Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Role of linker histone H1c during the reprogramming of Chinese swamp buffalo (Bubalus Bubalis) embryos produced by somatic cell nuclear transfer

Gao-Bo Huang A B E , Li Quan A C E , Yong-Lian Zeng A B E , Jian Yang D , Ke-Huan Lu A C and Sheng-Sheng Lu A C F
+ Author Affiliations
- Author Affiliations

A State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 53004, China.

B College of Life Science and Technology, Guangxi University, Nanning, Guangxi 53004, China.

C College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 53004, China.

D Tiandiyang Biotechnology Co. Ltd, Nanning, Guangxi 530004, China.

E These authors contributed equally to this work.

F Corresponding author. Email: shengshenglu@sina.com

Reproduction, Fertility and Development 28(3) 302-309 https://doi.org/10.1071/RD14051
Submitted: 13 February 2014  Accepted: 2 May 2014   Published: 22 August 2014

Abstract

During reprogramming, there is exchange of histone H1c and the oocyte-specific linker histone, and H1c may play a critically important role in the reprogramming process of somatic cell nuclear transfer (SCNT). The aim of the present study was to investigate the role of the H1c gene in SCNT reprogramming in Chinese swamp buffalo (Bubalus bubalis) using RNA interference (RNAi). Chinese swamp buffalo H1c gene sequences were obtained and H1c-RNAi vectors were designed, synthesised and then transfected into a buffalo fetal skin fibroblast cell line. Expression of H1c was determined by real-time polymerase chain reaction to examine the efficiency of vector interference. These cells were then used as a nuclear donor for SCNT so as to observe the further development of SCNT embryos. Inhibition of H1c gene expression in donor cells significantly improved the developmental speed of embryos from the 1-cell to 8-cell stage. Furthermore, compared with the control group, inhibition of H1c gene expression significantly reduced the blastocyst formation rate. It is concluded that linker histone H1c is very important in SCNT reprogramming in Chinese swamp buffalo. Correct expression of the H1c gene plays a significant role in preimplantation embryonic development in B. bubalis.

Additional keyword: RNA interference.


References

Bhan, S., May, W., Warren, S. L., and Sittman, D. B. (2008). Global gene expression analysis reveals specific and redundant roles for H1 variants, H1c and H1(0), in gene expression regulation. Gene 414, 10–18.
Global gene expression analysis reveals specific and redundant roles for H1 variants, H1c and H1(0), in gene expression regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVegtbo%3D&md5=f4d8d4c1173403203558578f24032a9dCAS | 18372120PubMed |

Brown, D. T., Alexander, B. T., and Sittman, D. B. (1996). Differential effect of H1 variant overexpression on cell cycle progression and gene expression. Nucl. Acids Res. 24, 486–493.
Differential effect of H1 variant overexpression on cell cycle progression and gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVygtrs%3D&md5=61a0c45099a6f63bf4b8a20d547ea9e8CAS | 8602362PubMed |

Cantone, I., and Fisher, A. G. (2013). Epigenetic programming and reprogramming during development. Nat. Struct. Mol. Biol. 20, 282–289.
Epigenetic programming and reprogramming during development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFOnsbk%3D&md5=70d22e7ede7c581b147a38ee6916ffe4CAS | 23463313PubMed |

Dimitrov, S., and Wolffe, A. P. (1996). Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence. EMBO J. 15, 5897–5906.
| 1:CAS:528:DyaK28XntVaqtr4%3D&md5=e6c06e8f61a21f6a06206a63e1e664e0CAS | 8918467PubMed |

Du, J., Sun, Y., Shi, Q. S., Liu, P. F., Zhu, M. J., Wang, C. H., Du, L. F., and Duan, Y. R. (2012). Biodegradable nanoparticles of mPEG-PLGA-PLL triblock copolymers as novel non-viral vectors for improving siRNA delivery and gene silencing. Int. J. Mol. Sci. 13, 516–533.
Biodegradable nanoparticles of mPEG-PLGA-PLL triblock copolymers as novel non-viral vectors for improving siRNA delivery and gene silencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFyltLY%3D&md5=692061a0c0236ef2a22320bb50d362d1CAS | 22312268PubMed |

Eick, S., Nicolai, M., Mumberg, D., and Doenecke, D. (1989). Human H1 histones: conserved and varied sequence elements in two H1 subtype genes. Eur. J. Cell Biol. 49, 110–115.
| 1:CAS:528:DyaK3cXhtFehtr8%3D&md5=aea19fb5a62f2c8a1593784f7b904030CAS | 2759094PubMed |

Fu, G., Ghadam, P., Sirotkin, A., Khochbin, S., Skoultchi, A. I., and Clarke, H. J. (2003). Mouse oocytes and early embryos express multiple histone H1 subtypes. Biol. Reprod. 68, 1569–1576.
Mouse oocytes and early embryos express multiple histone H1 subtypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12lsbs%3D&md5=823d547016d575a9e171f70d32120b03CAS | 12606334PubMed |

Galli, C., Duchi, R., Moor, R. M., and Lazzari, G. (1999). Mammalian leukocytes contain all the genetic information necessary for the development of a new individual. Cloning 1, 161–170.
Mammalian leukocytes contain all the genetic information necessary for the development of a new individual.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFeku7o%3D&md5=3184e9f2034cb15ed5936e765ab20ae8CAS | 16218815PubMed |

Gao, S., Chung, Y. G., Parseghian, M. H., and King, G. J. (2004). Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice. Dev. Biol. 266, 62–75.
Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltF2nug%3D%3D&md5=e5724968917c8065b9fa0933443c2f9cCAS | 14729478PubMed |

Han, K., Dai, Y., Zou, Z., Fu, M., Wang, Y., and Zhang, Z. (2012). Molecular characterization and expression profiles of cdc2 and cyclin B during oogenesis and spermatogenesis in green mud crab (Scylla paramamosain). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 163, 292–302.
Molecular characterization and expression profiles of cdc2 and cyclin B during oogenesis and spermatogenesis in green mud crab (Scylla paramamosain).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2hsL7J&md5=3151bc827486117732b79b2544e4cf1eCAS | 22841647PubMed |

Hashimoto, H., Takami, Y., Sonoda, E., Iwasaki, T., Iwano, H., Tachibana, M., Takeda, S., Nakayama, T., Kimura, H., and Shinkai, Y. (2010). Histone H1 null vertebrate cells exhibit altered nucleosome architecture. Nucleic Acids Res. 38, 3533–3545.
Histone H1 null vertebrate cells exhibit altered nucleosome architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVOitrg%3D&md5=fd9c0e79d5304e095b40bc20e859358eCAS | 20156997PubMed |

Hu, B., Zhu, X. L., Fan, Q. X., Li, H. X., and Zou, C. W. (2012). Experimental study on inhibition of rat ventricular Ik1 by RNA interference targeting the KCNJ2 gene. Biosci. Trends 6, 26–32.
| 1:CAS:528:DC%2BC38Xot1ehs74%3D&md5=24116c59c045b6d45baf08b6718453c5CAS | 22426100PubMed |

Isom, S. C., Li, R. F., Whitworth, K. M., and Prather, R. S. (2012). Timing of first embryonic cleavage is a positive indicator of the in vitro developmental potential of porcine embryos derived from in vitro fertilization, somatic cell nuclear transfer and parthenogenesis. Mol. Reprod. Dev. 79, 197–207.
Timing of first embryonic cleavage is a positive indicator of the in vitro developmental potential of porcine embryos derived from in vitro fertilization, somatic cell nuclear transfer and parthenogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Oiur7M&md5=5ef8b8ec597385486b7f9f463d00e4c2CAS | 22213403PubMed |

Jullien, J., and Gurdon, J. (2011). Reprogramming of gene expression following nuclear transfer to the Xenopus oocyte. Biol. Aujourdhui 205, 105–110.
Reprogramming of gene expression following nuclear transfer to the Xenopus oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KjsbfL&md5=568e8a122b33455de735c918fe1d2709CAS | 21831341PubMed |

Jullien, J., Astrand, C., Halley-Stott, R. P., Garrett, N., and Gurdon, J. B. (2010). Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc. Natl Acad. Sci. USA 107, 5483–5488.
Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFKhs7g%3D&md5=cebc706aebc34d232f02c15e5a4df311CAS | 20212135PubMed |

Lee, R. S., Peterson, A. J., Donnison, M. J., Ravelich, S., Ledgard, A. M., Li, N., Oliver, J. E., Miller, A. L., Tucker, F. C., Breier, B., and Wells, D. N. (2004). Cloned cattle fetuses with the same nuclear genetics are more variable than contemporary half-siblings resulting from artificial insemination and exhibit fetal and placental growth deregulation even in the first trimester. Biol. Reprod. 70, 1–11.
Cloned cattle fetuses with the same nuclear genetics are more variable than contemporary half-siblings resulting from artificial insemination and exhibit fetal and placental growth deregulation even in the first trimester.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVOm&md5=ae99a842ed468ff5bc1e8f848fdc7d31CAS | 13679311PubMed |

Li, M. A., and He, L. (2012). microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. Bioessays 34, 670–680.
microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming.Crossref | GoogleScholarGoogle Scholar | 22674461PubMed |

Liu, X. L., Zhang, P. F., Ding, S. F., Wang, Y., Zhang, M., Zhao, Y. X., Ni, M., and Zhang, Y. (2012). Local gene silencing of monocyte chemoattractant protein-1 prevents vulnerable plaque disruption in apolipoprotein E-knockout mice. PLoS ONE 7, e33497.
Local gene silencing of monocyte chemoattractant protein-1 prevents vulnerable plaque disruption in apolipoprotein E-knockout mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVGgsro%3D&md5=58ba6a821e6bb5651fc7322ff5f2025dCAS | 22428064PubMed |

Ma, J.-Y., Ou-Yang, Y.-C., Luo, Y.-B., Wang, Z.-B., Hou, Y., Han, Z.-M., Liu, Z., Schatten, H., and Sun, Q.-Y. (2013). Cyclin O regulates germinal vesicle breakdown in mouse oocytes. Biol. Reprod. 88, 110.
Cyclin O regulates germinal vesicle breakdown in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 23515676PubMed |

Ogura, A., Inoue, K., and Wakayama, T. (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20110329.
Recent advancements in cloning by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 23166393PubMed |

Ooi, J., and Liu, P. (2012). Delineating nuclear reprogramming. Protein Cell 3, 329–345.
Delineating nuclear reprogramming.Crossref | GoogleScholarGoogle Scholar | 22467264PubMed |

Ornelas, I. M., Silva, T. M., Fragel-Madeira, L., and Ventura, A. L. (2013). Inhibition of PI3K/Akt pathway impairs G2/M transition of cell cycle in late developing progenitors of the avian embryo retina. PLoS ONE 8, e53517.
Inhibition of PI3K/Akt pathway impairs G2/M transition of cell cycle in late developing progenitors of the avian embryo retina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVansw%3D%3D&md5=1e89fa74f0f9db45bccf311d44dd6c52CAS | 23301080PubMed |

Rall, S. C., and Cole, R. D. (1971). Amino acid sequence and sequence variability of the amino-terminal regions of lysine-rich histones. J. Biol. Chem. 246, 7175–7190.
| 1:CAS:528:DyaE38XjtFCntw%3D%3D&md5=150672b70ecdea0f25879b21778db135CAS | 5167020PubMed |

Schmidt, M., Winter, K. D., Li, J., Kragh, P. M., Du, Y., Lin, L., Liu, Y., Li, R., Vajta, G., and Callesen, H. (2012). Malformations found by autopsy of cloned and transgenic piglets of different breeds. Reprod. Fertil. Dev. 24, 123.
Malformations found by autopsy of cloned and transgenic piglets of different breeds.Crossref | GoogleScholarGoogle Scholar |

Scott-Drechsel, D. E., Rugonyi, S., Marks, D. L., Thornburg, K. L., and Hinds, M. T. (2013). Hyperglycemia slows embryonic growth and suppresses cell cycle via cyclin D1 and p21. Diabetes 62, 234–242.
Hyperglycemia slows embryonic growth and suppresses cell cycle via cyclin D1 and p21.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1GqsA%3D%3D&md5=49b87f68bb7271365e0b1dcd6ef9e1aeCAS | 23193186PubMed |

Shi, D., Lu, F., Wei, Y., Cui, K., Yang, S., Wei, J., and Liu, Q. (2007). Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol. Reprod. 77, 285–291.
Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot12gt7s%3D&md5=919e1d2ed4fa32e47f556d8933cbfde7CAS | 17475931PubMed |

Tanaka, M., Hennebold, J. D., Macfarlane, J., and Adashi, E. Y. (2001). Amammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 128, 655–664.
| 1:CAS:528:DC%2BD3MXit1OitbY%3D&md5=dfd5cc083a170485369aec74b06c6809CAS | 11171391PubMed |

Tang, D., Zhu, H., Wu, J., Chen, H., Zhang, Y., Zhao, X., Chen, X., Du, W., Wang, D., and Lin, X. (2012). Silencing myostatin gene by RNAi in sheep embryos. J. Biotechnol. 158, 69–74.
Silencing myostatin gene by RNAi in sheep embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFKiu7s%3D&md5=2a3fd5120343ad853d53fbb59d11b8aaCAS | 22285957PubMed |

Teranishi, T., Tanaka, M., Kimoto, S., Ono, Y., Miyakoshi, K., Kono, T., and Yoshimura, Y. (2004). Rapid replacement of somatic linker histones with the oocyte-specific linker histone H1foo in nuclear transfer. Dev. Biol. 266, 76–86.
Rapid replacement of somatic linker histones with the oocyte-specific linker histone H1foo in nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltF2nuw%3D%3D&md5=6b87730a4331e50328bc989c049ea240CAS | 14729479PubMed |

Yamanaka, K.-i., Sakatani, M., Kubota, K., Balboula, A. Z., Sawai, K., and Takahashi, M. (2011). Effects of downregulating DNA methyltransferase 1 transcript by RNA interference on DNA methylation status of the satellite I region and in vitro development of bovine somatic cell nuclear transfer embryos. J. Reprod. Dev. 57, 393–402.
Effects of downregulating DNA methyltransferase 1 transcript by RNA interference on DNA methylation status of the satellite I region and in vitro development of bovine somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOiu70%3D&md5=f2dc043b53ee69d66616b5c571e5929bCAS |

Yang, Y. S., Brown, D. T., Wellman, S. E., and Sittman, D. B. (1987). Isolation and characterization of a mouse fully replication-dependent H1 gene within a genomic cluster of core histone gene. J. Biol. Chem. 262, 17 118–17 125.
| 1:CAS:528:DyaL1cXmvFyqtg%3D%3D&md5=e1aec1041bb63c733dc85446090cc765CAS |

Yang, B. Z., Yang, C. Y., Li, R. C., Qin, G. S., Zhang, X. F., Pang, C. Y., Chen, M. T., Huang, F. X., Li, Z., Zheng, H. Y., Huang, Y. J., and Liang, X. W. (2010). An inter-subspecies cloned buffalo (Bubalus bubalis) obtained by transferring of cryopreserved embryos via somatic cell nuclear transfer. Reprod. Domest. Anim. 45, e21–e25.
| 1:STN:280:DC%2BC3MzosFCmtQ%3D%3D&md5=0f2e8cd63505b4e8ff53055b09c5c14fCAS | 19788521PubMed |

Yun, Y., Zhao, G.-m., Wu, S.-j., Li, W., and Lei, A.-m. (2012). Replacement of H1 linker histone during bovine somatic cell nuclear transfer. Theriogenology 78, 1371–1380.
Replacement of H1 linker histone during bovine somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2ru7nI&md5=5892e6197eb41afa35ad2b72c3263df7CAS | 22898029PubMed |