Efficient generation of sFat-1 transgenic rabbits rich in n-3 polyunsaturated fatty acids by intracytoplasmic sperm injection
Shun Zhang A , Fenghua Lu A , Qingyou Liu A , Yubing Liu A , Xiaomei Guan A , Yingming Wei A , Shijian Tan A and Deshun Shi A BA State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China.
B Corresponding author. Email: ardsshi@gxu.edu.cn
Reproduction, Fertility and Development 28(3) 310-318 https://doi.org/10.1071/RD13413
Submitted: 14 December 2013 Accepted: 20 May 2014 Published: 16 July 2014
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs) have their first double bond at the third carbon from the methyl end of the fatty-acid chain and had been proven to be beneficial to human health. However, mammals cannot produce n-3 PUFAs by themselves because they lack the n-3 fatty-acid desaturase (Fat-1) gene. Thus, the possibility of producing sFat-1 transgenic rabbits was explored in this study. The transgenic cassette of pPGK1–sFat-1–CMV–EGFP was constructed and transgenic rabbit embryos were produced by intracytoplasmic sperm injection (ICSI). When 123 EGFP-positive embryos at the 2–8-cell stage were transplanted into the oviduct of four oestrous-synchronised recipients, two of them became pregnant and gave birth to seven pups. However, transfer of embryos into the uterus of oestrous-synchronised recipients and oviduct or uterus of oocyte donor rabbits did not result in pregnancy. The integration of the sFat-1 gene was confirmed in six of the seven live pups by PCR and Southern blot. The expression of the sFat-1 gene in the six transgenic pups was also detected by reverse transcription polymerase chain reaction (RT-PCR). Gas chromatography–mass spectrometry analysis revealed that transgenic rabbits exhibited an ~15-fold decrease in the ratio of n-6 : n-3 PUFAs in muscle compared with wild-type rabbits and non-transgenic rabbits. These results demonstrate that sFat-1 transgenic rabbits can be produced by ICSI and display a low ratio of n-6 : n-3 PUFAs.
Additional keywords: embryogenesis, embryo transfer, pregnancy, transgenesis.
References
Ali, S., Garg, S. K., Cohen, B. E., Bhave, P., Harris, W. S., and Whooley, M. A. (2009). Association between omega-3 fatty acids and depressive symptoms among patients with established coronary artery disease: data from the Heart and Soul Study. Psychother. Psychosom. 78, 125–127.| Association between omega-3 fatty acids and depressive symptoms among patients with established coronary artery disease: data from the Heart and Soul Study.Crossref | GoogleScholarGoogle Scholar | 19223688PubMed |
Bousquet, M., Gue, K., Emond, V., Julien, P., Kang, J. X., Cicchetti, F., and Calon, F. (2011). Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson’s disease. J. Lipid Res. 52, 263–271.
| Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson’s disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1alurw%3D&md5=e6ae9d7760aa362459afe5aa5fed4f17CAS | 21115966PubMed |
Buckley, J. D., and Howe, P. R. (2009). Anti-obesity effects of long-chain omega-3 polyunsaturated fatty acids. Obes. Rev. 10, 648–659.
| Anti-obesity effects of long-chain omega-3 polyunsaturated fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKrsr7N&md5=ea50b8e2f718c9845365947bfb51c501CAS | 19460115PubMed |
Certik, M., and Shimizu, S. (1999). Biosynthesis and regulation of microbial polyunsaturated fatty-acid production. J. Biosci. Bioeng. 87, 1–14.
| Biosynthesis and regulation of microbial polyunsaturated fatty-acid production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsl2mtbs%3D&md5=72badc3dbbe72bd0d38b565c44cf18c4CAS | 16232418PubMed |
Clayton, E. H., Hanstock, T. L., Hirneth, S. J., Kable, C. J., Garg, M. L., and Hazell, P. L. (2009). Reduced mania and depression in juvenile bipolar disorder associated with long-chain omega-3 polyunsaturated fatty-acid supplementation. Eur. J. Clin. Nutr. 63, 1037–1040.
| Reduced mania and depression in juvenile bipolar disorder associated with long-chain omega-3 polyunsaturated fatty-acid supplementation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Wls78%3D&md5=cfdee9fdda31cd0da30c2075b7c81b33CAS | 19156158PubMed |
Conklin, S. M., Runyan, C. A., Leonard, S., Reddy, R. D., Muldoon, M. F., and Yao, J. K. (2010). Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder. Prostaglandins Leukot. Essent. Fatty Acids 82, 111–119.
| Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVKnurg%3D&md5=d89c23ec6ff7a30bc0b8c9135d4a1fe2CAS | 20060277PubMed |
Covington, M. B. (2004). Omega-3 fatty acids. Am. Fam. Physician 70, 133–140.
| 15259529PubMed |
De Truchis, P., Kirstetter, M., Perier, A., Meunier, C., Zucman, D., Force, G., Doll, J., Katlama, C., Rozenbaum, W., Masson, H., Gardette, J., and Melchior, J. C. (2007). Reduction in triglyceride level with N-3 polyunsaturated fatty acids in HIV-infected patients taking potent antiretroviral therapy: a randomised prospective study. J. Acquir. Immune Defic. Syndr. 44, 278–285.
| Reduction in triglyceride level with N-3 polyunsaturated fatty acids in HIV-infected patients taking potent antiretroviral therapy: a randomised prospective study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFyqtr4%3D&md5=abfc865773a77f141f868e352f8fdd6fCAS | 17179770PubMed |
FAOSTATS 2012. Available at http://faostat.fao.org [Verified 23 June 2014].
Folch, J., Lees, M., and Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509.
| 1:STN:280:DyaG2s%2FnsFCjtw%3D%3D&md5=7af8b449eecca02927736f072881bbefCAS | 13428781PubMed |
García-Vázquez, F. A., Garcia-Rosello, E., Gutierrez-Adan, A., and Gadea, J. (2009). Effect of sperm treatment on efficiency of EGFP-expressing porcine embryos produced by ICSI-SMGT. Theriogenology 72, 506–518.
| Effect of sperm treatment on efficiency of EGFP-expressing porcine embryos produced by ICSI-SMGT.Crossref | GoogleScholarGoogle Scholar | 19501394PubMed |
Guo, T., Liu, X. F., Ding, X. B., Yang, F. F., Nie, Y. W., An, Y. J., and Guo, H. (2011). Fat-1 transgenic cattle as a model to study the function of omega-3 fatty acids. Lipids Health Dis. 10, 244.
| Fat-1 transgenic cattle as a model to study the function of omega-3 fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFert7g%3D&md5=c6cee1e3081be24972f6257e50c6c513CAS | 22206437PubMed |
Innis, S. M. (2007). Dietary (n-3) fatty acids and brain development. J. Nutr. 137, 855–859.
| 1:CAS:528:DC%2BD2sXktVSlt7Y%3D&md5=9e789c927a4827a4481dc5bbfce3a84bCAS | 17374644PubMed |
Issa, A. M., Mojica, W. A., Morton, S. C., Traina, S., Newberry, S. J., Hilton, L. G., Garland, R. H., and Maclean, C. H. (2006). The efficacy of omega-3 fatty acids on cognitive function in ageing and dementia: a systematic review. Dement. Geriatr. Cogn. Disord. 21, 88–96.
| The efficacy of omega-3 fatty acids on cognitive function in ageing and dementia: a systematic review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVyguw%3D%3D&md5=98df4c6b4ba43595106cac77f6ccb208CAS | 16340205PubMed |
Kang, J. X., Wang, J., Wu, L., and Kang, Z. B. (2004). Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature 427, 504.
| Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFWhtA%3D%3D&md5=1304c18a8fbf0ce471d1c450bc6f4b90CAS | 14765186PubMed |
Kannass, K. N., Colombo, J., and Carlson, S. E. (2009). Maternal DHA levels and toddler free-play attention. Dev. Neuropsychol. 34, 159–174.
| Maternal DHA levels and toddler free-play attention.Crossref | GoogleScholarGoogle Scholar | 19267293PubMed |
Kuo, Y. T., So, P. W., Parkinson, J. R., Yu, W. S., Hankir, M., Herlihy, A. H., Goldstone, A. P., Frost, G. S., Wasserfall, C., and Bell, J. D. (2010). The combined effects on neuronal activation and blood–brain barrier permeability of time and n-3 polyunsaturated fatty acids in mice, as measured in vivo using MEMRI. Neuroimage 50, 1384–1391.
| The combined effects on neuronal activation and blood–brain barrier permeability of time and n-3 polyunsaturated fatty acids in mice, as measured in vivo using MEMRI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFGgs7s%3D&md5=89878d0d540104f22990e4e5129c09ccCAS | 20097292PubMed |
Lacham-Kaplan, O., Shaw, J., Sanchez-Partida, L. G., and Trounson, A. (2003). Oocyte activation after intracytoplasmic injection with sperm frozen without cryoprotectants results in live offspring from inbred and hybrid mouse strains. Biol. Reprod. 69, 1683–1689.
| Oocyte activation after intracytoplasmic injection with sperm frozen without cryoprotectants results in live offspring from inbred and hybrid mouse strains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosV2rs74%3D&md5=3b60b3f3450b1ec5236749cd2e025541CAS | 12890731PubMed |
Lai, L., Kang, J. X., Li, R., Wang, J., Witt, W. T., Yong, H. Y., Hao, Y., Wax, D. M., Murphy, C. N., Rieke, A., Samuel, M., Linville, M. L., Korte, S. W., Evans, R. W., Starzl, T. E., Prather, R. S., and Dai, Y. (2006). Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat. Biotechnol. 24, 435–436.
| Generation of cloned transgenic pigs rich in omega-3 fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Wisb4%3D&md5=0ed7f01e0027fd57446c8bf68b9a1391CAS | 16565727PubMed |
Li, Q., Hou, J., Wang, S., Chen, Y., and An, X. R. (2010). Production of transgenic rabbit embryos through intracytoplasmic sperm injection. Zygote 18, 301–307.
| Production of transgenic rabbit embryos through intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 20663236PubMed |
Lim, G. P., Calon, F., Morihara, T., Yang, F., Teter, B., Ubeda, O., Salem, N., Frautschy, S. A., and Cole, G. M. (2005). A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci. 25, 3032–3040.
| A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFGhs70%3D&md5=f9eb44e4a11d032c9ac482d12d9fe9ffCAS | 15788759PubMed |
Liu, A., Chang, J., Lin, Y., Shen, Z., and Bernstein, P. S. (2010). Long-chain and very long-chain polyunsaturated fatty acids in ocular ageing and age-related macular degeneration. J. Lipid Res. 51, 3217–3229.
| Long-chain and very long-chain polyunsaturated fatty acids in ocular ageing and age-related macular degeneration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWgt7rI&md5=e6e08658832c934b19f48fe7ccb5f172CAS | 20688753PubMed |
Ma, D. W., Ngo, V., Huot, P. S., and Kang, J. X. (2006). N-3 polyunsaturated fatty acids endogenously synthesised in fat-1 mice are enriched in the mammary gland. Lipids 41, 35–39.
| N-3 polyunsaturated fatty acids endogenously synthesised in fat-1 mice are enriched in the mammary gland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFCmsLk%3D&md5=4bbd733344e39ea6b46f0949d994fe60CAS | 16555469PubMed |
Marik, P. E., and Varon, J. (2009). Omega-3 dietary supplements and the risk of cardiovascular events: a systematic review. Clin. Cardiol. 32, 365–372.
| Omega-3 dietary supplements and the risk of cardiovascular events: a systematic review.Crossref | GoogleScholarGoogle Scholar | 19609891PubMed |
Ménesi, D., Kitajka, K., Molnár, E., Kis, Z., Belleger, J., Narce, M., Kang, J. X., Puskás, L. G., and Das, U. N. (2009). Gene and protein expression profiling of the fat-1 mouse brain. Prostaglandins Leukot. Essent. Fatty Acids 80, 33–42.
| Gene and protein expression profiling of the fat-1 mouse brain.Crossref | GoogleScholarGoogle Scholar | 19138887PubMed |
Moreira, P. N., Pozueta, J., Perez-Crespo, M., Valdivieso, F., Gutierrez-Adan, A., and Montoliu, L. (2007). Improving the generation of genomic-type transgenic mice by ICSI. Transgenic Res. 16, 163–168.
| Improving the generation of genomic-type transgenic mice by ICSI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Sqt7Y%3D&md5=fed5f42533442c920fcc1192d8ea5fa2CAS | 17372844PubMed |
Niu, Y., and Liang, S. (2008). Progress in gene transfer by germ cells in mammals. J. Genet. Genomics 35, 701–714.
| Progress in gene transfer by germ cells in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVegs70%3D&md5=19ee45723431c36b4aff70ee17a5a29cCAS | 19103425PubMed |
Pan, D., Zhang, L., Zhou, Y., Feng, C., Long, C., Liu, X., Wan, R., Zhang, J., Lin, A., Dong, E., Wang, S., Xu, H., and Chen, H. (2010). Efficient production of omega-3 fatty-acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer. Sci. China Life Sci. 53, 517–523.
| Efficient production of omega-3 fatty-acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWntLw%3D&md5=bf97492a190be57ed5ce0bda5b5175a8CAS | 20596920PubMed |
Perry, A. C., Wakayama, T., Kishikawa, H., Kasai, T., Okabe, M., Toyoda, Y., and Yanagimachi, R. (1999). Mammalian transgenesis by intracytoplasmic sperm injection. Science 284, 1180–1183.
| Mammalian transgenesis by intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlajsbk%3D&md5=1b1f4e6c2c8eb03fd9654b469839af01CAS | 10325231PubMed |
Pohlmeier, W. E., Hovey, R. C., and Van Eenennaam, A. L. (2011). Reproductive abnormalities in mice expressing omega-3 fatty-acid desaturase in their mammary glands. Transgenic Res. 20, 283–292.
| Reproductive abnormalities in mice expressing omega-3 fatty-acid desaturase in their mammary glands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVGhsrk%3D&md5=3d40cd97f5dab9f970b5e8cc969753c7CAS | 20532624PubMed |
Richards, M. P., Kathirvel, P., Gong, Y., Lopez-Hernandez, A., Walters, E. M., and Prather, R. S. (2011). Long-chain omega-3 fatty-acid levels in loin muscle from transgenic (fat-1 gene) pigs and effects on lipid oxidation during storage. Food Biotechnology 25, 103–114.
| Long-chain omega-3 fatty-acid levels in loin muscle from transgenic (fat-1 gene) pigs and effects on lipid oxidation during storage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlejtro%3D&md5=d200357a8b96412dbb75546e8e8fa332CAS |
Rubin, M. G., Kim, K., and Logan, A. C. (2008). Acne vulgaris, mental health and omega-3 fatty acids: a report of cases. Lipids Health Dis. 7, 36.
| Acne vulgaris, mental health and omega-3 fatty acids: a report of cases.Crossref | GoogleScholarGoogle Scholar | 18851733PubMed |
Saeki, K., Matsumoto, K., Kinoshita, M., Suzuki, I., Tasaka, Y., Kano, K., Taguchi, Y., Mikami, K., Hirabayashi, M., Kashiwazaki, N., Hosoi, Y., Murata, N., and Iritani, A. (2004). Functional expression of a Delta12 fatty-acid desaturase gene from spinach in transgenic pigs. Proc. Natl. Acad. Sci. USA 101, 6361–6366.
| Functional expression of a Delta12 fatty-acid desaturase gene from spinach in transgenic pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVyitrY%3D&md5=06353dff56d760adacb058e5a31f4a1fCAS | 15067141PubMed |
Sessler, A. M., and Ntambi, J. M. (1998). Polyunsaturated fatty-acid regulation of gene expression. J. Nutr. 128, 923–926.
| 1:CAS:528:DyaK1cXjs1Wgs70%3D&md5=cd42bf1ced15c028be4d2f4a8545388cCAS | 9614148PubMed |
Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365–379.
| The importance of the ratio of omega-6/omega-3 essential fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVKrtbY%3D&md5=7f7e3a094b81234fb2299ea438c9d261CAS | 12442909PubMed |
Simopoulos, A. P., Leaf, A., and Salem, N. (2000). Workshop statement on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Prostaglandins Leukot. Essent. Fatty Acids 63, 119–121.
| Workshop statement on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslCrt7w%3D&md5=7f7e105faabd1e5323d63dbe2a05e1beCAS | 10991764PubMed |
Smith, B. K., Holloway, G. P., Reza-Lopez, S., Jeram, S. M., Kang, J. X., and Ma, D. W. (2010). A decreased n-6/n-3 ratio in the fat-1 mouse is associated with improved glucose tolerance. Appl. Physiol. Nutr. Metab. 35, 699–706.
| A decreased n-6/n-3 ratio in the fat-1 mouse is associated with improved glucose tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWlsr3J&md5=7a60c67f681e821aaf08e43a41b5c3aeCAS | 20962926PubMed |
Song, C., Li, X., Leonard, B. E., and Horrobin, D. F. (2003). Effects of dietary n-3 or n-6 fatty acids on interleukin-1beta-induced anxiety, stress and inflammatory responses in rats. J. Lipid Res. 44, 1984–1991.
| Effects of dietary n-3 or n-6 fatty acids on interleukin-1beta-induced anxiety, stress and inflammatory responses in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Giu7Y%3D&md5=3f01716cd767bd64bd2378e7920c1b86CAS | 12837849PubMed |
Spychalla, J. P., Kinney, A. J., and Browse, J. (1997). Identification of an animal omega-3 fatty-acid desaturase by heterologous expression in Arabidopsis. Proc. Natl. Acad. Sci. USA 94, 1142–1147.
| Identification of an animal omega-3 fatty-acid desaturase by heterologous expression in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlGhsb4%3D&md5=d00a3d8517437aad22371011a89882f0CAS | 9037020PubMed |
van Gelder, B. M., Tijhuis, M., Kalmijn, S., and Kromhout, D. (2007). Fish consumption, n-3 fatty acids and subsequent 5-y cognitive decline in elderly men: the Zutphen Elderly Study. Am. J. Clin. Nutr. 85, 1142–1147.
| 1:CAS:528:DC%2BD2sXks1OgsLc%3D&md5=9c9cdf6518f14f28085f056478022a48CAS | 17413117PubMed |
Watanabe, M., Kurome, M., Matsunari, H., Nakano, K., Umeyema, K., Shiota, A., Nakauchi, H., and Nagashima, H. (2012). The creation of transgenic pigs expressing human proteins using BAC-derived, full-length genes and intracytoplasmic sperm injection-mediated gene transfer. Transgenic Res. 21, 605–618.
| The creation of transgenic pigs expressing human proteins using BAC-derived, full-length genes and intracytoplasmic sperm injection-mediated gene transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms12gtLw%3D&md5=45b4228e718ce9cc1230f0e100777512CAS | 22038447PubMed |
Wright, R. W., Bondioli, K., Grammer, J., Kuzan, F., and Menino, A. (1981). FSH or FSH plus LH superovulation in ewes following oestrus synchronisation with medoxyprogesterone acetate pessaries. J. Anim. Sci. 52, 115–118.
| 1:CAS:528:DyaL3MXhtFCqurs%3D&md5=d84dd39744e7f2275a9e7ec7a3c36113CAS | 6787006PubMed |
Wu, X., Ouyang, H., Duan, B., Pang, D., Zhang, L., Yuan, T., Xue, L., Ni, D., Cheng, L., Dong, S., Wei, Z., Li, L., Yu, M., Sun, Q. Y., Chen, D. Y., Lai, L., Dai, Y., and Li, G. P. (2012). Production of cloned transgenic cow expressing omega-3 fatty acids. Transgenic Res. 21, 537–543.
| Production of cloned transgenic cow expressing omega-3 fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms12gsbs%3D&md5=902014dc05f88ba7f5b2aafa458473ceCAS | 21918821PubMed |
Zhu, G., Chen, H., Wu, X., Zhou, Y., Lu, J., Chen, H., and Deng, J. (2008). A modified n-3 fatty-acid desaturase gene from Caenorhabditis briggsae produced high proportion of DHA and DPA in transgenic mice. Transgenic Res. 17, 717–725.
| A modified n-3 fatty-acid desaturase gene from Caenorhabditis briggsae produced high proportion of DHA and DPA in transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFyitb0%3D&md5=a416fcaf1d761da501f276d552f93b27CAS | 18322818PubMed |