Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

miR-424/322 is downregulated in the semen of patients with severe DNA damage and may regulate sperm DNA damage

Kai Zhao A , Yaoping Chen A , Ruifeng Yang A , Yang Bai B , Cuiling Li A , Honggang Li A B C and Chengliang Xiong A B C
+ Author Affiliations
- Author Affiliations

A Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

B Wuhan Tongji Reproductive Medicine Hospital, Wuhan 430014, China.

C Corresponding authors. Emails: lhgyx@hotmail.com; clxiong951@sina.cn

Reproduction, Fertility and Development 28(10) 1598-1607 https://doi.org/10.1071/RD15052
Submitted: 3 October 2014  Accepted: 6 March 2015   Published: 15 April 2015

Abstract

Sperm DNA integrity is an essential factor for accurate transmission of genetic information. Human sperm DNA damage is a common cause of male infertility but the exact mechanism remains poorly understood. Considering the vital role of microRNA (miRNA) in multiple pathophysiological processes, we hypothesised that testicular miRNA is involved in sperm DNA damage during spermatogenesis. Infertile patients with high sperm DNA fragment index (DFI; n = 94) were selected from 1090 infertile men and a total of 18 testis-specific seminal miRNAs previously identified from human seminal plasma were chosen and tested. miR-29c and miR-424 were downregulated in men with high DFI. The inhibition of these two miRNAs in mice confirmed the role of miR-424 (murine homologue miR-322) in sperm DNA damage during spermatogenesis; by contrast, miR-29c exhibited a negative result. Thus, miR-424/322 is involved in sperm DNA damage. Furthermore, the dysregulation of this miRNA can induce DNA double-strand breaks during spermatogenesis.

Additional keywords: cell-free RNA, microRNA, spermatogenesis.


References

Abu-Halima, M., Hammadeh, M., Schmitt, J., Leidinger, P., Keller, A., Meese, E., and Backes, C. (2013). Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil. Steril. 99, 1249–1255e1216.
Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslygtw%3D%3D&md5=4452b2d3214d0347d44f06d0ee91a444CAS | 23312218PubMed |

Abu-Halima, M., Backes, C., Leidinger, P., Keller, A., Lubbad, A. M., Hammadeh, M., and Meese, E. (2014). MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil. Steril. 101, 78–86e72.
MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OqtLvI&md5=18343a4c641160889396984870f0ea93CAS | 24140040PubMed |

Aitken, R. J., and De Iuliis, G. N. (2010). On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 16, 3–13.
On the possible origins of DNA damage in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOhtrrN&md5=9623626761b9317b5c70c5bd3811a2beCAS | 19648152PubMed |

Aitken, R. J., and Koppers, A. J. (2011). Apoptosis and DNA damage in human spermatozoa. Asian J. Androl. 13, 36–42.
Apoptosis and DNA damage in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejtQ%3D%3D&md5=61ceb449a2b055633d6a6992a01e86feCAS | 20802502PubMed |

Bakos, H. W., Thompson, J. G., Feil, D., and Lane, M. (2008). Sperm DNA damage is associated with assisted reproductive technology pregnancy. Int. J. Androl. 31, 518–526.
Sperm DNA damage is associated with assisted reproductive technology pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1aqsbbN&md5=1104d2abe9d73f0f481bdf2d5ea2c850CAS | 17822420PubMed |

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116, 281–297.
MicroRNAs: genomics, biogenesis, mechanism and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVals7o%3D&md5=fc960c1a4641f6b0f2c243fdc61774b8CAS | 14744438PubMed |

Blanco-Rodríguez, J. (2009). gammaH2AX marks the main events of the spermatogenic process. Microsc. Res. Tech. 72, 823–832.
gammaH2AX marks the main events of the spermatogenic process.Crossref | GoogleScholarGoogle Scholar | 19405149PubMed |

Boe-Hansen, G. B., Fedder, J., Ersboll, A. K., and Christensen, P. (2006). The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic. Hum. Reprod. 21, 1576–1582.
The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic.Crossref | GoogleScholarGoogle Scholar | 16543258PubMed |

Bungum, M., Bungum, L., and Giwercman, A. (2011). Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J. Androl. 13, 69–75.
Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejtg%3D%3D&md5=588917b9a5778232438da82e3e57c65cCAS | 21057512PubMed |

Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006.
Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2hsbbE&md5=5dc055ebb74037dfe064d1e726debdf0CAS | 18766170PubMed |

Evenson, D. P., Larson, K. L., and Jost, L. K. (2002). Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J. Androl. 23, 25–43.
| 11780920PubMed |

Gharagozloo, P., and Aitken, R. (2011). The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum. Reprod. 26, 1628–1640.
The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy.Crossref | GoogleScholarGoogle Scholar | 21546386PubMed |

Ghosh, G., Subramanian, I. V., Adhikari, N., Zhang, X., Joshi, H. P., Basi, D., and Ramakrishnan, S. (2010). Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J. Clin. Invest. 120, 4141–4154.
Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWgtbnP&md5=5caae75e2922b19e8dca01860937dbb2CAS | 20972335PubMed |

Han, C., Wan, G., Langley, R. R., Zhang, X., and Lu, X. (2012). Crosstalk between the DNA damage response pathway and microRNAs. Cell. Mol. Life Sci. 69, 2895–2906.
Crosstalk between the DNA damage response pathway and microRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOhsrjN&md5=0df39529d93a6686ab27f2db8ce62d4cCAS | 22430204PubMed |

Hu, H., and Gatti, R. A. (2011). MicroRNAs: new players in the DNA damage response. J. Mol. Cell Biol. 3, 151–158.
MicroRNAs: new players in the DNA damage response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFeltrY%3D&md5=88b94a820e8f9779a69781e361476fc8CAS | 21183529PubMed |

Jyothi, P., Jagetia, G. C., and Krishnamurthy, H. (2001). Evaluation of teniposide (VM-26)-induced toxicity on mouse spermatogenesis by flow cytometry. Toxicology 163, 163–174.
Evaluation of teniposide (VM-26)-induced toxicity on mouse spermatogenesis by flow cytometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVymtbo%3D&md5=fcc971db5ac8914b9a8f38d85d86fda8CAS | 11516526PubMed |

Kim, T. S., Choi, H. S., Ryu, B. Y., Gang, G. T., Kim, S. U., Koo, D. B., Kim, J. M., Han, J. H., Park, C. K., Her, S., and Lee, D. S. (2010). Real-time in vivo bioluminescence imaging of lentiviral vector-mediated gene transfer in mouse testis. Theriogenology 73, 129–138.
Real-time in vivo bioluminescence imaging of lentiviral vector-mediated gene transfer in mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyntb7F&md5=f4d0a965b1910e6fd78832fa0ca66daeCAS | 19837451PubMed |

Lal, A., Pan, Y., Navarro, F., Dykxhoorn, D. M., Moreau, L., Meire, E., Bentwich, Z., Lieberman, J., and Chowdhury, D. (2009). miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat. Struct. Mol. Biol. 16, 492–498.
miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks12ktrw%3D&md5=064128b86ab74b9db7b591e62de88dc4CAS | 19377482PubMed |

Li, H., Huang, S., Guo, C., Guan, H., and Xiong, C. (2012). Cell-free seminal mRNA and microRNA exist in different forms. PLoS ONE 7, e34566.
| 1:CAS:528:DC%2BC38XlvFCjtrw%3D&md5=a4b719bf8fc290f84a67b82b0bfef650CAS | 22506029PubMed |

Lian, J., Zhang, X., Tian, H., Liang, N., Wang, Y., Liang, C., Li, X., and Sun, F. (2009). Altered microRNA expression in patients with non-obstructive azoospermia. Reprod. Biol. Endocrinol. 7, 13.
Altered microRNA expression in patients with non-obstructive azoospermia.Crossref | GoogleScholarGoogle Scholar | 19210773PubMed |

Lian, H., Chunlin, W., Cuicui, G., Honggang, L., and Chengliang, X. (2013). Identification of microRNAs predominately derived from testis and epididymis in human seminal plasma. Clin. Biochem. 47, 967–972.
Identification of microRNAs predominately derived from testis and epididymis in human seminal plasma.Crossref | GoogleScholarGoogle Scholar |

Liu, T., Cheng, W., Gao, Y., Wang, H., and Liu, Z. (2012). Microarray analysis of microRNA expression patterns in the semen of infertile men with semen abnormalities. Molecular Medicine Reports 6, 535–542.
| 1:CAS:528:DC%2BC38XhsFSmu7%2FE&md5=7389f1b18cea4e6d7d76caf554beec12CAS | 22735917PubMed |

Maatouk, D. M., Loveland, K. L., McManus, M. T., Moore, K., and Harfe, B. D. (2008). Dicer1 is required for differentiation of the mouse male germline. Biol. Reprod. 79, 696–703.
Dicer1 is required for differentiation of the mouse male germline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCqtbfM&md5=dad1a4a594d434bb4662ff3e9faa0effCAS | 18633141PubMed |

Matsuoka, S., Ballif, B. A., Smogorzewska, A., McDonald, E. R., Hurov, K. E., Luo, J., Bakalarski, C. E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S. P., and Elledge, S. J. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166.
ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1Kit7o%3D&md5=60fe849ed5c35ec91e61fbbca8652173CAS | 17525332PubMed |

Merlet, E., Atassi, F., Motiani, R. K., Mougenot, N., Jacquet, A., Nadaud, S., and Marchand, A. (2013). miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat. Cardiovasc. Res. 98, 458–468.
miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvV2mtLg%3D&md5=d006dc9b9552ae58c3a8df9371e13a4dCAS | 23447642PubMed |

Ogawa, T., Aréchaga, J., Avarbock, M., and Brinster, R. (1997). Transplantation of testis germinal cells into mouse seminiferous tubules. Int. J. Dev. Biol. 41, 111–122.
| 1:STN:280:DyaK2s3ivV2itQ%3D%3D&md5=1a864fcaeedfd70684ec911296bde7edCAS | 9074943PubMed |

Oliva, R., and Castillo, J. (2011). Proteomics and the genetics of sperm chromatin condensation. Asian J. Androl. 13, 24–30.
Proteomics and the genetics of sperm chromatin condensation.Crossref | GoogleScholarGoogle Scholar | 21042303PubMed |

Papaioannou, M. D., Pitetti, J.-L., Ro, S., Park, C., Aubry, F., Schaad, O., Vejnar, C. E., Kühne, F., Descombes, P., Zdobnov, E. M., McManus, M. T., Guillou, F., Harfe, B. D., Yan, W., Jégou, B., and Nef, S. (2009). Sertoli cell Dicer is essential for spermatogenesis in mice. Dev. Biol. 326, 250–259.
Sertoli cell Dicer is essential for spermatogenesis in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKgs78%3D&md5=bf45fe0eeb9b38fcd3e3beba375d96b5CAS | 19071104PubMed |

Pérez-Cerezales, S., Miranda, A., and Gutiérrez-Adán, A. (2012). Comparison of four methods to evaluate sperm DNA integrity between mouse caput and cauda epididymidis. Asian J. Androl. 14, 335–337.
Comparison of four methods to evaluate sperm DNA integrity between mouse caput and cauda epididymidis.Crossref | GoogleScholarGoogle Scholar | 22002436PubMed |

Pothof, J., Verkaik, N., van Ijcken, W., Wiemer, E., Ta, V., van der Horst, G., Jaspers, N., van Gent, D., Hoeijmakers, J., and Persengiev, S. (2009). MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J. 28, 2090–2099.
MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVagsbc%3D&md5=c05b489b9e3058c0cfd7ebac03062319CAS | 19536137PubMed |

Sellami, H., Gdoura, R., Mabrouk, I., Frikha‐Gargouri, O., Keskes, L., Mallek, Z., and Hammami, A. (2011). A proposed mouse model to study male infertility provoked by genital serovar E, Chlamydia trachomatis. J. Androl. 32, 86–94.
A proposed mouse model to study male infertility provoked by genital serovar E, Chlamydia trachomatis.Crossref | GoogleScholarGoogle Scholar | 20539041PubMed |

Simon, L., Castillo, J., Oliva, R., and Lewis, S. E. (2011). Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod. Biomed. Online 23, 724–734.
Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlGnsL8%3D&md5=63720f55c7683f91d16ad455cfe552d1CAS | 22036908PubMed |

Wu, W., Hu, Z., Qin, Y., Dong, J., Dai, J., Lu, C., Zhang, W., Shen, H., Xia, Y., and Wang, X. (2012). Seminal plasma microRNAs: potential biomarkers for spermatogenesis status. Mol. Hum. Reprod. 18, 489–497.
Seminal plasma microRNAs: potential biomarkers for spermatogenesis status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVehtLnN&md5=d0926e1a32be7bde9c34bf7c70233ca3CAS | 22675043PubMed |