Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Regulation of primordial follicle recruitment by cross-talk between the Notch and phosphatase and tensin homologue (PTEN)/AKT pathways

Lin-Qing Wang A B , Jing-Cai Liu A C , Chun-Lei Chen A B , Shun-Feng Cheng A B , Xiao-Feng Sun A C , Yong Zhao A E , Shen Yin A B , Zhu-Mei Hou A D , Bo Pan E , Cheng Ding A B , Wei Shen A B and Xi-Feng Zhang A B F
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, China.

B College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.

C College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.

D College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.

E Department of Animal and Poultry Science, University of Guelph, Guelph, ON N1G 2W1, Canada.

F Corresponding author. Email: zhangxf9465@163.com

Reproduction, Fertility and Development 28(6) 700-712 https://doi.org/10.1071/RD14212
Submitted: 17 June 2014  Accepted: 11 September 2014   Published: 27 October 2014

Abstract

The growth of oocytes and the development of follicles require certain pathways involved in cell proliferation and survival, such as the phosphatidylinositol 3-kinase (PI3K) pathway and the Notch signalling pathway. The aim of the present study was to investigate the interaction between Notch and the PI3K/AKT signalling pathways and their effects on primordial follicle recruitment. When the Notch pathway was inhibited by L-685,458 or N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester (DAPT) in vitro, the expression of genes in the pathway and the percentage of oocytes in growing follicles decreased significantly in mouse ovaries. By 2 days postpartum, ovaries exposed to DAPT, short interference (si) RNA against Notch1 or siRNA against Hairy and enhancer of split-1 (Hes1) had significantly decreased expression of HES1, the target protein of the Notch signalling pathway. In contrast, expression of phosphatase and tensin homologue (Pten), a negative regulator of the AKT signalling pathway, was increased significantly. Co immunoprecipitation (Co-IP) revealed an interaction between HES1 and PTEN. In addition, inhibition of the Notch signalling pathway suppressed AKT phosphorylation and the proliferation of granulosa cells. In conclusion, the recruitment of primordial follicles was affected by the proliferation of granulosa cells and regulation of the interaction between the Notch and PI3K/AKT signalling pathways.

Additional keywords: granulosa cells, mice, ovary.


References

Adhikari, D., and Liu, K. (2009). Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr. Rev. 30, 438–464.
Molecular mechanisms underlying the activation of mammalian primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFaisbnO&md5=3cc6ae19267e8d12f5de5f42b94523e0CAS | 19589950PubMed |

Blume-Jensen, P., and Hunter, T. (2001). Oncogenic kinase signaling. Nature 411, 355–365.
Oncogenic kinase signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVSjsr0%3D&md5=b5f9ca5da792b9bdc9d6767b2a20b59cCAS | 11357143PubMed |

Chen, B., Zhang, L. J., Tang, J., Feng, X. L., Feng, Y. M., Liang, G. J., Wang, L. Q., Feng, Y. N., Li, L., DeFelici, M., Shi, Q. H., and Shen, W. (2013). Recovery of functional oocytes from cultured premeiotic germ cells after kidney capsule transplantation. Stem Cells Dev. 22, 567–580.
Recovery of functional oocytes from cultured premeiotic germ cells after kidney capsule transplantation.Crossref | GoogleScholarGoogle Scholar | 22978409PubMed |

Chen, C. L., Fu, X. F., Wang, L. Q., Wang, J. J., Ma, H. G., Cheng, S. F., Hou, Z. M., Ma, J. M., Quan, G. B., Shen, W., and Li, L. (2014). Primordial follicle assembly was regulated by Notch signaling pathway in the mice. Mol. Biol. Rep. 41, 1891–1899.
Primordial follicle assembly was regulated by Notch signaling pathway in the mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFOmug%3D%3D&md5=d8cb360a5588f5ead5dbd4f849b5f396CAS | 24430295PubMed |

De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J. S., Schroeter, E. H., Schrijvers, V., Wolfe, M. S., Ray, W. J., Goate, A., and Kopan, R. (1999). A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522.
A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFGqt7k%3D&md5=fdc56f6eda47b86227cca67dfd4862f6CAS | 10206645PubMed |

Dumortier, A., Wilson, A., MacDonald, H. R., and Radtke, F. (2005). Paradigms of notch signaling in mammals. Int. J. Hematol. 82, 277–284.
Paradigms of notch signaling in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Gksw%3D%3D&md5=4821633d73d8c6e4ef936be2a89c48efCAS | 16298815PubMed |

Feng, Y. M., Liang, G. J., Pan, B., Qin, X. S., Zhang, X. F., Chen, C. L., Li, L., Cheng, S. F., De Felici, M., and Shen, W. (2014). Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse. Cell Cycle 13, 782–791.
Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOht7fL&md5=eab772deca92bd9be4007d4407a6a998CAS | 24398584PubMed |

Greenfield, C. R., Babus, J. K., Furth, P. A., Marion, S., Hoyer, P. B., and Flaws, J. A. (2007). BAX is involved in regulating follicular growth, but is dispensable for follicle atresia in adult mouse ovaries. Reproduction 133, 107–116.
BAX is involved in regulating follicular growth, but is dispensable for follicle atresia in adult mouse ovaries.Crossref | GoogleScholarGoogle Scholar |

Guo, M., Zhang, H., Bian, F. H., Li, G., Mu, X. Y., Wen, J., Mao, G. K., Teng, Z., Xia, G. L., and Zhang, M. J. (2012). P4 down-regulates Jagged2 and Notch1 expression during primordial folliculogenesis. Front. Biosci. (Elite Ed.) E4, 2731–2744.
P4 down-regulates Jagged2 and Notch1 expression during primordial folliculogenesis.Crossref | GoogleScholarGoogle Scholar |

Hsieh, J. J., Henkel, T., Salmon, P., Robey, E., Peterson, M. G., and Hayward, S. D. (1996). Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein–Barr virus EBNA2. Mol. Cell. Biol. 16, 952–959.
| 1:CAS:528:DyaK28XhtFOlsr4%3D&md5=c0a735ab22f515501389a10bdf35a69fCAS | 8622698PubMed |

Iso, T., Kedes, L., and Hamamori, Y. (2003). HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell. Physiol. 194, 237–255.
HES and HERP families: multiple effectors of the Notch signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFKiurs%3D&md5=f5cf4103fe09d7911f78ca5dd3ec9ea3CAS | 12548545PubMed |

Jagarlamudi, K., Liu, L., Adhikari, D., Reddy, P., Idahl, A., Ottander, U., Lundin, E., and Liu, K. (2009). Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation. PLoS ONE 4, e6186.
Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation.Crossref | GoogleScholarGoogle Scholar | 19587782PubMed |

Jarriault, S., Brou, C., Logeat, F., Schroeter, E. H., Kopan, R., and Israel, A. (1995). Signaling downstream of activated mammalian Notch. Nature 377, 355–358.
Signaling downstream of activated mammalian Notch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosVWhsLs%3D&md5=7d1235ae7c5af69c320d8d13b7071562CAS | 7566092PubMed |

Jia, D., Tamori, Y., Pyrowolakis, G., and Deng, W. M. (2014). Regulation of broad by the Notch pathway affects timing of follicle cell development. Dev. Biol. 392, 52–61.
Regulation of broad by the Notch pathway affects timing of follicle cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXoslCnsbw%3D&md5=d6733babe12fd30a0b0ce7e041eccf89CAS | 24815210PubMed |

Johnson, J., Espinoza, T., McGaughey, R. W., Rawls, A., and Wilson-Rawls, J. (2001). Notch pathway genes are expressed in mammalian ovarian follicles. Mech. Dev. 109, 355–361.
Notch pathway genes are expressed in mammalian ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1KgtLY%3D&md5=98536b861092d73e24f0fa8c4c38882fCAS | 11731249PubMed |

Kezele, P., Nilsson, E., and Skinner, M. K. (2002). Cell–cell interactions in primordial follicle assembly and development. Front. Biosci. 7, d1990–d1996.
Cell–cell interactions in primordial follicle assembly and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslygsLo%3D&md5=ad85652d8cfc74c02aad5ef558f14568CAS | 12161345PubMed |

Kissel, H., Timokhina, I., Hardy, M. P., Rothschild, G., Tajima, Y., Soares, V., Angeles, M., Whitlow, S. R., Manova, K., and Besmer, P. (2000). Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J. 19, 1312–1326.
Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1GmsLY%3D&md5=a3236a93b92f1ba0cdae2475ae87f367CAS | 10716931PubMed |

Kreeger, P. K., Deck, J. W., Woodruff, T. K., and Shea, L. D. (2006). The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials 27, 714–723.
The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFakur3E&md5=4300df4605ee8edf149eac30d909c457CAS | 16076485PubMed |

Liu, K., Rajareddy, S., Liu, L., Jagarlamudi, K., Boman, K., Selstam, G., and Reddy, P. (2006). Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev. Biol. 299, 1–11.
Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVygsLfL&md5=791662c5c0b07bf2b3bc89631ff2fa94CAS | 16970938PubMed |

Liu, J., Deutsch, U., Jeong, J., and Lobe, C. G. (2014). Constitutive Notch signaling in adult transgenic mice inhibits bFGF-induced angiogenesis and blocksovarian follicle development. Genesis , .
Constitutive Notch signaling in adult transgenic mice inhibits bFGF-induced angiogenesis and blocksovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 24817584PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2[–ΔΔC(T)] method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2[–ΔΔC(T)] method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=224f15b9dfd00d92fda868e1cb065922CAS | 11846609PubMed |

Murta, D., Batista, M., Silva, E., Trindade, A., Mateus, L., Duarte, A., and Lopes-da-Costa, L. (2014). Differential expression of Notch component and effector genes during ovarian follicle and corpus luteum development during the oestrous cycle. Reprod. Fertil. Dev. , .
Differential expression of Notch component and effector genes during ovarian follicle and corpus luteum development during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 24695060PubMed |

Ordentlich, P., Lin, A., Shen, C. P., Blaumueller, C., Matsuno, K., Artavanis-Tsakonas, S., and Kadesch, T. (1998). Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol. Cell. Biol. 18, 2230–2239.
| 1:CAS:528:DyaK1cXitFeqtb0%3D&md5=b4008604ef7fb01da3458efcddf866a2CAS | 9528794PubMed |

Proweller, A., Wright, A. C., Horng, D., Cheng, L., Lu, M. M., Lepore, J. J., Pear, W. S., and Parmacek, M. S. (2007). Notch signaling in vascular smooth muscle cells is required to pattern the cerebral vasculature. Proc. Natl. Acad. Sci. USA 104, 16 275–16 280.
Notch signaling in vascular smooth muscle cells is required to pattern the cerebral vasculature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2gsr%2FP&md5=0229c2e211f898f82bf3818647c5e7b3CAS |

Palomero, T., Dominguez, M., and Ferrando, A. A. (2008). The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle 7, 965–970.
The role of the PTEN/AKT pathway in NOTCH1-induced leukemia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVSrsL4%3D&md5=50a5271f0e00e0393af6cbf85aff6143CAS | 18414037PubMed |

Pan, B., Chao, H. H., Chen, B., Zhang, L. J., Li, L., Sun, X. F., and Shen, W. (2011). DNA methylation of germ-cell-specific basic helix–loop–helix (HLH) transcription factors, Sohlh2 and Figlalpha during gametogenesis. Mol. Hum. Reprod. 17, 550–561.
DNA methylation of germ-cell-specific basic helix–loop–helix (HLH) transcription factors, Sohlh2 and Figlalpha during gametogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSgsr%2FO&md5=975de2d87c294cdb2de669c10f09a0d8CAS | 21427160PubMed |

Peters, H. (1969). The development of the mouse ovary from birth to maturity. Acta Endocrinol. (Copenh.) 62, 98–116.
| 1:STN:280:DyaF1M3psl2lsg%3D%3D&md5=0726532b0f634db5059f231abc4c2a64CAS | 5394354PubMed |

Picton, H. M. (2001). Activation of follicle development: the primordial follicle. Theriogenology 55, 1193–1210.
Activation of follicle development: the primordial follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSju7c%3D&md5=83f8a7347e19dd0fd03915321fa3dd7bCAS | 11327680PubMed |

Reddy, P., Liu, L., Adhikari, D., Jagarlamudi, K., Rajareddy, S., Shen, Y., Du, C., Tang, W., Hämäläinen, T., Peng, S. L., Lan, Z. J., Cooney, A. J., Huhtaniemi, I., and Liu, K. (2008). Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319, 611–613.
Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Knt78%3D&md5=c1d109375649921e753654ed6d1bb2e7CAS | 18239123PubMed |

SAS Institute (1996) ‘SAS User’s Guide: Statistics, Version 7.0.’ (SAS Institute: Cary, NC.)

Schmit, F., Utermark, T., Zhang, S., Wang, Q., Von, T., Roberts, T. M., and Zhao, J. J. (2014). PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context. Proc. Natl. Acad. Sci. USA 111, 6395–6400.
PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlWjtLg%3D&md5=2ac481ec581d480f03150cfb3a7bce2eCAS | 24737887PubMed |

Shearman, M. S., Beher, D., Clarke, E. E., Lewis, H. D., Harrison, T., Hunt, P., Nadin, A., Smith, A. L., Stevenson, G., and Castro, J. L. (2000). L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid β-protein precursor γ-secretase activity. Biochemistry 39, 8698–8704.
L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid β-protein precursor γ-secretase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFGrsL4%3D&md5=692fd9bb912eb048580f3a9f951f5366CAS | 10913280PubMed |

Shih, Ie. M., and Wang, T. L. (2007). Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res. 67, 1879–1882.
Notch signaling, gamma-secretase inhibitors, and cancer therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit12qtb0%3D&md5=1d64a0252c9ec819b7c910d808720fe5CAS |

Tomita, K., Hattori, M., Nakamura, E., Nakanishi, S., Minato, N., and Kageyama, R. (1999). The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev. 13, 1203–1210.
The bHLH gene Hes1 is essential for expansion of early T cell precursors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1yhsr4%3D&md5=c987f84a3add05feadd4f8387ef49848CAS | 10323870PubMed |

Trombly, D. J., Woodruff, T. K., and Mayo, K. E. (2009). Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology 150, 1014–1024.
Suppression of Notch signaling in the neonatal mouse ovary decreases primordial follicle formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Sgt74%3D&md5=e399995bb7a40e1746ab4251298457f2CAS | 18818300PubMed |

Vanorny, D. A., Prasasya, R. D., Chalpe, A. J., Kilen, S. M., and Mayo, K. E. (2014). Notch signaling regulates ovarian follicle formation and coordinates follicular growth. Mol. Endocrinol. 28, 499–511.
Notch signaling regulates ovarian follicle formation and coordinates follicular growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVKjtLrN&md5=11205c27af6758e0635e1578405a271aCAS | 24552588PubMed |

Wong, G. W., Knowles, G. C., Mak, T. W., Ferrando, A. A., and Zúñiga-Pflücker, J. C. (2012). HES1 opposes a PTEN-dependent check on survival, differentiation, and proliferation of TCRβ-selected mouse thymocytes. Blood 120, 1439–1448.
HES1 opposes a PTEN-dependent check on survival, differentiation, and proliferation of TCRβ-selected mouse thymocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Ghs7jP&md5=5c06505915a8d0877b38276bd0f1d615CAS | 22649105PubMed |

Zhang, P., Chao, H. H., Sun, S. F., Li, L., Shi, Q. H., and Shen, W. (2010). Murine folliculogenesis in vitro is stage-specifically regulated by insulin via the Akt signaling pathway. Histochem. Cell Biol. 134, 75–82.
Murine folliculogenesis in vitro is stage-specifically regulated by insulin via the Akt signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVaitr4%3D&md5=0f5dbc272fa364d62cedfc10b94ce242CAS | 20495820PubMed |

Zhang, C. P., Yang, J. L., Zhang, J., Li, L., Huang, L., Ji, S. Y., Hu, Z. Y., Gao, F., and Liu, Y. X. (2011). Notch signaling is involved in ovarian follicle development by regulating granulosa cell proliferation. Endocrinology 152, 2437–2447.
Notch signaling is involved in ovarian follicle development by regulating granulosa cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Sntb4%3D&md5=ab68a188cdbbf7b45b9dd49446e57c29CAS | 21427220PubMed |

Zhang, H. Q., Zhang, X. F., Zhang, L. J., Chao, H. H., Pan, B., Feng, Y. M., Li, L., Sun, X. F., and Shen, W. (2012a). Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Mol. Biol. Rep. 39, 5651–5657.
Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVCitLc%3D&md5=aeba7ba97358b9ec9d5f74437c2082f2CAS | 22187349PubMed |

Zhang, L. J., Pan, B., Chen, B., Zhang, X. F., Liang, G. J., Feng, Y. N., Wang, L. Q., Ma, J. M., Shi, Q. H., and Shen, W. (2012b). The characteristics of the expression and epigenetic modification of transcription regulator Lhx8 during oogenesis. Gene 506, 1–9.
The characteristics of the expression and epigenetic modification of transcription regulator Lhx8 during oogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKnurrM&md5=d2f24fa7787ecf3df5bcb59cd4afee44CAS | 22796561PubMed |

Zhang, Z. P., Liang, G. J., Zhang, G. L., Chao, H. H., Li, L., Sun, X. F., Min, L. J., Pan, Q. J., Shi, Q. H., Sun, Q. Y., De Felici, M., and Shen, W. (2012c). Growth of mouse oocytes to maturity from premeiotic germ cells in vitro. PLoS ONE 7, e41771.
Growth of mouse oocytes to maturity from premeiotic germ cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWisbjM&md5=22953e780b6532d6e8e75c81606e01ecCAS | 22848595PubMed |

Zhang, X. F., Zhang, L. J., Li, L., Feng, Y. N., Chen, B., Ma, J. M., Huynh, E., Shi, Q. H., De Felici, M., and Shen, W. (2013). Diethylhexylphthalate exposure impairs follicular development and affects oocyte maturation in the mouse. Environ. Mol. Mutagen. 54, 354–361.
Diethylhexylphthalate exposure impairs follicular development and affects oocyte maturation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Cjs7k%3D&md5=f56d1928f89572e23e44a2e7b1ed51b5CAS | 23625783PubMed |

Zheng, W., Nagaraju, G., Liu, Z., and Liu, K. (2012). Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol. Cell. Endocrinol. 356, 24–30.
Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1egs7Y%3D&md5=c5e90fa201eda05a5ea5163d676d6b40CAS | 21684319PubMed |

Zhu, H., Bhaijee, F., Ishaq, N., Pepper, D. J., Backus, K., Brown, A. S., Zhou, X., and Miele, L. (2013). Print correlation of Notch1, pAKT and nuclear NF-κB expression in triple negative breast cancer. Am. J. Cancer Res. 3, 230–239.
| 1:CAS:528:DC%2BC3sXntFarsL8%3D&md5=f01a7c59b006e5ad731187fc56a2641eCAS | 23593544PubMed |