011). Incorporation profiles of conjugated linoleic acid isomers in cell membranes and their positional distribution in phospholipids. Biochim. Biophys. Acta 1811, 17–24.
Incorporation profiles of conjugated linoleic acid isomers in cell membranes and their positional distribution in phospholipids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFanu77E&md5=e632cf1ced07bb6eb4ee2f1b3cfa0990CAS |

Sukhija, P. S., and Palmquist, D. L. (1988). Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 36, 1202–1206.
Rapid method for determination of total fatty acid content and composition of feedstuffs and feces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVyrtbY%3D&md5=15d4ee91c773f083f272942aa0e60523CAS |

Sutton-McDowall, M. L., Wu, L. L. Y., Purdey, M., Abell, A. D., Ewa, M., Macmillan, K. L., Thompson, J. G., and Robker, R. L. (2016). Nonesterified fatty acid-induced endoplasmic reticulum stress in cattle cumulus oocyte complexes alters cell metabolism and developmental competence. Biol. Reprod. 94, 23.
Nonesterified fatty acid-induced endoplasmic reticulum stress in cattle cumulus oocyte complexes alters cell metabolism and developmental competence.Crossref | GoogleScholarGoogle Scholar |

Sviderskaya, E. V., Jazrawi, E., Baldwin, S. A., Widnell, C. C., and Pasternak, C. A. (1996). Cellular stress causes accumulation of the glucose transporter at the surface of cells independently of their insulin sensitivity. J. Membr. Biol. 149, 133–140.
Cellular stress causes accumulation of the glucose transporter at the surface of cells independently of their insulin sensitivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XpvV2jug%3D%3D&md5=53c21bc62c6c7637b048e10a85367fbcCAS |

Thouas, G. A., Korfiatis, N. A., French, A. J., Jones, G. M., and Trounson, A. O. (2001). Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod. Biomed. Online 3, 25–29.
Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts.Crossref | GoogleScholarGoogle Scholar |

Turner, N., Bruce, C. R., Beale, S. M., Hoehn, K. L., So, T., Rolph, M. S., and Cooney, G. J. (2007). Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56, 2085–2092.
Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos12qsL0%3D&md5=32287e0591432ffbbd744e8e402e0912CAS |

Van Blerkom, J., and Runner, M. N. (1984). Mitochondrial reorganization during resumption of arrested meiosis in the mouse oocyte. Am. J. Anat. 171, 335–355.
Mitochondrial reorganization during resumption of arrested meiosis in the mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2FpsVWhuw%3D%3D&md5=b9bed4819f80a6e9a19fc05d27d15953CAS |

Van Blerkom, J., Davis, P. W., and Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in vitro fertilization and embryo transfer. Hum. Reprod. 10, 415–424.
ATP content of human oocytes and developmental potential and outcome after in vitro fertilization and embryo transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3os1OrtQ%3D%3D&md5=3e7957ec8d671ddb5394acb50620c419CAS |

Van Hoeck, V., Sturmey, R. G., Bermejo-Alvarez, P., Rizos, D., Gutierrez-Adan, A., Leese, H. J., Bols, P. E. J., and Leroy, J. L. M. R. (2011). Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 6, e23183.
Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKmsLjM&md5=e9fc8e01471a033adbaebf967955952eCAS |

Van Hoeck, V., Leroy, J. L. M. R., Alvarez, M. A., Rizos, D., Gutierrez-Adan, A., Schnorbusch, K., Bols, P. E. J., Leese, H. J., and Sturmey, R. G. (2013). Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights. Reproduction 145, 33–44.
Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGisb8%3D&md5=451b5a7b9c07dd9b3a281751d0ce2968CAS |

Veshkini, A., Asadi, H., Khadem, A. A., Mohammadi-Sangcheshmeh, A., Khazabi, S., Aminafshar, M., Deldar, H., Soleimani, M., and Cinar, M. U. (2015). Effect of linolenic acid during in vitro maturation of ovine oocytes: embryonic developmental potential and mRNA abundances of genes involved in apoptosis. J. Assist. Reprod. Genet. 32, 653–659.
Effect of linolenic acid during in vitro maturation of ovine oocytes: embryonic developmental potential and mRNA abundances of genes involved in apoptosis.Crossref | GoogleScholarGoogle Scholar |

Veshkini, A., Khadem, A. A., Mohammadi-Sangcheshmeh, A., Alamouti, A. A., Soleimani, M., and Gastal, E. L. (2016). Linolenic acid improves oocyte developmental competence and decreases apoptosis of in vitro-produced blastocysts in goat. Zygote 24, 537–548.
Linolenic acid improves oocyte developmental competence and decreases apoptosis of in vitro-produced blastocysts in goat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVOisb3K&md5=b655f018633dd9c1c98ddb704ce20ac4CAS |

Wathes, D. (2013). Polyunsaturated fatty acids and fertility in female mammals: an update. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 8, .
Polyunsaturated fatty acids and fertility in female mammals: an update.Crossref | GoogleScholarGoogle Scholar |

Wathes, D. C., Abayasekara, D. R. E., and Aitken, R. J. (2007). Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 77, 190–201.
Polyunsaturated fatty acids in male and female reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1OnsL0%3D&md5=8d91c0ebdfe6625463b68e2bf9b4f2ccCAS |

Wonnacott, K. E., Kwong, W. Y., Hughes, J., Salter, A. M., Lea, R. G., Garnsworthy, P. C., and Sinclair, K. D. (2010). Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction 139, 57–69.
Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWnug%3D%3D&md5=82d980b8fb194b9c7cc725588d4470afCAS |

Wu, L. L. Y., Dunning, K. R., Yang, X., Russell, D. L., Lane, M., Norman, R. J., and Robker, R. L. (2010). High-fat diet causes lipotoxicity responses in cumulus–oocyte complexes and decreased fertilization rates. Endocrinology 151, 5438–5445.
High-fat diet causes lipotoxicity responses in cumulus–oocyte complexes and decreased fertilization rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKks7bL&md5=b1ae6d39b04fc855f4e8240fc618a4f9CAS |

Yu, Y., Dumollard, R., Rossbach, A., Lai, F. A., and Swann, K. (2010). Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation. J. Cell. Physiol. 224, 672–680.
Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVWntLo%3D&md5=2923496255be92f6ea87ede66df0b247CAS |