Changes in lysosomal enzymes and mannose-6-phosphate receptors related to sexual maturation in bull epididymis
Andrea C. Aguilera A B , Lorena Carvelli A B , Verónica Boschin A C , Fabián Mohamed D , Leila Zyla A B and Miguel A. Sosa A B EA Laboratorio de Biología y Fisiología Celular ‘Dr Francisco Bertini’, Instituto de Histología y Embriología, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Av. Libertador 80. 5500, Mendoza, Argentina.
B IFacultad de Ciencias Exactas y Naturales (FCEN), Universidad Nacional de Cuyo, Av. Contreras s/n. 5500, Mendoza, Argentina.
C Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Av. Libertador 80. 5500, Mendoza, Argentina.
D Cátedra de Histología y Embriología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. 5700, San Luis, Argentina.
E Corresponding author. Email: msosa@fcm.uncu.edu.ar
Reproduction, Fertility and Development 28(10) 1608-1617 https://doi.org/10.1071/RD14380
Submitted: 8 October 2014 Accepted: 9 March 2015 Published: 22 April 2015
Abstract
One of the most striking features of the mammalian epididymis is the secretion of lysosomal enzymes (LE). These LE may play a role in sperm maturation. In the present study we investigated the activity and distribution of four LE (β-galactosidase (β-Gal), N-acetyl-β-D-glucosaminidase (β-NAG), α-mannosidase (α-Man) and β-glucuronidase (β-Glu)) in bull epididymis at two different ages (6 months and 4 years) to determine whether these enzymes vary with sexual maturity. In young, sexually immature (SI) bulls we found high LE activity in the epididymal tissue that accounts for a developed and active lysosomal apparatus. In contrast, low LE activity was measured in sexually mature (SM) bulls, and β-NAG and β-Gal were mostly secreted into the lumen. We also attempted to correlate LE distribution with the expression and functionality of mannose-6-phosphate receptors (MPRs), which are thought to be involved in proper delivery of LE to lysosomes. The cation-dependent MPR was highly expressed in SI bulls, with expression decreasing during adulthood, whereas the expression of the cation-independent MPR was higher in SM than SI bulls. In addition, the four enzymes recovered from the epididymal lumen interact with both MPRs at each age. We conclude that the activity and distribution of LE in bull epididymis varies with sexual maturity and that the distribution is regulated differently by the two types of MPR. These findings could provide some molecular basis for male infertility.
Additional keywords: protein secretion, reproductive tract.
References
Abou-Haila, A., Tulsiani, D. R., Skudlarek, M. D., and Orgebin-Crist, M. C. (1996). Androgen regulation ofmolecular forms of beta-d-glucuronidase in the mouse epididymis: comparison with liver and kidney. J. Androl. 17, 194–207.| 1:CAS:528:DyaK28Xktlegs7k%3D&md5=4da401e1412f3580b0c76987d6118f6dCAS | 8792210PubMed |
Barrett, A., and Heath, M. (1977). Lysosomal enzymes. In: ‘Lysosomes: A Laboratory Handbook’. (Ed. J. Dingle.) pp. 118–120. (Elsevier/North-Holland and Biomedical Press: Amsterdam.)
Belleannée, C., Labas, V., Teixeira-Gomes, A. P., Gatti, J. L., Dacheux, J. L., and Dacheux, F. (2011). Identification of luminal and secreted proteins in bull epididymis. J. Proteomics 74, 59–78.
| Identification of luminal and secreted proteins in bull epididymis.Crossref | GoogleScholarGoogle Scholar | 20692385PubMed |
Belmonte, S. A., Bertini, F., and Sosa, M. A. (2002). Compartmentalization of lysosomal enzymes in epididymis of normal and castrated rats. Arch. Androl. 48, 193–201.
| Compartmentalization of lysosomal enzymes in epididymis of normal and castrated rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFSrtL4%3D&md5=47b960c2f5b1cddef28bf1d1f6c069a8CAS | 11964212PubMed |
Braulke, T. (1999). Type-2 IGF receptor: a multiple ligand binding protein. Horm. Metab. Res. 31, 242–246.
| Type-2 IGF receptor: a multiple ligand binding protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlKksrk%3D&md5=2bc7aadc80267ca01f9fbc81eb8a557fCAS | 10226808PubMed |
Breuer, P., Körner, C., Böker, C., Herzog, A., Pohlmann, R., and Braulke, T. (1997). Serine phosphorylation site of the 46-kDa mannose-6-phosphate receptor is required for transport to the plasma membrane in Madin–Darby canine kidney and mouse fibroblast cells. Mol. Biol. Cell 8, 567–576.
| Serine phosphorylation site of the 46-kDa mannose-6-phosphate receptor is required for transport to the plasma membrane in Madin–Darby canine kidney and mouse fibroblast cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislaitLg%3D&md5=17704256c0493d4bd92b74865278ac27CAS | 9247638PubMed |
Carvelli, L. F., Bannoud, N., Aguilera, A. C., Morales, C. R., and Sosa, M. A. (2010). Castration induces changes in the cation-dependent mannose-6-phosphate receptor in rat epididymis: possible implications in secretion of lysosomal enzymes. J. Cell. Biochem. 110, 1101–1110.
| Castration induces changes in the cation-dependent mannose-6-phosphate receptor in rat epididymis: possible implications in secretion of lysosomal enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFOjtrg%3D&md5=928dfea8ecc2cbc40fe357d8f24dc861CAS | 20564206PubMed |
Carvelli, L., Bannoud, N., Aguilera, A. C., Sartor, T., Malossi, E., and Sosa, M. A. (2014). Testosterone influences the expression and distribution of the cation-dependent mannose-6-phosphate receptor in rat epididymis. Implications in the distribution of enzymes. Andrologia 46, 224–230.
| Testosterone influences the expression and distribution of the cation-dependent mannose-6-phosphate receptor in rat epididymis. Implications in the distribution of enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjslWktbg%3D&md5=0b02b64f9def2fc3a5623224f23e724eCAS | 23290006PubMed |
Chao, H. H., Waheed, A., Pohlmann, R., Hille, A., and von Figura, K. (1990). Mannose-6-phosphate receptor dependent secretion of lysosomal enzymes. EMBO J. 9, 3507–3513.
| 1:CAS:528:DyaK3cXmtVyrsL8%3D&md5=1a1e890d35bc256bbd74f5ab57a776d1CAS | 2170115PubMed |
Cornwall, G. A. (2009). New insights into epididymal biology and function. Hum. Reprod. Update 15, 213–227.
| New insights into epididymal biology and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Ogurc%3D&md5=acbf8d9a6bcd122a7f167435c4ef3541CAS | 19136456PubMed |
Dacheux, J. L., Castella, S., Gatti, J. L., and Dacheux, F. (2005). Epididymal cell secretory activities and the role of proteins in boar sperm maturation. Theriogenology 63, 319–341.
| Epididymal cell secretory activities and the role of proteins in boar sperm maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVSh&md5=cd97ce2da1bd33fbc3992c8128527fb1CAS | 15626402PubMed |
Dacheux, J. L., Belleannee, C., Jones, R., Labas, V., Belghazi, M., Guyonnet, B., Druart, X., Gatti, J. L., and Dacheux, F. (2009). Mammalian epididymal proteome. Mol. Cell. Endocrinol. 306, 45–50.
| Mammalian epididymal proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ait7Y%3D&md5=44ace0be30732c3ffb4bd57f8e1a79d7CAS | 19464100PubMed |
Dahms, N. M., and Hancock, M. K. (2002). P-Type lectins. Biochim. Biophys. Acta 1572, 317–340.
| P-Type lectins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVagsbs%3D&md5=9e4f8f2dd7e5d06689eeda6c42e821b7CAS |
Dahms, N. M., Olson, L. J., and Kim, J. J. (2008). Strategies for carbohydrate recognition by the mannose-6-phosphate receptors. Glycobiology 18, 664–678.
| Strategies for carbohydrate recognition by the mannose-6-phosphate receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2gsL%2FM&md5=d4c7d3f04ad8f1b3f9bac72301df2ffcCAS | 18621992PubMed |
Distler, J. J., Guo, J., and Jourdian, W. (1991). The binding specificity of high and low molecular weight phosphomannosyl receptors from bovine testes. J. Biol. Chem. 266, 21 687–21 692.
| 1:CAS:528:DyaK38XnvVOntQ%3D%3D&md5=a69b4a974556df30cd09228f8357d612CAS |
Ezer, N., and Robaire, B. (2002). Androgen regulation of the structure and functions of the epididymis. In: ‘The Epididymis. From Molecules to Clinical Practice’. (Eds B. Robaire and B. T. Hinton.) pp. 297–316. (Kluwer Academic/Plenum Publishers: New York.)
Gupta, G., and Setty, B. S. (1995). Activities and androgenic regulation of lysosomal enzymes in the epididymis of rhesus monkey. Endocr. Res. 21, 733–741.
| 1:CAS:528:DyaK28XktFSksQ%3D%3D&md5=ead73a5dd6a9db64700c46d574dc7343CAS | 8582324PubMed |
Hawkes, C., and Kar, S. (2004). The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Brain Res. Brain Res. Rev. 44, 117–140.
| The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs12mu78%3D&md5=3fba6b2ce79f8aceb8e05b094c38a95fCAS | 15003389PubMed |
Hermo, L., and Robaire, B. (2002). Epididymal cell types and their functions. In: In: ‘The Epididymis. From Molecules to Clinical Practice’. (Eds B. Robaire and B. T. Hinton.) pp. 81–102. (Kluwer Academic/Plenum Publishers: New York.)
Hille-Rehfeld, A. (1995). Mannose-6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim. Biophys. Acta 1241, 177–194.
| Mannose-6-phosphate receptors in sorting and transport of lysosomal enzymes.Crossref | GoogleScholarGoogle Scholar | 7640295PubMed |
Kang, J. X., Li, Y., and Leaf, A. (1997). Mannose-6-phosphate/insulin-like growth factor-II receptor is a receptor for retinoic acid. Proc. Natl Acad. Sci. USA 94, 13 671–13 676.
| Mannose-6-phosphate/insulin-like growth factor-II receptor is a receptor for retinoic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotValtrY%3D&md5=268e1cdc91fc9d06e6c0380a65694af3CAS |
Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.
| 1:CAS:528:DyaG38XhsVyrsw%3D%3D&md5=dcae3d56b563bb1b79df2a95a985d3d0CAS | 14907713PubMed |
Ludwig, T., Munier-Lehmann, H., Bauer, U., Hollinshead, M., Ovitt, C., Lobel, P., and Hoflack, B. (1994). Differential sorting of lysosomal enzymes in mannose-6-phosphate receptor-deficient fibroblasts. EMBO J. 13, 3430–3437.
| 1:CAS:528:DyaK2cXlslGrtLc%3D&md5=0ee2b6f0366ecd26455c1a850f63928bCAS | 8062819PubMed |
Mayorga, L. S., and Bertini, F. (1985). The origin of some acid hydrolases of the fluid of the cauda epididymis. J. Androl. 6, 243–245.
| 1:CAS:528:DyaL2MXlt1SlsLY%3D&md5=b587bccba1c1f0f03a89b942a35040d3CAS | 4030497PubMed |
Moura, A. A., Chapman, D. A., Koc, H., and Killian, G. J. (2006). Proteins of the cauda epididymal fluid associated with fertility of mature dairy bulls. J. Androl. 27, 534–541.
| Proteins of the cauda epididymal fluid associated with fertility of mature dairy bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVaru7k%3D&md5=4fb51137a2e9da49fbe56531620f5decCAS | 16582409PubMed |
Mruk, D. D., and Yan Cheng, C. (2011). Enhanced chemiluminescence (ECL) for routine immunoblotting. Spermatogenesis 1, 121–122.
| Enhanced chemiluminescence (ECL) for routine immunoblotting.Crossref | GoogleScholarGoogle Scholar | 22319660PubMed |
Nadimpalli, S. K., and Amancha, P. K. (2010). Evolution of mannose 6-phosphate receptors (MPR300 and 46): lysosomal enzyme sorting proteins. Curr. Protein Pept. Sci. 11, 68–90.
| Evolution of mannose 6-phosphate receptors (MPR300 and 46): lysosomal enzyme sorting proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1ersrk%3D&md5=8cfce72d9b6f4190eeebaa75d1c648dbCAS | 20201808PubMed |
Robaire, B., and Hamzeh, M. (2011). Androgen action in the epididymis. J. Androl. 32, 592–599.
| Androgen action in the epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCru7zF&md5=c6baac32d7ef383dc3549d4fb3046968CAS | 21764895PubMed |
Robaire, B., and Viger, R. S. (1995). Regulation of epididymal epithelial cell functions. Biol. Reprod. 52, 226–236.
| Regulation of epididymal epithelial cell functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt12lurs%3D&md5=eecbeb25d94eb6bfe350ce1fde2314a3CAS | 7711192PubMed |
Romano, P. S., Lopez, C., Mariani, M. L., Sartor, T., Belmonte, S. A., and Sosa, M. A. (2002). Expression and binding properties of the two phosphomannosyl receptors differs during perinatal development in rat liver. Biochem. Biophys. Res. Commun. 295, 1000–1006.
| Expression and binding properties of the two phosphomannosyl receptors differs during perinatal development in rat liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlKgt7o%3D&md5=7ad6da92671bcb734428bd2d790f3e02CAS | 12127995PubMed |
Sullivan, R., and Saez, F. (2013). Epididymosomes, prostasomes and liposomes: their role in mammalian male reproductive physiology. Reproduction 146, R21–R35.
| Epididymosomes, prostasomes and liposomes: their role in mammalian male reproductive physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFejsLbN&md5=600af9f58b8e83c9cfd0c55fb0617d37CAS | 23613619PubMed |
Tulsiani, D. R. (2006). Glycan-modifying enzymes in luminal fluid of the mammalian epididymis: an overview of their potential role in sperm maturation. Mol. Cell. Endocrinol. 250, 58–65.
| Glycan-modifying enzymes in luminal fluid of the mammalian epididymis: an overview of their potential role in sperm maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGjtrY%3D&md5=ba96f63666ce95e1f59d569783ebd795CAS | 16413674PubMed |
Tulsiani, D. R., and Abou-Haila, A. (2011). Molecular events that regulate mammalian fertilization. Minerva Ginecol. 63, 103–118.
| 1:STN:280:DC%2BC3Mvlt1Ghug%3D%3D&md5=dfdc51fa3c6a87564def5b172ccee482CAS | 21508901PubMed |
Tulsiani, D. R., Keller, R. K., and Touster, O. (1975). The preparation and chemical composition of the multiple forms of beta-glucuronidase from the female rat preputial gland. J. Biol. Chem. 250, 4770–4776.
| 1:CAS:528:DyaE2MXkslClsLo%3D&md5=65025e09d686e1dc2e24b1e895890ba7CAS | 1141229PubMed |
Tulsiani, D. R., Orgebin-Crist, M. C., and Skudlarek, M. D. (1998). Role of luminal fluid glycosyltransferases and glycosidases in the modification of rat sperm plasma membrane glycoproteins during epididymal maturation. J. Reprod. Fertil. Suppl. 53, 85–97.
| 1:CAS:528:DyaK1MXitVekurs%3D&md5=cadc0e8f292b62d06255e192b95ebf68CAS | 10645269PubMed |
Villevalois-Cam, L., Rescan, C., Gilot, F., Ezan, F., Loyer, P., Desdbuquois, B., Gueguen-Guilluozo, C., and Baffet, G. (2003). The hepatocyte is a direct target for transforming-growth factor beta activation via the insulin-like growth factor II/mannose-6-phosphate receptor. J. Hepatol. 38, 156–163.
| The hepatocyte is a direct target for transforming-growth factor beta activation via the insulin-like growth factor II/mannose-6-phosphate receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVKjsA%3D%3D&md5=70e71402350b5d38fdba4b4c2744ea4aCAS | 12547403PubMed |