Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Expanded equine cumulus–oocyte complexes exhibit higher meiotic competence and lower glucose consumption than compact cumulus–oocyte complexes

L. González-Fernández A B , M. J. Sánchez-Calabuig C , M. G. Alves D , P. F. Oliveira D , S. Macedo A , A. Gutiérrez-Adán C , A. Rocha A and B. Macías-García A E F
+ Author Affiliations
- Author Affiliations

A Centro de Estudos de Ciência Animal/Instituto de Ciências, Tecnologias e Agroambiente; Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Campus Agrario de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal.

B Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), School of Veterinary Medicine, University of Extremadura, Avda. de la universidad s/n, 10003, Cáceres, Spain.

C Department of Animal Reproduction, Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. De la Coruña, Km. 5.9, Madrid 28040, Spain.

D Department of Microscopy, Cell Biology Laboratory, Abel Salazar Institute of Biomedical Sciences and Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.

E Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre (CCMIJU), Carretera N-521, km. 41,8. 10071, Cáceres, Spain.

F Corresponding author. Email: bea_macias@hotmail.com

Reproduction, Fertility and Development 30(2) 297-306 https://doi.org/10.1071/RD16441
Submitted: 4 November 2016  Accepted: 6 June 2017   Published: 6 July 2017

Abstract

Equine cumulus–oocyte complexes (COCs) are classified as compact (cCOC) or expanded (eCOC) and vary in their meiotic competence. This difference could be related to divergent glucose metabolism. To test this hypothesis in the present study, eCOCs, cCOCs and expanded or compact mural granulosa cells (EC and CC respectively) were matured in vitro for 30 h, at which time maturation rate, glucose metabolism and the expression of genes involved in glucose transport, glycolysis, apoptosis and meiotic competence were determined. There were significant differences between eCOCs and cCOCs in maturation rate (50% vs 21.7% (n = 192 and 46) respectively; P < 0.001), as well as mean (± s.e.m.) glucose consumption (1.8 ± 0.5 vs 27.9 ± 5.9 nmol per COC respectively) and pyruvate (0.09 ± 0.01 vs 2.4 ± 0.8 nmol per COC respectively) and lactate (4.7 ± 1.3 vs 64.1 ± 20.6 nmol per COC respectively; P < 0.05 for all) production. Glucose consumption in EC and CC did not differ significantly. Expression of hyaluronan-binding protein (tumour necrosis factor alpha induced protein 6; TNFAIP6) was increased in eCOCs and EC, and solute carrier family 2 member 1 (SLC2A1) expression was increased in eCOCs, but there were no differences in the expression of glycolysis-related enzymes and solute carrier family 2 member 3 (SLC2A3) between the COC or mural granulosa cell types. The findings of the present study demonstrate that metabolic and genomic differences exist between eCOCs and cCOCs and mural granulosa cells in the horse.

Additional keywords: glycolysis, horse, in vitro maturation, nuclear magnetic resonance.


References

Baumann, C. G., Morris, D. G., Sreenan, J. M., and Leese, H. J. (2007). The quiet embryo hypothesis: Molecular characteristics favoring viability. Mol. Reprod. Dev. 74, 1345–1353.
The quiet embryo hypothesis: Molecular characteristics favoring viability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmtr7O&md5=d37657a32a213fed86e7ee1fa9151e06CAS |

Bermejo-Álvarez, P., Rizos, D., Rath, D., Lonergan, P., and Gutierrez-Adan, A. (2008). Epigenetic differences between male and female bovine blastocysts produced in vitro. Physiol. Genomics 32, 264–272.
Epigenetic differences between male and female bovine blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar |

Billig, H., Hedin, L., and Magnusson, C. (1983). Gonadotrophins stimulate lactate production by rat cumulus and granulosa cells. Acta Endocrinol. (Copenh.) 103, 562–566.
| 1:CAS:528:DyaL3sXkvF2ks7c%3D&md5=e8868b62309c1f1b6b3233a812d5686aCAS |

Campos-Chillon, F., Farmerie, T. A., Bouma, G. J., Clay, C. M., and Carnevale, E. M. (2015). Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells. Reprod. Fertil. Dev. 27, 925–933.
Effects of aging on gene expression and mitochondrial DNA in the equine oocyte and follicle cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOlsbnI&md5=2d848f98603e5b1b7a398cb4374df2d0CAS |

Donahue, R. P., and Stern, S. (1968). Follicular cell support of oocyte maturation: production of pyruvate in vitro. J. Reprod. Fertil. 17, 395–398.
Follicular cell support of oocyte maturation: production of pyruvate in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M%2FlsFagtQ%3D%3D&md5=8824ea4ae0f0b6826fe5f4319666b48aCAS |

Downs, S. M. (2015). Nutrient pathways regulating the nuclear maturation of mammalian oocytes. Reprod. Fertil. Dev. 27, 572–582.
Nutrient pathways regulating the nuclear maturation of mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntVWnur8%3D&md5=321f416bea1b8bfa2ac97281d41f6c66CAS |

Downs, S. M., and Hudson, E. D. (2000). Energy substrates and the completion of spontaneous meiotic maturation. Zygote 8, 339–351.
Energy substrates and the completion of spontaneous meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovF2hsbs%3D&md5=20100cbe7e274c1c9e1f2cc1318aa472CAS |

Downs, S. M., and Mastropolo, A. M. (1994). The participation of energy substrates in the control of meiotic maturation in murine oocytes. Dev. Biol. 162, 154–168.
The participation of energy substrates in the control of meiotic maturation in murine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvVyitLs%3D&md5=db59e6664410352c975b6e9dbb80f877CAS |

Downs, S. M., Humpherson, P. G., Martin, K. L., and Leese, H. J. (1996). Glucose utilization during gonadotropin-induced meiotic maturation in cumulus cell-enclosed mouse oocytes. Mol. Reprod. Dev. 44, 121–131.
Glucose utilization during gonadotropin-induced meiotic maturation in cumulus cell-enclosed mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivV2mt7g%3D&md5=f6d34b7b5a7c332b09d15124ad3ddd1fCAS |

Downs, S. M., Humpherson, P. G., and Leese, H. J. (2002). Pyruvate utilization by mouse oocytes is influenced by meiotic status and the cumulus oophorus. Mol. Reprod. Dev. 62, 113–123.
Pyruvate utilization by mouse oocytes is influenced by meiotic status and the cumulus oophorus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVChu7s%3D&md5=88695a0a59c0bb315144c866fdb15bd3CAS |

Fladeby, C., Skar, R., and Serck-Hanssen, G. (2003). Distinct regulation of glucose transport and GLUT1/GLUT3 transporters by glucose deprivation and IGF-I in chromaffin cells. Biochim. Biophys. Acta 1593, 201–208.
Distinct regulation of glucose transport and GLUT1/GLUT3 transporters by glucose deprivation and IGF-I in chromaffin cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVGiu7s%3D&md5=172172927c4c33f4a83bc52b05f23051CAS |

Gandolfi, F., and Brevini, T. A. L. (2010). RFD Award Lecture 2009. In vitro maturation of farm animal oocytes: a useful tool for investigating the mechanisms leading to full-term development. Reprod. Fertil. Dev. 22, 495–507.
RFD Award Lecture 2009. In vitro maturation of farm animal oocytes: a useful tool for investigating the mechanisms leading to full-term development.Crossref | GoogleScholarGoogle Scholar |

Gérard, N., Loiseau, S., Duchamp, G., and Seguin, F. (2002). Analysis of the variations of follicular fluid composition during follicular growth and maturation in the mare using proton nuclear magnetic resonance (1H NMR). Reproduction 124, 241–248.
Analysis of the variations of follicular fluid composition during follicular growth and maturation in the mare using proton nuclear magnetic resonance (1H NMR).Crossref | GoogleScholarGoogle Scholar |

Gérard, N., Fahiminiya, S., Grupen, C. G., and Nadal-Desbarats, L. (2014). Reproductive physiology and ovarian folliculogenesis examined via 1H-NMR metabolomics signatures: a comparative study of large and small follicles in three mammalian species (Bos taurus, Sus scrofa domesticus and Equus ferus caballus). OMICS 19, 31–40.
Reproductive physiology and ovarian folliculogenesis examined via 1H-NMR metabolomics signatures: a comparative study of large and small follicles in three mammalian species (Bos taurus, Sus scrofa domesticus and Equus ferus caballus).Crossref | GoogleScholarGoogle Scholar |

Geshi, M., Takenouchi, N., Yamauchi, N., and Nagai, T. (2000). Effects of sodium pyruvate in nonserum maturation medium on maturation, fertilization, and subsequent development of bovine oocytes with or without cumulus cells. Biol. Reprod. 63, 1730–1734.
Effects of sodium pyruvate in nonserum maturation medium on maturation, fertilization, and subsequent development of bovine oocytes with or without cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKht70%3D&md5=513cf59e8ec4db88e650b82f7e5635faCAS |

González-Fernández, L., Macedo, S., Lopes, J. S., Rocha, A., and Macías-García, B. (2015). Effect of different media and protein source on equine gametes: potential impact during in vitro fertilization. Reprod. Domest. Anim. 50, 1039–1046.
Effect of different media and protein source on equine gametes: potential impact during in vitro fertilization.Crossref | GoogleScholarGoogle Scholar |

Han, Z. B., Lan, G. C., Wu, Y. G., Han, D., Feng, W. G., Wang, J. Z., and Tan, J. H. (2006). Interactive effects of granulosa cell apoptosis, follicle size, cumulus–oocyte complex morphology, and cumulus expansion on the developmental competence of goat oocytes: a study using the well-in-drop culture system. Reproduction 132, 749–758.
Interactive effects of granulosa cell apoptosis, follicle size, cumulus–oocyte complex morphology, and cumulus expansion on the developmental competence of goat oocytes: a study using the well-in-drop culture system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWktbrE&md5=e932b404870e77ea4322b5ad53c336b8CAS |

Herrick, J. R., Brad, A. M., and Krisher, R. L. (2006). Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reproduction 131, 289–298.
Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFalsLs%3D&md5=8b4c6722af37fcd377f0866edbac01e0CAS |

Hinrichs, K. (2010a). The equine oocyte: factors affecting meiotic and developmental competence. Mol. Reprod. Dev. 77, 651–661.
The equine oocyte: factors affecting meiotic and developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFGnsb8%3D&md5=3deb506ff4ff9e0021f025296d49d820CAS |

Hinrichs, K. (2010b). In vitro production of equine embryos: state of the art. Reprod. Domest. Anim. 45, 3–8.
In vitro production of equine embryos: state of the art.Crossref | GoogleScholarGoogle Scholar |

Hinrichs, K., and Schmidt, A. L. (2000). Meiotic competence in horse oocytes: interactions among chromatin configuration, follicle size, cumulus morphology, and season. Biol. Reprod. 62, 1402–1408.
Meiotic competence in horse oocytes: interactions among chromatin configuration, follicle size, cumulus morphology, and season.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htbc%3D&md5=664f4152520d90c4b59b97629b66faa9CAS |

Hourvitz, A., Yerushalmi, G. M., Maman, E., Raanani, H., Elizur, S., Brengauz, M., Orvieto, R., Dor, J., and Meirow, D. (2015). Combination of ovarian tissue harvesting and immature oocyte collection for fertility preservation increases preservation yield. Reprod. Biomed. Online 31, 497–505.
Combination of ovarian tissue harvesting and immature oocyte collection for fertility preservation increases preservation yield.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtF2ks7%2FO&md5=fca27f9aa1b6024b62400a94fe551578CAS |

Janicot, M., and Lane, M. D. (1989). Activation of glucose uptake by insulin and insulin-like growth factor I in Xenopus oocytes. Proc. Natl Acad. Sci. USA 86, 2642–2646.
Activation of glucose uptake by insulin and insulin-like growth factor I in Xenopus oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitVKhsLs%3D&md5=28bc1c5dc87202a157a9e796f8b8d73fCAS |

Johnson, M. T., Freeman, E. A., Gardner, D. K., and Hunt, P. A. (2007). Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo. Biol. Reprod. 77, 2–8.
Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntV2gsbw%3D&md5=1ec882fbd17f01f47f29057360d8c423CAS |

Keefe, D., Kumar, M., and Kalmbach, K. (2015). Oocyte competency is the key to embryo potential. Fertil. Steril. 103, 317–322.
Oocyte competency is the key to embryo potential.Crossref | GoogleScholarGoogle Scholar |

Kidder, G. M., and Vanderhyden, B. C. (2010). Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol. 88, 399–413.
Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslCqsbY%3D&md5=8a3a63a15835d4dee9fd671a7ca2f01bCAS |

Kumar, P., Rajput, S., Verma, A., De, S., and Datta, T. K. (2013). Expression pattern of glucose metabolism genes in relation to development rate of buffalo (Bubalus bubalis) oocytes and in vitro-produced embryos. Theriogenology 80, 914–922.
Expression pattern of glucose metabolism genes in relation to development rate of buffalo (Bubalus bubalis) oocytes and in vitro-produced embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCltLvK&md5=2554f401ee2e53bc00af60819592186eCAS |

Leese, H. J. (2002). Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays 24, 845–849.
Quiet please, do not disturb: a hypothesis of embryo metabolism and viability.Crossref | GoogleScholarGoogle Scholar |

Len, J., McDowall, M., Anastasie, M., and Kleeman, D. (2016). Glucose uptake and lactate production of equine cumulus–oocyte complexes during in vitro maturation. J. Equine Vet. Sci. 41, 59.

Lewis, N., Hinrichs, K., Brison, D., Sturmey, R., Grove-White, D., Schnauffer, K., and McGregor-Argo, C. (2016). 184 Preliminary findings on carbohydrate metabolism of intact equine cumulus-oocyte complexes during in vitro maturation. Reprod. Fertil. Dev. 28, 223.
184 Preliminary findings on carbohydrate metabolism of intact equine cumulus-oocyte complexes during in vitro maturation.Crossref | GoogleScholarGoogle Scholar |

Lin, Z. L., Li, Y. H., Xu, Y. N., Wang, Q. L., Namgoong, S., Cui, X. S., and Kim, N. H. (2014). Effects of growth differentiation factor 9 and bone morphogenetic protein 15 on the in vitro maturation of porcine oocytes. Reprod. Domest. Anim. 49, 219–227.
Effects of growth differentiation factor 9 and bone morphogenetic protein 15 on the in vitro maturation of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlKksb0%3D&md5=a46ce9f12b846421f00a3dfe13549498CAS |

Martino, N. A., Dell’Aquila, M. E., Filioli Uranio, M., Rutigliano, L., Nicassio, M., Lacalandra, G. M., and Hinrichs, K. (2014). Effect of holding equine oocytes in meiosis inhibitor-free medium before in vitro maturation and of holding temperature on meiotic suppression and mitochondrial energy/redox potential. Reprod. Biol. Endocrinol. 12, 99.
Effect of holding equine oocytes in meiosis inhibitor-free medium before in vitro maturation and of holding temperature on meiotic suppression and mitochondrial energy/redox potential.Crossref | GoogleScholarGoogle Scholar |

Martins, A. D., Moreira, A. C., Sa, R., Monteiro, M. P., Sousa, M., Carvalho, R. A., Silva, B. M., Oliveira, P. F., and Alves, M. G. (2015). Leptin modulates human Sertoli cells acetate production and glycolytic profile: a novel mechanism of obesity-induced male infertility? Biochim. Biophys. Acta 1852, 1824–1832.
Leptin modulates human Sertoli cells acetate production and glycolytic profile: a novel mechanism of obesity-induced male infertility?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVWru7fP&md5=ee9782665900867051329fd0c4b627beCAS |

Mohammadi-Sangcheshmeh, A., Held, E., Rings, F., Ghanem, N., Salilew-Wondim, D., Tesfaye, D., Sieme, H., Schellander, K., and Hoelker, M. (2014). Developmental competence of equine oocytes: impacts of zona pellucida birefringence and maternally derived transcript expression. Reprod. Fertil. Dev. 26, 441–452.
Developmental competence of equine oocytes: impacts of zona pellucida birefringence and maternally derived transcript expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlelt70%3D&md5=1bd0eb20f4935a57524514aa9ca76329CAS |

Nel-Themaat, L., and Nagy, Z. P. (2011). A review of the promises and pitfalls of oocyte and embryo metabolomics. Placenta 32, S257–S263.
A review of the promises and pitfalls of oocyte and embryo metabolomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSqsrrO&md5=e64ed018c90a9989f18274969c6e0c43CAS |

Nishimoto, H., Matsutani, R., Yamamoto, S., Takahashi, T., Hayashi, K.-G., Miyamoto, A., Hamano, S., and Tetsuka, M. (2006). Gene expression of glucose transporter (GLUT) 1, 3 and 4 in bovine follicle and corpus luteum. J. Endocrinol. 188, 111–119.
Gene expression of glucose transporter (GLUT) 1, 3 and 4 in bovine follicle and corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCisL8%3D&md5=c067a3b1c896441a1c500a8f262bb116CAS |

Pincus, G., and Enzmann, E. V. (1935). The comparative behavior of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs. J. Exp. Med. 62, 665–675.
The comparative behavior of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3crjs1agtA%3D%3D&md5=08ff0b428aa8ffb6c73c047728f67284CAS |

Romar, R., De Santis, T., Papillier, P., Perreau, C., Thelie, A., Dell’Aquila, M. E., Mermillod, P., and Dalbies-Tran, R. (2011). Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age. Reprod. Domest. Anim. 46, e23–e30.
Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itlOhuw%3D%3D&md5=5061efe6df283f78a560d2b455ba7a11CAS |

Sayasith, K., Dore, M., and Sirois, J. (2007). Molecular characterization of tumor necrosis alpha-induced protein 6 and its human chorionic gonadotropin-dependent induction in theca and mural granulosa cells of equine preovulatory follicles. Reproduction 133, 135–145.
Molecular characterization of tumor necrosis alpha-induced protein 6 and its human chorionic gonadotropin-dependent induction in theca and mural granulosa cells of equine preovulatory follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1aju7g%3D&md5=97cab268feea19c4ccf30696cca34ce4CAS |

Sayasith, K., Lussier, J., Doré, M., and Sirois, J. (2013). Human chorionic gonadotropin-dependent up-regulation of epiregulin and amphiregulin in equine and bovine follicles during the ovulatory process. Gen. Comp. Endocrinol. 180, 39–47.
Human chorionic gonadotropin-dependent up-regulation of epiregulin and amphiregulin in equine and bovine follicles during the ovulatory process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2rsbjM&md5=1a2c879535f0c184ffd87cfa9a1375f9CAS |

Scarlet, D., Ille, N., Ertl, R., Alves, B. G., Gastal, G. D. A., Paiva, S. O., Gastal, M. O., Gastal, E. L., and Aurich, C. (2017). Glucocorticoid metabolism in equine follicles and oocytes. Domest. Anim. Endocrinol. 59, 11–22.
Glucocorticoid metabolism in equine follicles and oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVarsr7P&md5=ab64fd1ecfd54d0b529978a70d2ad9e1CAS |

Schmittgen, T. D., and Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108.
Analyzing real-time PCR data by the comparative C(T) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVemt7c%3D&md5=c158bd79247a48891822495d3f4249a2CAS |

Sessions-Bresnahan, D. R., and Carnevale, E. M. (2015). Age-associated changes in granulosa cell transcript abundance in equine preovulatory follicles. Reprod. Fertil. Dev. 27, 906–913.
Age-associated changes in granulosa cell transcript abundance in equine preovulatory follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOlsbnJ&md5=0acec4c5653af25b6b408834e1726c14CAS |

Sessions-Bresnahan, D. R., Schauer, K. L., Heuberger, A. L., and Carnevale, E. M. (2016). Effect of obesity on the preovulatory follicle and lipid fingerprint of equine oocytes. Biol. Reprod. 94, 15.
Effect of obesity on the preovulatory follicle and lipid fingerprint of equine oocytes.Crossref | GoogleScholarGoogle Scholar |

Singh, R., and Sinclair, K. D. (2007). Metabolomics: approaches to assessing oocyte and embryo quality. Theriogenology 68, S56–S62.
Metabolomics: approaches to assessing oocyte and embryo quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaiuro%3D&md5=0f1f9272b1bfe78f2d3b7a0db86e0650CAS |

Songsasen, N., Spindler, R. E., and Wildt, D. E. (2007). Requirement for, and patterns of, pyruvate and glutamine metabolism in the domestic dog oocyte in vitro. Mol. Reprod. Dev. 74, 870–877.
Requirement for, and patterns of, pyruvate and glutamine metabolism in the domestic dog oocyte in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlKlsbY%3D&md5=809bee5961740ed8701325e69b9a7e9fCAS |

Sugiura, K., Pendola, F. L., and Eppig, J. J. (2005). Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev. Biol. 279, 20–30.
Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlemtb4%3D&md5=278f468004c19e4f5270b95fbe877a44CAS |

Sutton, M. L., Gilchrist, R. B., and Thompson, J. G. (2003). Effects of in-vivo and in-vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update 9, 35–48.
Effects of in-vivo and in-vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVelt7Y%3D&md5=473ece3b9c541a7afa871571d18ed002CAS |

Sutton-McDowall, M. L., Gilchrist, R. B., and Thompson, J. G. (2010). The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 139, 685–695.
The pivotal role of glucose metabolism in determining oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFajtr0%3D&md5=01128e9462420c39f1187a653b345471CAS |

Xie, H.-L., Wang, Y.-B., Jiao, G.-Z., Kong, D.-L., Li, Q., Li, H., Zheng, L.-L., and Tan, J.-H. (2016). Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes. Sci. Rep. 6, 20764.
Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisVant7w%3D&md5=d2e4400cf6c95a6ae3a8f642df31850cCAS |

Yuan, Y., Ida, J. M., Paczkowski, M., and Krisher, R. L. (2011). Identification of developmental competence-related genes in mature porcine oocytes. Mol. Reprod. Dev. 78, 565–575.
Identification of developmental competence-related genes in mature porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtValtbnE&md5=5c9e57352eac108b6278a4220225704dCAS |

Zheng, P., Vassena, R., and Latham, K. E. (2007). Effects of in vitro oocyte maturation and embryo culture on the expression of glucose transporters, glucose metabolism and insulin signaling genes in rhesus monkey oocytes and preimplantation embryos. Mol. Hum. Reprod. 13, 361–371.
Effects of in vitro oocyte maturation and embryo culture on the expression of glucose transporters, glucose metabolism and insulin signaling genes in rhesus monkey oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFCqu7s%3D&md5=80451d771772661570ead8837c953a4fCAS |