Culture conditions affect Ca2+ release in artificially activated mouse and human oocytes
Yuechao Lu A , Davina Bonte A , Minerva Ferrer-Buitrago A , Mina Popovic A , Jitesh Neupane A , Margot Van der Jeught A , Luc Leybaert B , Petra De Sutter A and Björn Heindryckx A CA Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
B Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
C Corresponding author. Email: bjorn.heindryckx@ugent.be
Reproduction, Fertility and Development 30(7) 991-1001 https://doi.org/10.1071/RD17145
Submitted: 12 April 2017 Accepted: 17 November 2017 Published: 12 January 2018
Abstract
Inconsistent fertilisation and pregnancy rates have been reported by different laboratories after application of ionomycin as a clinical method of assisted oocyte activation (AOA) to overcome fertilisation failure. Using both mouse and human oocytes, in the present study we investigated the effects of ionomycin and Ca2+ concentrations on the pattern of Ca2+ release and embryonic developmental potential. In the mouse, application of 5 μM ionomycin in potassium simplex optimisation medium (KSOM) or 10 µM ionomycin in Ca2+-free KSOM significantly reduced the Ca2+ flux and resulted in failure of blastocyst formation compared with 10 μM ionomycin in KSOM. Increasing the Ca2+ concentration up to three- or sixfold did not benefit mouse embryonic developmental potential. Similarly, 10 μM ionomycin-induced rise in Ca2+ in human oocytes increased with increasing total calcium concentrations in the commercial medium. Remarkably, we observed significantly reduced mouse embryo development when performing AOA over a period of 10 min in Quinn’s AdvantageTM Fertilisation medium (Cooper Surgical) and IVFTM medium (Vitrolife) compared with Sydney IVF COOK cleavage medium (Cook Ireland), using the same sequential culture system from the post-activation stage to blastocyst formation stage in different AOA groups. In conclusion, concentrations of both ionomycin and Ca2+ in culture media used during AOA can have significant effects on Ca2+ release and further embryonic developmental potential.
Additional keywords: assisted oocyte activation, fertilisation failure, ionomycin.
References
Ajduk, A., Ilozue, T., Windsor, S., Yu, Y., Seres, K. B., Bomphrey, R. J., Tom, B. D., Swann, K., Thomas, A., Graham, C., and Zernicka-Goetz, M. (2011). Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability. Nat. Commun. 2, 417.| Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability.Crossref | GoogleScholarGoogle Scholar |
Araki, Y., Yoshizawa, M., Abe, H., and Murase, Y. (2004). Use of mouse oocytes to evaluate the ability of human sperm to activate oocytes after failure of activation by intracytoplasmic sperm injection. Zygote 12, 111–116.
| Use of mouse oocytes to evaluate the ability of human sperm to activate oocytes after failure of activation by intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar |
Berridge, M. J., Lipp, P., and Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21.
| The versatility and universality of calcium signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVGjtLs%3D&md5=e9688058ec6fd81a90e71a066927cd94CAS |
Bootman, M. D., Collins, T. J., Peppiatt, C. M., Prothero, L. S., MacKenzie, L., De Smet, P., Travers, M., Tovey, S. C., Seo, J. T., Berridge, M. J., Ciccolini, F., and Lipp, P. (2001). Calcium signalling – an overview. Semin. Cell Dev. Biol. 12, 3–10.
| Calcium signalling – an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFWmtA%3D%3D&md5=b85bc192176eacbf2a519b1f111d7aa3CAS |
Borges, E., de Almeida Ferreira Braga, D. P., de Sousa Bonetti, T. C., Iaconelli, A., and Franco, J. G. (2009a). Artificial oocyte activation using calcium ionophore in ICSI cycles with spermatozoa from different sources. Reprod. Biomed. Online 18, 45–52.
| Artificial oocyte activation using calcium ionophore in ICSI cycles with spermatozoa from different sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFeqtro%3D&md5=0a915f289231e698a147061469c6ffc0CAS |
Borges, E., de Almeida Ferreira Braga, D. P., de Sousa Bonetti, T. C., Iaconelli, A., and Franco, J. G. (2009b). Artificial oocyte activation with calcium ionophore A23187 in intracytoplasmic sperm injection cycles using surgically retrieved spermatozoa. Fertil. Steril. 92, 131–136.
| Artificial oocyte activation with calcium ionophore A23187 in intracytoplasmic sperm injection cycles using surgically retrieved spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWisL7J&md5=c1d9ce761f3ca2ccf05047c4a2e27bceCAS |
Ebner, T., Koster, M., Shebl, O., Moser, M., Van der Ven, H., Tews, G., and Montag, M. (2012). Application of a ready-to-use calcium ionophore increases rates of fertilization and pregnancy in severe male factor infertility. Fertil. Steril. 98, 1432–1437.
| Application of a ready-to-use calcium ionophore increases rates of fertilization and pregnancy in severe male factor infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GksL%2FP&md5=61924cc533a712902ecd80f8da951bf5CAS |
Egashira, A., Murakami, M., Haigo, K., Horiuchi, T., and Kuramoto, T. (2009). A successful pregnancy and live birth after intracytoplasmic sperm injection with globozoospermic sperm and electrical oocyte activation. Fertil. Steril. 92, 2037.e5–2037.e9.
| A successful pregnancy and live birth after intracytoplasmic sperm injection with globozoospermic sperm and electrical oocyte activation.Crossref | GoogleScholarGoogle Scholar |
Esfandiari, N., Javed, M. H., Gotlieb, L., and Casper, R. F. (2005). Complete failed fertilization after intracytoplasmic sperm injection – analysis of 10 years’ data. Int. J. Fertil. Womens Med. 50, 187–192.
Fernandes, C. B., Devito, L. G., Martins, L. R., Blanco, I. D., de Lima Neto, J. F., Tsuribe, P. M., Goncalves, C. G., and da Cruz Landim-Alvarenga, F. (2014). Artificial activation of bovine and equine oocytes with cycloheximide, roscovitine, strontium, or 6-dimethylaminopurine in low or high calcium concentrations. Zygote 22, 387–394.
| Artificial activation of bovine and equine oocytes with cycloheximide, roscovitine, strontium, or 6-dimethylaminopurine in low or high calcium concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKhsLbF&md5=e75adefa49a461af801762691403f25bCAS |
Flaherty, S. P., Payne, D., and Matthews, C. D. (1998). Fertilization failures and abnormal fertilization after intracytoplasmic sperm injection. Hum. Reprod. 13, 155–164.
| Fertilization failures and abnormal fertilization after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar |
Fujimoto, G., Tsuchiya, H., Kobayashi, K., Saga, M., Rothman, C. M., and Ogawa, S. (1994). Calcium concentration and fertilization by subzonal insemination of a single spermatozoon in mouse oocytes. Mol. Reprod. Dev. 38, 54–60.
| Calcium concentration and fertilization by subzonal insemination of a single spermatozoon in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksl2gtL0%3D&md5=771dcdaf7e0b0d98275ee8d3afef77c7CAS |
Graeff, R. M., Podein, R. J., Aarhus, R., and Lee, H. C. (1995). Magnesium ions but not ATP inhibit cyclic ADP-ribose-induced calcium release. Biochem. Biophys. Res. Commun. 206, 786–791.
| Magnesium ions but not ATP inhibit cyclic ADP-ribose-induced calcium release.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtFejt7g%3D&md5=07b0f3a46e11d8af065bea82e5c1138aCAS |
Gualtieri, R., Mollo, V., Barbato, V., Fiorentino, I., Iaccarino, M., and Talevi, R. (2011). Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum. Reprod. 26, 2452–2460.
| Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVynsrzE&md5=7821be53876076f4e9cfc4df14c25936CAS |
Heindryckx, B., Van der Elst, J., De Sutter, P., and Dhont, M. (2005). Treatment option for sperm- or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI. Hum. Reprod. 20, 2237–2241.
| Treatment option for sperm- or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mzms1CrtQ%3D%3D&md5=0a28a1d9ed8c24176a8797691b91ba97CAS |
Heindryckx, B., De Gheselle, S., Gerris, J., Dhont, M., and De Sutter, P. (2008). Efficiency of assisted oocyte activation as a solution for failed intracytoplasmic sperm injection. Reprod. Biomed. Online 17, 662–668.
| Efficiency of assisted oocyte activation as a solution for failed intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar |
Herrick, J. R., Strauss, K. J., Schneiderman, A., Rawlins, M., Stevens, J., Schoolcraft, W. B., and Krisher, R. L. (2015). The beneficial effects of reduced magnesium during the oocyte-to-embryo transition are conserved in mice, domestic cats and humans. Reprod. Fertil. Dev. 27, 323–331.
| The beneficial effects of reduced magnesium during the oocyte-to-embryo transition are conserved in mice, domestic cats and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslegt7w%3D&md5=3553e80b3b9e7dced7e1d6d3c4ff507eCAS |
Kauffman, R. F., Taylor, R. W., and Pfeiffer, D. R. (1980). Cation transport and specificity of ionomycin. Comparison with ionophore A23187 in rat liver mitochondria. J. Biol. Chem. 255, 2735–2739.
| 1:CAS:528:DyaL3cXhvFWrt7Y%3D&md5=961d9abd38baddd8e90dfa47ba77f0f3CAS |
Kim, J. W., Yang, S. H., Yoon, S. H., Kim, S. D., Jung, J. H., and Lim, J. H. (2015). Successful pregnancy and delivery after ICSI with artificial oocyte activation by calcium ionophore in in-vitro matured oocytes: a case report. Reprod. Biomed. Online 30, 373–377.
| Successful pregnancy and delivery after ICSI with artificial oocyte activation by calcium ionophore in in-vitro matured oocytes: a case report.Crossref | GoogleScholarGoogle Scholar |
Kyono, K., Nakajo, Y., Nishinaka, C., Hattori, H., Kyoya, T., Ishikawa, T., Abe, H., and Araki, Y. (2009). A birth from the transfer of a single vitrified–warmed blastocyst using intracytoplasmic sperm injection with calcium ionophore oocyte activation in a globozoospermic patient. Fertil. Steril. 91, 931.e7–931.e11.
| A birth from the transfer of a single vitrified–warmed blastocyst using intracytoplasmic sperm injection with calcium ionophore oocyte activation in a globozoospermic patient.Crossref | GoogleScholarGoogle Scholar |
Lawitts, J. A., and Biggers, J. D. (1992). Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol. Reprod. Dev. 31, 189–194.
| Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitFWru78%3D&md5=ff2cef7159ed842d66a32682315a2a21CAS |
Lee, S. R., Kim, J. W., Kim, B. S., Kim, M. O., Kim, S. H., Yoo, D. H., Shin, M. J., Lee, S., Park, Y. S., Park, Y. B., Ha, J. H., and Ryoo, Z. Y. (2007). The parthenogenetic activation of canine oocytes with Ca-EDTA by various culture periods and concentrations. Theriogenology 67, 698–703.
| The parthenogenetic activation of canine oocytes with Ca-EDTA by various culture periods and concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCksL0%3D&md5=4997dacad0ce404b8b165561418650e1CAS |
Malik, H. N., Singhal, D. K., Saugandhika, S., Dubey, A., Mukherjee, A., Singhal, R., Kumar, S., Kaushik, J. K., Mohanty, A. K., Das, B. C., Bag, S., Bhanja, S. K., and Malakar, D. (2015). Generation of parthenogenetic goat blastocysts: effects of different activation methods and culture media. Zygote 23, 327–335.
| Generation of parthenogenetic goat blastocysts: effects of different activation methods and culture media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntlCnuro%3D&md5=de68d26af4273fb8cd4141c07eb940f9CAS |
Mason, M. J., and Grinstein, S. (1993). Ionomycin activates electrogenic Ca2+ influx in rat thymic lymphocytes. Biochem. J. 296, 33–39.
| Ionomycin activates electrogenic Ca2+ influx in rat thymic lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslyj&md5=e97ff308b6e90dc218fc4d706676646aCAS |
Miyoshi, K., Fujimoto, Y., Mori, H., and Yoshida, M. (2008). Activation and parthenogenetic development of pig oocytes exposed to ultrasound in media containing different concentrations of Ca2+. J. Reprod. Dev. 54, 42–45.
| Activation and parthenogenetic development of pig oocytes exposed to ultrasound in media containing different concentrations of Ca2+.Crossref | GoogleScholarGoogle Scholar |
Moaz, M. N., Khattab, S., Foutouh, I. A., and Mohsen, E. A. (2006). Chemical activation of oocytes in different types of sperm abnormalities in cases of low or failed fertilization after ICSI: a prospective pilot study. Reprod. Biomed. Online 13, 791–794.
| Chemical activation of oocytes in different types of sperm abnormalities in cases of low or failed fertilization after ICSI: a prospective pilot study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGksA%3D%3D&md5=2570dc71e445c87328f312261bbcc338CAS |
Montag, M., Koster, M., van der Ven, K., Bohlen, U., and van der Ven, H. (2012). The benefit of artificial oocyte activation is dependent on the fertilization rate in a previous treatment cycle. Reprod. Biomed. Online 24, 521–526.
| The benefit of artificial oocyte activation is dependent on the fertilization rate in a previous treatment cycle.Crossref | GoogleScholarGoogle Scholar |
Morbeck, D. E., Krisher, R. L., Herrick, J. R., Baumann, N. A., Matern, D., and Moyer, T. (2014a). Composition of commercial media used for human embryo culture. Fertil. Steril. 102, 759–766.e9.
| Composition of commercial media used for human embryo culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWitr3N&md5=55cd4256579256abc7cc990905fc38acCAS |
Morbeck, D. E., Paczkowski, M., Fredrickson, J. R., Krisher, R. L., Hoff, H. S., Baumann, N. A., Moyer, T., and Matern, D. (2014b). Composition of protein supplements used for human embryo culture. J. Assist. Reprod. Genet. 31, 1703–1711.
| Composition of protein supplements used for human embryo culture.Crossref | GoogleScholarGoogle Scholar |
Morbeck, D. E., Baumann, N. A., and Oglesbee, D. (2017). Composition of single-step media used for human embryo culture. Fertil. Steril. 107, 1055–1060.e1.
| Composition of single-step media used for human embryo culture.Crossref | GoogleScholarGoogle Scholar |
Morgan, A. J., and Jacob, R. (1994). Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane. Biochem. J. 300, 665–672.
| Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVCqtbw%3D&md5=bd4b3957b353177239657e5ee685ced0CAS |
Nasr-Esfahani, M. H., Deemeh, M. R., and Tavalaee, M. (2010). Artificial oocyte activation and intracytoplasmic sperm injection. Fertil. Steril. 94, 520–526.
| Artificial oocyte activation and intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar |
Neri, Q. V., Lee, B., Rosenwaks, Z., Machaca, K., and Palermo, G. D. (2014). Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium 55, 24–37.
| Understanding fertilization through intracytoplasmic sperm injection (ICSI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKitLzE&md5=2ef383483fb6a7300ac9e9c16d9834f5CAS |
Nikiforaki, D., Vanden Meerschaut, F., de Roo, C., Lu, Y., Ferrer-Buitrago, M., de Sutter, P., and Heindryckx, B. (2016). Effect of two assisted oocyte activation protocols used to overcome fertilization failure on the activation potential and calcium releasing pattern. Fertil. Steril. 105, 798–806.e2.
| Effect of two assisted oocyte activation protocols used to overcome fertilization failure on the activation potential and calcium releasing pattern.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVGhtLvF&md5=86c309797c9950d4792f294fd36180b4CAS |
Palermo, G. D., Neri, Q. V., Takeuchi, T., and Rosenwaks, Z. (2009). ICSI: where we have been and where we are going. Semin. Reprod. Med. 27, 191–201.
| ICSI: where we have been and where we are going.Crossref | GoogleScholarGoogle Scholar |
Ramadan, W. M., Kashir, J., Jones, C., and Coward, K. (2012). Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology. Cell Commun. Signal. 10, 12.
| Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyju7bI&md5=f8cb47980c15c13b1ed352efce832ab5CAS |
Rawe, V. Y., Olmedo, S. B., Nodar, F. N., Doncel, G. D., Acosta, A. A., and Vitullo, A. D. (2000). Cytoskeletal organization defects and abortive activation in human oocytes after IVF and ICSI failure. Mol. Hum. Reprod. 6, 510–516.
| Cytoskeletal organization defects and abortive activation in human oocytes after IVF and ICSI failure.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3os1Kltw%3D%3D&md5=fd192e670fc24699437572d0187b64b2CAS |
Rybouchkin, A., Dozortsev, D., Pelinck, M. J., De Sutter, P., and Dhont, M. (1996). Analysis of the oocyte activating capacity and chromosomal complement of round-headed human spermatozoa by their injection into mouse oocytes. Hum. Reprod. 11, 2170–2175.
| Analysis of the oocyte activating capacity and chromosomal complement of round-headed human spermatozoa by their injection into mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2FpvV2jug%3D%3D&md5=95ede97f89f7532606ca960094e5f702CAS |
Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K., and Lai, F. A. (2002). PLC zeta: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129, 3533–3544.
| 1:CAS:528:DC%2BD38XmsFOks7Y%3D&md5=3565876815ea8570e76a26faf436e74bCAS |
Silva, M. P., Soave, D. F., Ribeiro-Silva, A., and Poletti, M. E. (2012). Trace elements as tumor biomarkers and prognostic factors in breast cancer: a study through energy dispersive X-ray fluorescence. BMC Res. Notes 5, 194.
| Trace elements as tumor biomarkers and prognostic factors in breast cancer: a study through energy dispersive X-ray fluorescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2mtrfP&md5=d413f1f95ff56033a1dcc03d29f5807fCAS |
Swain, J. E., and Pool, T. B. (2008). ART failure: oocyte contributions to unsuccessful fertilization. Hum. Reprod. Update 14, 431–446.
| ART failure: oocyte contributions to unsuccessful fertilization.Crossref | GoogleScholarGoogle Scholar |
Swann, K., and Ozil, J. P. (1994). Dynamics of the calcium signal that triggers mammalian egg activation. Int. Rev. Cytol. 152, 183–222.
| Dynamics of the calcium signal that triggers mammalian egg activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsFWrsLg%3D&md5=d753982acf13233548f78e9704e890dcCAS |
Terada, Y., Hasegawa, H., Takahashi, A., Ugajin, T., Yaegashi, N., and Okamura, K. (2009). Successful pregnancy after oocyte activation by a calcium ionophore for a patient with recurrent intracytoplasmic sperm injection failure, with an assessment of oocyte activation and sperm centrosomal function using bovine eggs. Fertil. Steril. 91, 935.e11–935.e14.
| Successful pregnancy after oocyte activation by a calcium ionophore for a patient with recurrent intracytoplasmic sperm injection failure, with an assessment of oocyte activation and sperm centrosomal function using bovine eggs.Crossref | GoogleScholarGoogle Scholar |
Tesarik, J. (2002). Calcium signalling in human oocytes and embryos: two-store model revival. Hum. Reprod. 17, 2948–2949.
| Calcium signalling in human oocytes and embryos: two-store model revival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFOru74%3D&md5=fc351cb5b8939a8e2fb8c8e6deb0586fCAS |
Tesarik, J., Rienzi, L., Ubaldi, F., Mendoza, C., and Greco, E. (2002). Use of a modified intracytoplasmic sperm injection technique to overcome sperm-borne and oocyte-borne oocyte activation failures. Fertil. Steril. 78, 619–624.
| Use of a modified intracytoplasmic sperm injection technique to overcome sperm-borne and oocyte-borne oocyte activation failures.Crossref | GoogleScholarGoogle Scholar |
Tosti, E., and Ménézo, Y. (2016). Gamete activation: basic knowledge and clinical applications. Hum. Reprod. Update 22, 420–439.
| Gamete activation: basic knowledge and clinical applications.Crossref | GoogleScholarGoogle Scholar |
Tóth, S., Huneau, D., Banrezes, B., and Ozil, J. P. (2006). Egg activation is the result of calcium signal summation in the mouse. Reproduction 131, 27–34.
| Egg activation is the result of calcium signal summation in the mouse.Crossref | GoogleScholarGoogle Scholar |
Vanden Meerschaut, F., Nikiforaki, D., De Gheselle, S., Dullaerts, V., Van den Abbeel, E., Gerris, J., Heindryckx, B., and De Sutter, P. (2012). Assisted oocyte activation is not beneficial for all patients with a suspected oocyte-related activation deficiency. Hum. Reprod. 27, 1977–1984.
| Assisted oocyte activation is not beneficial for all patients with a suspected oocyte-related activation deficiency.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rktVChtw%3D%3D&md5=ecc644e435dbf2b99dbea4efe437d250CAS |
Vanden Meerschaut, F., Nikiforaki, D., Heindryckx, B., and De Sutter, P. (2014). Assisted oocyte activation following ICSI fertilization failure. Reprod. Biomed. Online 28, 560–571.
| Assisted oocyte activation following ICSI fertilization failure.Crossref | GoogleScholarGoogle Scholar |
Vasilev, F., Chun, J. T., Gragnaniello, G., Garante, E., and Santella, L. (2012). Effects of ionomycin on egg activation and early development in starfish. PLoS One 7, e39231.
| Effects of ionomycin on egg activation and early development in starfish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFaks7o%3D&md5=85011ca0da7a16d22334d577246e8af9CAS |
Wakai, T., Zhang, N., Vangheluwe, P., and Fissore, R. A. (2013). Regulation of endoplasmic reticulum Ca2+ oscillations in mammalian eggs. J. Cell Sci. 126, 5714–5724.
| Regulation of endoplasmic reticulum Ca2+ oscillations in mammalian eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyktrw%3D&md5=3f4de6323d88ea77d949bbcd8e7d9bdfCAS |
Yanagida, K. (2004). Complete fertilization failure in ICSI. Hum. Cell 17, 187–194.
| Complete fertilization failure in ICSI.Crossref | GoogleScholarGoogle Scholar |
Yoshida, S., and Plant, S. (1992). Mechanism of release of Ca2+ from intracellular stores in response to ionomycin in oocytes of the frog Xenopus laevis. J. Physiol. 458, 307–318.
| Mechanism of release of Ca2+ from intracellular stores in response to ionomycin in oocytes of the frog Xenopus laevis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtlSntbs%3D&md5=f3ece36acf58724aee19457e25fd9b8fCAS |