Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Comparative effects of adding β-mercaptoethanol or l-ascorbic acid to culture or vitrification–warming media on IVF porcine embryos

Miriam Castillo-Martín A C , Sergi Bonet A , Roser Morató A and Marc Yeste B
+ Author Affiliations
- Author Affiliations

A Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, E-17071 Girona, Spain.

B Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, E-08193 Bellaterra, Spain.

C Corresponding author. Email: miriam.castillo@udg.edu

Reproduction, Fertility and Development 26(6) 875-882 https://doi.org/10.1071/RD13116
Submitted: 9 April 2013  Accepted: 5 June 2013   Published: 2 July 2013

Abstract

The aims of the present study were to; (1) determine the effects of supplementation with two antioxidants during in vitro culture (IVC) on embryo development and quality; and (2) test the effects of adding the antioxidants to vitrification–warming media on the cryotolerance of in vitro-produced (IVP) porcine blastocysts. In Experiment 1, presumptive zygotes were cultured without antioxidants, with 50 µM β-mercaptoethanol (β-ME) or with 100 µM l-ascorbic acid (AC). After culture, blastocyst yield, quality and cryotolerance were evaluated in each treatment group. In Experiment 2, survival rates (3 and 24 h), total cell number, apoptosis index and the formation of reactive oxygen species (ROS) in blastocysts vitrified–warmed with 100 µM AC or 50 µM β-ME or without antioxidants added to the vitrification medium were compared. Antioxidant addition during IVC had no effect on embryo development, total cell number or the apoptosis index, and culturing embryos in the presence of β-ME had no effects on cryotolerance. In contrast, ROS levels and survival rates after vitrification–warming were significantly improved in embryos cultured with AC. Furthermore, addition of AC into vitrification–warming media enhanced embryo survival and embryo quality after warming. In conclusion, our results suggest that supplementing culture or vitrification media with 100 µM AC improves the quality and cryosurvival of IVP porcine blastocysts.

Additional keywords: antioxidants, apoptosis, blastocysts, cryotolerance, reactive oxygen species.


References

Booth, P. J., Holm, P., and Callesen, H. (2005). The effect of oxygen tension on porcine embryonic development is dependent on embryo type. Theriogenology 63, 2040–2052.
The effect of oxygen tension on porcine embryonic development is dependent on embryo type.Crossref | GoogleScholarGoogle Scholar | 15823359PubMed |

Brison, D. R., and Schultz, R. M. (1997). Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol. Reprod. 56, 1088–1096.
Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisl2mu7Y%3D&md5=a77daa022476d3bbf3d634a66def175fCAS | 9160705PubMed |

Buettner, G. R. (1993). The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300, 535–543.
The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpsFKkug%3D%3D&md5=188668b90d428d893638028d574aee0aCAS | 8434935PubMed |

Byrne, A. T., Southgate, J., Brison, D. R., and Leese, H. J. (1999). Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil. 117, 97–105.
Analysis of apoptosis in the preimplantation bovine embryo using TUNEL.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlalt7k%3D&md5=d66d361c9d74aa9e4844399c4cdd7219CAS | 10645250PubMed |

Castillo-Martín, M., Yeste, M., Morató, R., Mogas, T., and Bonet, S. (2013). Cryotolerance of in vitro-produced porcine blastocysts is improved when using glucose instead of pyruvate and lactate during the first 2 days of embryo culture. Reprod. Fertil. Dev. 25, 737–745.
Cryotolerance of in vitro-produced porcine blastocysts is improved when using glucose instead of pyruvate and lactate during the first 2 days of embryo culture.Crossref | GoogleScholarGoogle Scholar | 22953756PubMed |

Chung, Y. G., Mann, M. R., Bartolomei, M. S., and Latham, K. E. (2002). Nuclear-cytoplasmic ‘tug of war’ during cloning: effects of somatic cell nuclei on culture medium preferences of preimplantation cloned mouse embryos. Biol. Reprod. 66, 1178–1184.
Nuclear-cytoplasmic ‘tug of war’ during cloning: effects of somatic cell nuclei on culture medium preferences of preimplantation cloned mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlClu7Y%3D&md5=986857108ef3f80a7a8e59add0615248CAS | 11906939PubMed |

Goto, Y., Noda, Y., Mori, T., and Nakano, M. (1993). Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic. Biol. Med. 15, 69–75.
Increased generation of reactive oxygen species in embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvFOnsL8%3D&md5=671c502ef46b157604daad6eda39ac76CAS | 8359711PubMed |

Guérin, P., El Mouatassim, S., and Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–189.
Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings.Crossref | GoogleScholarGoogle Scholar | 11284661PubMed |

Gupta, M. K., Uhm, S. J., and Lee, H. T. (2010). Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil. Steril. 93, 2602–2607.
Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 20303480PubMed |

Halliwell, B., and Gutteridge, J. M. C. (1989). The chemistry of oxygen radicals and other derived species. In ‘Free Radicals in Biology and Medicine’. (Eds B. Halliwell and J. M. C. Gutteridge.) pp. 22–85. (Clarendon Press: Oxford, UK.)

Hammami, S., Morató, R., Romaguera, R., Roura, M., Catalá, M.G., Paramio, M.T., Mogas, T., and Izquierdo, D. (2012). Developmental competence and embryo quality of small oocytes from pre-pubertal goats cultured in IVM medium supplemented with low level of hormones, insulin–transferring–selenium and ascorbic acid. Reprod. Dom. Anim. 48, 339–344.
Developmental competence and embryo quality of small oocytes from pre-pubertal goats cultured in IVM medium supplemented with low level of hormones, insulin–transferring–selenium and ascorbic acid.Crossref | GoogleScholarGoogle Scholar |

Hashem, A., Hossein, M. S., Woo, J. Y., Kim, S., Kim, J. H., Lee, S. H., Koo, O. J., Park, S. M., Lee, E. G., Kang, S. K., and Lee, B. C. (2006). Effect of potassium simplex optimization medium and NCSU 23 supplemented with beta-mercaptoethanol and amino acids of in vitro fertilized porcine embryos. J. Reprod. Dev. 52, 591–599.
Effect of potassium simplex optimization medium and NCSU 23 supplemented with beta-mercaptoethanol and amino acids of in vitro fertilized porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtl2lug%3D%3D&md5=7ff0b4a8462fe4368e6575e1f794ae80CAS | 16807505PubMed |

Hossein, M. S., Hashem, M. A., Jeong, Y. W., Lee, M. S., Kim, S., Kim, J. H., Koo, O. J., Park, S. M., Lee, E. G., Park, S. W., Kang, S. K., Lee, B. C., and Hwang, W. S. (2007). Temporal effects of alpha-tocopherol and l-ascorbic acid on in vitro fertilized porcine embryo development. Anim. Reprod. Sci. 100, 107–117.
Temporal effects of alpha-tocopherol and l-ascorbic acid on in vitro fertilized porcine embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvF2is7Y%3D&md5=b40f5280c5a4694c4742806544849627CAS | 16860500PubMed |

Hosseini, S.M., Forouzanfar, M., Hajian, M., Asgari, V., Abedi, P., Hosseini, L., Ostadhosseini, S., Moulavi, F., Safahani Langrroodi, M., Sadeghi, H., Bahramian, H., Eghbalsaied, Sh., and Nasr-Esfahani, M. H. (2009). Antioxidant supplementation of culture medium during embryo development and/or after vitrification–warming; which is the most important? J. Assist. Reprod. Genet. 26, 355–364.
Antioxidant supplementation of culture medium during embryo development and/or after vitrification–warming; which is the most important?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MrmslCgtw%3D%3D&md5=7ad5128ebb6b5175c2e41789ddf3abd2CAS | 19543824PubMed |

Hu, J., Cheng, D., Gao, X., Bao, J., Ma, X., and Wang, H. (2012). Vitamin C enhances the in vitro development of porcine pre-implantation embryos by reducing oxidative stress. Reprod. Domest. Anim. 47, 873–879.
Vitamin C enhances the in vitro development of porcine pre-implantation embryos by reducing oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKgsbY%3D&md5=9ddbc9c893c60394972e9c06d0b87292CAS | 22239270PubMed |

Huang, Y., Tang, X., Xie, W., Zhou, Y., Li, D., Zhou, Y., Zhu, J., Yuan, T., Lai, L., Pang, D., and Ouyang, H. (2011). Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos. Biochem. Biophys. Res. Commun. 411, 397–401.
Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1arsL4%3D&md5=46edebcc066f462092faf33262934548CAS | 21749856PubMed |

Jeong, Y. W., Park, S. W., Hossein, M. S., Kim, S., Kim, J. H., Lee, S. H., Kang, S. K., Lee, B. C., and Hwang, W. S. (2006). Antiapoptotic and embryotrophic effects of alpha-tocopherol and l-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer. Theriogenology 66, 2104–2112.
Antiapoptotic and embryotrophic effects of alpha-tocopherol and l-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SmsLnK&md5=1473b0a1eaf48a95ec8cc706ea192c14CAS | 16876856PubMed |

Karja, N. W., Kikuchi, K., Fahrudin, M., Ozawa, M., Somfai, T., Ohnuma, K., Noguchi, J., Kaneko, H., and Nagai, T. (2006). Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions. Reprod. Biol. Endocrinol. 4, 54.
Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions.Crossref | GoogleScholarGoogle Scholar | 17087833PubMed |

Kere, M., Siriboon, C., Lo, N. W., Nguyen, N. T., and Ju, J. C. (2013). Ascorbic acid improves the developmental competence of porcine oocytes after parthenogenetic activation and somatic cell nuclear transplantation. J. Reprod. Dev. 59, 78–84.
| 1:CAS:528:DC%2BC3sXjvFOjtLw%3D&md5=1483ce98ab207c975b33388f400968ddCAS | 23154385PubMed |

Kikuchi, K., Onishi, A., Kashiwazaki, N., Iwamoto, M., Noguchi, J., Kaneko, H., Akita, T., and Nagai, T. (2002). Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol. Reprod. 66, 1033–1041.
Successful piglet production after transfer of blastocysts produced by a modified in vitro system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlClur8%3D&md5=0da6918593cb618cc40294d92c3d461fCAS | 11906923PubMed |

Kitagawa, Y., Suzuki, K., Yoneda, A., and Watanabe, T. (2004). Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62, 1186–1197.
Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFCqs7o%3D&md5=9d0e73ed5b2d46f109bf8df7ff3755acCAS | 15325546PubMed |

Korhonen, K., Julkunen, H., Kananen, K., Bredbacka, P., Tiirikka, T., Räty, M., Vartia, K., Kaimio, I., Kontinen, A., Halmekytö, M., Vilkki, J., Peippo, J., and Lindeberg, H. (2012). The effect of ascorbic acid during biopsy and cryopreservation on viability of bovine embryos produced in vivo. Theriogenology 77, 201–205.
The effect of ascorbic acid during biopsy and cryopreservation on viability of bovine embryos produced in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2rt7vN&md5=ba6bab98e1c91502df8ef60c588daf7aCAS | 21924472PubMed |

Kuwayama, M., Vajta, G., Kato, O., and Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 11, 300–308.
Highly efficient vitrification method for cryopreservation of human oocytes.Crossref | GoogleScholarGoogle Scholar | 16176668PubMed |

Lane, M., Maybach, J. M., and Gardner, D. K. (2002). Addition of ascorbate during cryopreservation stimulates subsequent embryo development. Hum. Reprod. 17, 2686–2693.
Addition of ascorbate during cryopreservation stimulates subsequent embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1GgtLo%3D&md5=c30aa45af9f8cf911ad110b7bbf1887aCAS | 12351549PubMed |

Mazur, P. (1970). Cryobiology: the freezing of biological systems. Science 168, 939–949.
Cryobiology: the freezing of biological systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c7mslKlsA%3D%3D&md5=852021e78f50ac19f4605a63c3b7b8d8CAS | 5462399PubMed |

Nakayama, T., Noda, Y., Goto, Y., and Mori, T. (1994). Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology 41, 499–510.
Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktVCjsL8%3D&md5=c671554725382ec0315b0141a73b2fe5CAS | 16727408PubMed |

Nedambale, T. L., Du, F., Yang, X., and Tian, X. C. (2006). Higher survival rate of vitrified and thawed in vitro produced bovine blastocysts following culture in defined medium supplemented with β-mercaptoethanol. Anim. Reprod. Sci. 93, 61–75.
Higher survival rate of vitrified and thawed in vitro produced bovine blastocysts following culture in defined medium supplemented with β-mercaptoethanol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFSrsrk%3D&md5=ea2b4da7df479cb67ec3af8c60476178CAS | 16099115PubMed |

Noda, Y., Matsumoto, H., Umaoka, Y., Tatsumi, K., Kishi, J., and Mori, T. (1991). Involvement of superoxide radicals in the mouse two-cell block. Mol. Reprod. Dev. 28, 356–360.
Involvement of superoxide radicals in the mouse two-cell block.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1eqsr8%3D&md5=f26d5ad347b73526ff38c839f4784dbeCAS | 1648368PubMed |

Park, J. I., Grant, C. M., Davies, M. J., and Dawes, I. W. (1998). The cytoplasmic Cu, Zn superoxide dismutase of saccharomyces cerevisiae is required for resistance to freeze–thaw stress. Generation of free radicals during freezing and thawing. J. Biol. Chem. 273, 22 921–22 928.
The cytoplasmic Cu, Zn superoxide dismutase of saccharomyces cerevisiae is required for resistance to freeze–thaw stress. Generation of free radicals during freezing and thawing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvFalurw%3D&md5=fc28aaf2f3ae64e2ae9652edb6cc96c5CAS |

Petters, R. M., and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 1:STN:280:DyaK2c7psVCktQ%3D%3D&md5=d1c333412cc96909299bbec3222f40ceCAS | 8145215PubMed |

Rath, D., Long, C. R., Dobrinsky, J. R., Welch, G. R., Schreier, L. L., and Johnson, L. A. (1999). In vitro production of sexed embryos for gender preselection: high-speed sorting of X-chromosome-bearing sperm to produce pigs after embryo transfer. J. Anim. Sci. 77, 3346–3352.
| 1:CAS:528:DC%2BD3cXktFegtQ%3D%3D&md5=ba38d743ff257f7f011c0c75e006bf3aCAS | 10641883PubMed |

Robertson, I., and Nelson, R. E. (1998). Certification and identification of the embryo. In ‘Manual of the International Embryo Transfer Society’. (Eds D. A. Stringfellow and S. M. Seidel.) pp. 103–134. (International Embryo Transfer Society: Savoy, IL.)

Romek, M., Gajda, B., Krzysztofowicz, E., Kepczynski, M., and Somorag, Z. (2011). New technique to quantify the lipid composition of lipid droplets in porcine oocytes and pre-implantation embryos using Nile Red fluorescent probe. Theriogenology 75, 42–54.
New technique to quantify the lipid composition of lipid droplets in porcine oocytes and pre-implantation embryos using Nile Red fluorescent probe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFantrvN&md5=77a309838da98c100a08eeb251d2d90aCAS | 20833424PubMed |

Rose, R. C., and Bode, A. M. (1993). Biology of free radical scavengers: an evaluation of ascorbate. FASEB J. 7, 1135–1142.
| 1:CAS:528:DyaK3sXms12mu74%3D&md5=7fb634607cca5e6be401359cd4fcada6CAS | 8375611PubMed |

Shamsuddin, M., Larson, B., Gustafsson, H., and Rodrigues-Martinez, H. (1994). A serum-free, cell-free culture system for development of bovine one-cell embryo up to blastocyst stage with improved viability. Theriogenology 41, 1033–1043.
A serum-free, cell-free culture system for development of bovine one-cell embryo up to blastocyst stage with improved viability.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVaitg%3D%3D&md5=9f5111d41860a1e046174e9b832fafa2CAS | 16727456PubMed |

Somfai, T., Ozawa, M., Noguchi, J., Kaneko, H., Kuriani Karja, N. W., Farhudin, M., Dinnyés, A., Nagai, T., and Kikuchi, K. (2007). Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 55, 115–126.
Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvF2qtbc%3D&md5=021464eb03f30d4a2a9eb685031c44d1CAS | 17681290PubMed |

Stachowiak, E. M., Papis, K., Kruszewski, M., Iwanenko, T., Bartlomiejczyk, T., and Modlinski, J. A. (2009). Comparison of the level(s) of DNA damage using Comet assay in bovine oocytes subjected to selected vitrification methods. Reprod. Domest. Anim. 44, 653–658.
Comparison of the level(s) of DNA damage using Comet assay in bovine oocytes subjected to selected vitrification methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaiurnL&md5=a553f1993edaaedf8906c518eba3c803CAS | 19032440PubMed |

Takahashi, M., Nagai, T., Hamano, S., Kuwayama, M., Okamura, N., and Okano, A. (1993). Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol. Reprod. 49, 228–232.
Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Ogurk%3D&md5=f9b6cde9370f3531c5e861fae114e0efCAS | 8373946PubMed |

Tarín, J. J., and Trounson, A. O. (1993). Effects of stimulation or inhibition of lipid peroxidation on freezing–thawing of mouse embryos. Biol. Reprod. 49, 1362–1368.
Effects of stimulation or inhibition of lipid peroxidation on freezing–thawing of mouse embryos.Crossref | GoogleScholarGoogle Scholar | 8286618PubMed |

Vajta, G. (2000). Vitrification of the oocytes and embryos of domestic animals. Anim. Reprod. Sci. 60-61, 357–364.
Vitrification of the oocytes and embryos of domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvgt1KntA%3D%3D&md5=cdacb2638a02a833279ac4183f7beeccCAS | 10844207PubMed |

Wang, X., Falcone, T., Attaran, M., Goldberg, J. M., Agarwal, A., and Sharma, R. K. (2002). Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate. Fertil. Steril. 78, 1272–1277.
Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate.Crossref | GoogleScholarGoogle Scholar | 12477524PubMed |

Yamanaka, K., Sugimura, S., Wakai, T., Kawahara, M., and Sato, E. (2009). Difference in sensitivity to culture conditions between in vitro fertilized and somatic cell nuclear transfer embryos in pigs. J. Reprod. Dev. 55, 299–304.
Difference in sensitivity to culture conditions between in vitro fertilized and somatic cell nuclear transfer embryos in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFehtbY%3D&md5=a8596632563599fd29da7238873b6eaaCAS | 19293559PubMed |

Yang, H. W., Hwang, K. J., Kwon, H. C., Kim, H. S., Choi, K. W., and Oh, K. S. (1998). Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13, 998–1002.
Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12gurs%3D&md5=1bc34dde54ba9513aea3cbfb7705fdd9CAS | 9619561PubMed |