Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Equine oviduct explant culture: a basic model to decipher embryo–maternal communication

Hilde Nelis A F G , Katharina D’Herde B F , Karen Goossens C , Lynn Vandenberghe A , Bart Leemans A , Katrien Forier D E , Katrien Smits A , Kevin Braeckmans D E , Luc Peelman C and Ann Van Soom A
+ Author Affiliations
- Author Affiliations

A Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.

B Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.

C Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.

D Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.

E Center for Nano- and Biophotonics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.

F These authors contributed equally to this work.

G Corresponding author. Email: hilde.nelis@ugent.be

Reproduction, Fertility and Development 26(7) 954-966 https://doi.org/10.1071/RD13089
Submitted: 14 March 2013  Accepted: 18 June 2013   Published: 1 August 2013

Abstract

Equine embryos remain for 6 days in the oviduct and thus there is a need for an in vitro model to study embryo–oviductal interactions in the horse, since this subtle way of communication is very difficult to analyse in vivo. Until now, no equine oviduct explant culture model has been characterised both morphologically and functionally. Therefore, we established a culture system for equine oviduct explants that maintained epithelial morphology during 6 days of culture, as revealed by light microscopy and transmission electron microscopy. We demonstrated the presence of highly differentiated, tall columnar, pseudostratified epithelium with basal nuclei, numerous nucleoli, secretory granules and apical cilia, which is very similar to the in vivo situation. Both epithelium and stromal cells originating from the lamina propria are represented in the explants. Moreover, at least 98% of the cells remained membrane intact and fewer than 2% of the cells were apoptotic after 6 days of culture. Although dark-cell degeneration, which is a hypoxia-related type of cell death, was observed in the centre of the explants, quantitative real-time PCR failed to detect upregulation of the hypoxia-related marker genes HIF1A, VEGFA, uPA, GLUT1 and PAI1. Since the explants remained morphologically and functionally intact and since the system is easy to set up, it appears to be an excellent tool for proteome, transcriptome and miRNome analysis in order to unravel embryo–maternal interactions in the horse.

Additional keywords: dark-cell degeneration, horse.


References

Abe, H., and Hoshi, H. (1997). Bovine oviductal epithelial cells: their cell culture and applications in studies for reproductive biology. Cytotechnology 23, 171–183.
Bovine oviductal epithelial cells: their cell culture and applications in studies for reproductive biology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC383ls1yhtg%3D%3D&md5=e9011501a6ff35e4a7065a360c90c371CAS | 22358533PubMed |

Ball, B. A., and Miller, P. G. (1992). Survival of equine embryos co-cultured with equine oviductal epithelium from the 4-cell to 8-cell to the blastocyst stage after transfer to synchronous recipient mares. Theriogenology 37, 979–991.
Survival of equine embryos co-cultured with equine oviductal epithelium from the 4-cell to 8-cell to the blastocyst stage after transfer to synchronous recipient mares.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFylsg%3D%3D&md5=e15ed33ef8eb1ed0528612dc0bb94dacCAS | 16727097PubMed |

Ball, B. A., Altschul, M., and Ellington, J. E. (1991). In vitro development of Day-2 equine embryos co-cultured with oviductal explants or trophoblastic vesicles. Theriogenology 35, 669–682.
In vitro development of Day-2 equine embryos co-cultured with oviductal explants or trophoblastic vesicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFKqug%3D%3D&md5=a82a0f35150174fdef5e466c76fca526CAS | 16726935PubMed |

Ball, B. A., Brinsko, S. P., Thomas, P. G. A., Miller, P. G., and Ellington, J. E. (1993). Development to blastocysts of one-cell to 2-cell equine embryos after co-culture with uterine tubal epithelial cells. Am. J. Vet. Res. 54, 1139–1144.
| 1:STN:280:DyaK3sznvVWktg%3D%3D&md5=52e1fdb4f9607aa24e10668c1a5e7389CAS | 8368612PubMed |

Barenberg, P., Strahlendorf, H., and Strahlendorf, J. (2001). Hypoxia induces an excitotoxic-type of dark-cell degeneration in cerebellar Purkinje neurons. Neurosci. Res. 40, 245–254.
Hypoxia induces an excitotoxic-type of dark-cell degeneration in cerebellar Purkinje neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVehs7c%3D&md5=effd2cb5dee4bf315b0e6da49f8b467eCAS | 11448516PubMed |

Bavister, B. D. (1995). Culture of preimplantation embryos: facts and artefacts. Hum. Reprod. Update 1, 91–148.
Culture of preimplantation embryos: facts and artefacts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2Fps1Cisw%3D%3D&md5=628fc147a2fc59f739cd692a36d2cadaCAS | 15726768PubMed |

Blasi, F. (1997). uPA, uPAR, PAI-I: key intersection of proteolytic, adhesive and chemotactic highways? Immunol. Today 18, 415–417.
uPA, uPAR, PAI-I: key intersection of proteolytic, adhesive and chemotactic highways?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvVGhu7w%3D&md5=3fbd2c92856278326f202c43ea04ea03CAS | 9293155PubMed |

Bogaert, L., Van Poucke, M., De Baere, C., Peelman, L., Gasthuys, F., and Martens, A. (2006). Selection of a set of reliable reference genes for quantitative real-time PCR in normal equine skin and in equine sarcoids. BMC Biotechnol. 6, 24.
Selection of a set of reliable reference genes for quantitative real-time PCR in normal equine skin and in equine sarcoids.Crossref | GoogleScholarGoogle Scholar | 16643647PubMed |

Brinsko, S. P., Ball, B. A., Miller, P. G., Thomas, P. G. A., and Ellington, J. E. (1994). In vitro development of Day-2 embryos obtained from young, fertile mares and aged, subfertile mares. J. Reprod. Fertil. 102, 371–378.
In vitro development of Day-2 embryos obtained from young, fertile mares and aged, subfertile mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtFyns70%3D&md5=330e86c734887459272daac36a626d62CAS | 7861390PubMed |

Buhi, W. C. (2002). Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein. Reproduction 123, 355–362.
Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Clsr0%3D&md5=91a261e93f97cdfc1ad859fa7540f514CAS | 11882012PubMed |

Buhi, W. C., Alvarez, I. M., and Kouba, A. J. (2000). Secreted proteins of the oviduct. Cells Tissues Organs 166, 165–179.
Secreted proteins of the oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVyru74%3D&md5=9faf49c3966e1f50e03d84cc1de617a3CAS | 10729726PubMed |

Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., and Wittwer, C. T. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622.
The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWqs7g%3D&md5=540b071d42e66eb1d74d96cb642fb4e1CAS | 19246619PubMed |

Campbell, D. L., Douglas, L. W., and Ramge, J. C. (1979). Cannulation of the equine oviduct and chemical analysis of oviduct fluid. Theriogenology 12, 47–59.
Cannulation of the equine oviduct and chemical analysis of oviduct fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlsFCru70%3D&md5=7e8981db5a0fb3259af1e4e1028dc849CAS | 16725431PubMed |

Cappelli, K., Felicetti, M., Capomaccio, S., Spinsanti, G., Silvestrelli, M., and Supplizi, A. V. (2008). Exercise-induced stress in horses: selection of the most-stable reference genes for quantitative RT-PCR normalization. BMC Mol. Biol. 9, 49.
Exercise-induced stress in horses: selection of the most-stable reference genes for quantitative RT-PCR normalization.Crossref | GoogleScholarGoogle Scholar | 18489742PubMed |

Carmeliet, P., Mackman, N., Moons, L., Luther, T., Gressens, P., VanVlaenderen, I., Demunck, H., Kasper, M., Breier, G., Evrard, P., Muller, M., Risau, W., Edgington, T., and Collen, D. (1996). Role of tissue factor in embryonic blood-vessel development. Nature 383, 73–75.
Role of tissue factor in embryonic blood-vessel development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsV2jsbo%3D&md5=64564a3a2420b44e5fce9e85368357c1CAS | 8779717PubMed |

Chi, J. T., Wang, Z., Nuyten, D. S. A., Rodriguez, E. H., Schaner, M. E., Salim, A., Wang, Y., Kristensen, G. B., Helland, A., Borresen-Dale, A. L., Giaccia, A., Longaker, M. T., Hastie, T., Yang, G. P., van de Vijver, M. J., and Brown, P. O. (2006). Gene-expression programs in response to hypoxia: cell-type specificity and prognostic significance in human cancers. PLoS Med. 3, e47.
Gene-expression programs in response to hypoxia: cell-type specificity and prognostic significance in human cancers.Crossref | GoogleScholarGoogle Scholar | 16417408PubMed |

Choi, Y. H., Roasa, L. M., Love, C. C., Varner, D. D., Brinsko, S., and Hinrichs, K. (2004). Blastocyst formation rates in vivo and in vitro of in vitro-matured equine oocytes fertilized by intracytoplasmic sperm injection. Biol. Reprod. 70, 1231–1238.
Blastocyst formation rates in vivo and in vitro of in vitro-matured equine oocytes fertilized by intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFelt7w%3D&md5=5687280539f728b0d7b8961537cd6823CAS | 14695908PubMed |

Choi, Y. H., Love, C. C., Varner, D. D., and Hinrichs, K. (2006). Equine blastocyst development after intracytoplasmic injection of sperm subjected to two freeze–thaw cycles. Theriogenology 65, 808–819.
Equine blastocyst development after intracytoplasmic injection of sperm subjected to two freeze–thaw cycles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28%2FnslejsA%3D%3D&md5=872c6c2aa6089853e96161bbab64dd0aCAS | 16095679PubMed |

Cox, C. I., and Leese, H. J. (1997). Retention of functional characteristics by bovine oviduct and uterine epithelia in vitro. Anim. Reprod. Sci. 46, 169–178.
Retention of functional characteristics by bovine oviduct and uterine epithelia in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslKns7Y%3D&md5=ee97fb7b9665452683867c875867445eCAS | 9231257PubMed |

De Pauw, I. M., Van Soom, A., Laevens, H., Verberckmoes, S., and de Kruif, A. (2002). Sperm binding to epithelial oviduct explants in bulls with different non-return rates investigated with a new in vitro model. Biol. Reprod. 67, 1073–1079.
Sperm binding to epithelial oviduct explants in bulls with different non-return rates investigated with a new in vitro model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsV2rsbg%3D&md5=3b4dbd35001df7a9c9db031ded2177a3CAS | 12297520PubMed |

De Pauw, I. M. C., Van Soom, A., Maes, D., Verberckmoes, S., and de Kruif, A. (2003). Effect of sperm coating on the survival and penetrating ability of in vitro-stored bovine spermatozoa. Theriogenology 59, 1109–1122.
Effect of sperm coating on the survival and penetrating ability of in vitro-stored bovine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1WmsA%3D%3D&md5=12d8140a25b08ab78865d8c57e904e29CAS |

Dobrinski, I., Jacob, J. R., Tennant, B. C., and Ball, B. A. (1999). Generation of an equine oviductal epithelial cell line for the study of sperm–oviduct interactions. Theriogenology 52, 875–885.
Generation of an equine oviductal epithelial cell line for the study of sperm–oviduct interactions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvFejsA%3D%3D&md5=7ea5a5e638d293bf39e79ee7bc67e39fCAS | 10735127PubMed |

Eyestone, W. H., and First, N. L. (1989). Co-culture of early cattle embryos to the blastocyst stage with oviductal tissue or in conditioned medium. J. Reprod. Fertil. 85, 715–720.
Co-culture of early cattle embryos to the blastocyst stage with oviductal tissue or in conditioned medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7pvFGmtA%3D%3D&md5=4dd14c52796d03173939df176d8a9024CAS | 2704004PubMed |

Eyestone, W. H., Jones, J. M., and First, N. L. (1991). Some factors affecting the efficacy of oviduct tissue-conditioned medium for the culture of early bovine embryos. J. Reprod. Fertil. 92, 59–64.
Some factors affecting the efficacy of oviduct tissue-conditioned medium for the culture of early bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3nvVSgug%3D%3D&md5=c860e74855121d182e86291446245ca4CAS | 2056496PubMed |

Fan, X., Heijnen, C. J., van der Kooij, M. A., Groenendaal, F., and van Bel, F. (2009). The role and regulation of hypoxia-inducible factor-1 alpha expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Res. Brain Res. Rev. 62, 99–108.
The role and regulation of hypoxia-inducible factor-1 alpha expression in brain development and neonatal hypoxic-ischemic brain injury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGmur7L&md5=4bd6da7c062741f3944ecc22906fb2c7CAS |

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191.
| 17695343PubMed |

Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., Powell-Braxton, L., Hillan, K. J., and Moore, M. W. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442.
Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVKqtLk%3D&md5=59fc804c06be46915f24dff183adca49CAS | 8602242PubMed |

Fischer, B., and Bavister, B. D. (1993). Oxygen tension in the oviduct and uterus of Rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 99, 673–679.
Oxygen tension in the oviduct and uterus of Rhesus monkeys, hamsters and rabbits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7kvFKmtQ%3D%3D&md5=eec6ee56a72a4281f7dd70a2d9406e94CAS | 8107053PubMed |

Gabler, C., Einspanier, A., Schams, D., and Einspanier, R. (1999). Expression of vascular endothelial growth factor (VEGF) and its corresponding receptors (flt-1 and flk-1) in the bovine oviduct. Mol. Reprod. Dev. 53, 376–383.
Expression of vascular endothelial growth factor (VEGF) and its corresponding receptors (flt-1 and flk-1) in the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVOlsrY%3D&md5=9fc4f27b3420613e8261319bf623d16dCAS | 10398412PubMed |

Gabler, C., Killian, G. J., and Einspanier, R. (2001). Differential expression of extracellular matrix components in the bovine oviduct during the oestrous cycle. Reproduction 122, 121–130.
Differential expression of extracellular matrix components in the bovine oviduct during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVGis7w%3D&md5=2a231c09782b2d9099e94bb1fe9bac83CAS | 11425336PubMed |

Garner, D. L., Johnson, L. A., Yue, S. T., Roth, B. L., and Haugland, R. P. (1994). Dual DNA staining assessment of bovine sperm viability using Sybr-14 and propidium iodide. J. Androl. 15, 620–629.
| 1:STN:280:DyaK2M3jvVansw%3D%3D&md5=d7d346b10a66fbeb64904cef33e23102CAS | 7721666PubMed |

Gjørret, J. O., Fabian, D., Avery, B., and Maddox-Hyttel, P. (2007). Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro-produced pre-implantation embryos. Mol. Reprod. Dev. 74, 961–971.
Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro-produced pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 17393434PubMed |

Goossens, J. F., Foulon, C., Villard, A. L., Puy, J. Y., Lefebvre, I., Perigaud, C., Vaccher, C., and Bonte, J. P. (2005). Column selection and method development for the separation of nucleoside phosphotriester diastereoisomers, new potential anti-viral drugs. Application to cellular extract analysis. Biomed. Chromatogr. 19, 415–425.
Column selection and method development for the separation of nucleoside phosphotriester diastereoisomers, new potential anti-viral drugs. Application to cellular extract analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslGgtr0%3D&md5=d39c0f4d23b20c85d533330e3e583815CAS | 16037929PubMed |

Hahn, T., Barth, S., Weiss, U., Mosgoeller, W., and Desoye, G. (1998). Sustained hyperglycaemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? FASEB J. 12, 1221–1231.
| 1:CAS:528:DyaK1cXlvFWku7g%3D&md5=330c8c57c9803d21a3d229277eb36dfeCAS | 9737725PubMed |

Hardy, K., and Spanos, S. (2002). Growth factor expression and function in the human and mouse preimplantation embryo. J. Endocrinol. 172, 221–236.
Growth factor expression and function in the human and mouse preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVejt78%3D&md5=eb91d6393ace8689e9af65446fc5cc36CAS | 11834440PubMed |

Hardy, K., Wright, C., Rice, S., Tachataki, M., Roberts, R., Morgan, D., Spanos, S., and Taylor, D. (2002). Future developments in assisted reproduction in humans. Reproduction 123, 171–183.
Future developments in assisted reproduction in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFChsb0%3D&md5=2fb5981dab9a4484799c753ba97ec59bCAS | 11866685PubMed |

Hinrichs, K. (2010). In vitro production of equine embryos: state of the art. Reprod. Domest. Anim. 45, 3–8.
In vitro production of equine embryos: state of the art.Crossref | GoogleScholarGoogle Scholar | 20591059PubMed |

Hinrichs, K., and Choi, Y.-H. (2005). Assisted reproductive techniques in the horse. Clinical techniques in equine practice 4, 210–218.
Assisted reproductive techniques in the horse.Crossref | GoogleScholarGoogle Scholar |

Holm, P., Walker, S. K., and Seamark, R. F. (1996). Embryo viability, duration of gestation and birth weight in sheep after transfer of in vitro-matured and in vitro-fertilized zygotes cultured in vitro or in vivo. J. Reprod. Fertil. 107, 175–181.
Embryo viability, duration of gestation and birth weight in sheep after transfer of in vitro-matured and in vitro-fertilized zygotes cultured in vitro or in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFGgsbg%3D&md5=5fab97a6207dfa1d6319cd041ce3eb38CAS | 8882282PubMed |

Kouba, A. J., Burkhardt, B. R., Alvarez, I. M., Goodenow, M. M., and Buhi, W. C. (2000). Oviductal plasminogen activator inhibitor-1 (PAI-1): mRNA, protein and hormonal regulation during the oestrous cycle and early pregnancy in the pig. Mol. Reprod. Dev. 56, 378–386.
Oviductal plasminogen activator inhibitor-1 (PAI-1): mRNA, protein and hormonal regulation during the oestrous cycle and early pregnancy in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFOntrg%3D&md5=ff1b170dc5326a81edf8f2d37e322ca2CAS | 10862005PubMed |

Krysko, D. V., Vanden Berghe, T., D’Herde, K., and Vandenabeele, P. (2008). Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44, 205–221.
Apoptosis and necrosis: detection, discrimination and phagocytosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislWnurk%3D&md5=1d7bf1c38704a97749a61a03e24bf177CAS | 18314051PubMed |

Leclerc, E., Sakai, Y., and Fujii, T. (2003). Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed. Microdevices 5, 109–114.
Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVemtrY%3D&md5=75a0dcedec102724ba7c79485a540f08CAS |

Leese, H. J., Alexiou, M., Comer, M. T., Lamb, V. K., and Thompson, J. G. (1995). Assessment of embryo nutritional requirements and role of co-culture techniques. Adv. Rep. End. 7, 11–23.
| 1:CAS:528:DyaK28XmtlCgtLc%3D&md5=4b1e7e4cf0c4ab82c07274cb3a1057e2CAS |

Leist, M., and Jaattela, M. (2001). Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2, 589–598.
Four deaths and a funeral: from caspases to alternative mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVOqs78%3D&md5=8d4e91faeb5c74376b70b5e23443bdaeCAS | 11483992PubMed |

Lenth, R. V. (2007). Statistical power calculations. J. Anim. Sci. 85, E24–E29.
Statistical power calculations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7itlWmsQ%3D%3D&md5=db47f1851eced355bfd82a5ac51192f5CAS | 17060421PubMed |

Liao, H., Hyman, M. C., Lawrence, D. A., and Pinsky, D. J. (2007). Molecular regulation of the PAI-1 gene by hypoxia: contributions of Egr-1, HIF-1 alpha and C/EBP alpha. FASEB J. 21, 935–949.
Molecular regulation of the PAI-1 gene by hypoxia: contributions of Egr-1, HIF-1 alpha and C/EBP alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Kjsr8%3D&md5=3478b44c980683f5f84789b15c94172eCAS | 17197388PubMed |

Lonergan, P., Sharif, H., Monaghan, P., Wahid, H., Gallagher, M., and Gordon, I. (1991). Factors affecting embryo yield following maturation, fertilization and culture in vitro of bovine oocytes. Isr. J. Agric. Res. 30, 78.

Luo, H. L., Kimura, K., Aoki, M., and Hirako, M. (2002). Vascular endothelial growth factor (VEGF) promotes the early development of bovine embryo in the presence of cumulus cells. J. Vet. Med. Sci. 64, 967–971.
Vascular endothelial growth factor (VEGF) promotes the early development of bovine embryo in the presence of cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpslert74%3D&md5=d4e86fa76d911ada804f0b769e44a123CAS |

Menck, M.C., Guyader-Joly, C., Peynot, N., Le Bourhis, D., Lobo, R. B., Renard, J. P., and Heyman, Y. (1997). Beneficial effects of Vero cells for developing IVF bovine eggs in two different co-culture systems. Reprod. Nutr. Dev. 37, 141–150.
Beneficial effects of Vero cells for developing IVF bovine eggs in two different co-culture systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szitFKntA%3D%3D&md5=8ccea6b8680019848d2a6aee2dda9231CAS | 9178355PubMed |

Merkl, M., Ulbrich, S. E., Otzdorff, C., Herbach, N., Wanke, R., Wolf, E., Handler, J., and Bauersachs, S. (2010). Microarray analysis of equine endometrium at Days 8 and 12 of pregnancy. Biol. Reprod. 83, 874–886.
Microarray analysis of equine endometrium at Days 8 and 12 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls7%2FF&md5=dc8d6f0073935c55c61b641f84bdbd1fCAS | 20631402PubMed |

Misener, S., Krawetz, S., Rozen, S., and Skaletsky, H. (1999). Primer3 on the WWW for general users and for biologist programmers. In ‘Bioinformatics Methods and Protocols.’ (Eds S. Misener and S. Krawetz). pp. 365–386. (Humana Press: Merelbeke, Belgium)

Mishra, S., Lei, Z. M., and Rao, C. V. (2003). A novel role of luteinizing hormone in the embryo development in co-cultures. Biol. Reprod. 68, 1455–1462.
A novel role of luteinizing hormone in the embryo development in co-cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVeru78%3D&md5=ab4dff72c60f879a55b4d6182b19b688CAS | 12606322PubMed |

Namura, S., Zhu, J. M., Fink, K., Endres, M., Srinivasan, A., Tomaselli, K. J., Yuan, J. Y., and Moskowitz, M. A. (1998). Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci. 18, 3659–3668.
| 1:CAS:528:DyaK1cXjtVWltL8%3D&md5=27220c78e15b5e0e4868075bcc3a1610CAS | 9570797PubMed |

Nelis, H. M., Goossens, K., Leemans, B., Peelman, L., and Van Soom, A. (2012). Steroid-regulated mRNA expression in oviduct epithelial cells in the mare. Reprod. Fertil. Dev. 25, Abstract 220.

Nelis, H. M., Vanden Bussche, J., Goossens, K., Vanhaecke, L., Vandenberghe, L., Leemans, B., Peelman, L., and Van Soom, A. (2013). Postovulatory concentrations of progesterone and β-oestradiol in the equine oviduct are upregulating mRNA expression of PAI1, CSF and MMP1 both in vivo and in an explant model in vitro. In ‘Proceedings of the 1st general meeting of COST action FA1201, Epiconcept: Epigenetics and Periconception environment, Antalya, Turkey, 24–25 April 2013. (Eds A. Van Soom, A. Fazeli, M. Kuran). P. 56. (Faculty of Agriculture, Ondokuz Mayis University: Samsun.)

Pierson, R. A., and Ginther, O. J. (1985). Ultrasonic evaluation of the corpus luteum of the mare. Theriogenology 23, 795–806.
Ultrasonic evaluation of the corpus luteum of the mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVyitQ%3D%3D&md5=465aa76f3f3606069fde731d9d2145b8CAS | 16726050PubMed |

Raleigh, J. A., Calkins-Adams, D. P., Rinker, L. H., Ballenger, C. A., Weissler, M. C., Fowler, W. C., Novotny, D. B., and Varia, M. A. (1998). Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 58, 3765–3768.
| 1:CAS:528:DyaK1cXlvVyrtbY%3D&md5=ad156b0214e10c65baedb85803da7e00CAS | 9731480PubMed |

Reischl, J., Prelle, K., Schol, H., Neumuller, C., Einspanier, R., Sinowatz, F., and Wolf, E. (1999). Factors affecting proliferation and dedifferentiation of primary bovine oviduct epithelial cells in vitro. Cell Tissue Res. 296, 371–383.
Factors affecting proliferation and dedifferentiation of primary bovine oviduct epithelial cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlyiu7c%3D&md5=1214c5abba4f8f03f57f3ef033d23eb2CAS | 10382279PubMed |

Roach, H. I., and Clarke, N. M. P. (2000). Physiological cell death of chondrocytes in vivo is not confined to apoptosis – new observations on the mammalian growth plate. J. Bone Joint Surg. Br. 82, 601–613.
Physiological cell death of chondrocytes in vivo is not confined to apoptosis – new observations on the mammalian growth plate.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czht1Kjsg%3D%3D&md5=0e450752bedae2885405670070055d2dCAS | 10855892PubMed |

Rottmayer, R., Ulbrich, S. E., Kolle, S., Prelle, K., Neumueller, C., Sinowatz, F., Meyer, H. H. D., Wolf, E., and Hiendleder, S. (2006). A bovine oviduct epithelial cell suspension culture system suitable for studying embryo–maternal interactions: morphological and functional characterization. Reproduction 132, 637–648.
A bovine oviduct epithelial cell suspension culture system suitable for studying embryo–maternal interactions: morphological and functional characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ahs7rJ&md5=eb97cf2a8891dc654abbb5c08dd56a0cCAS | 17008475PubMed |

Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845.
Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsV2gsb4%3D&md5=dab429c0b79a2b1caac72d0d37b91532CAS | 1279431PubMed |

Smits, K. G. K., Van Soom, A., Govaere, J., Hoogewijs, M., Vanhaesebrouck, E., Galli, C., Colleoni, S., Vandesompele, J., and Peelman, L. (2009). Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and frozen–thawed in vitro blastocysts. BMC Res. Notes 2, 246.
Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and frozen–thawed in vitro blastocysts.Crossref | GoogleScholarGoogle Scholar |

Smits, K., Goossens, K., Van Soom, A., Govaere, J., Hoogewijs, M., and Peelman, L. J. (2011). In vivo-derived horse blastocysts show transcriptional upregulation of developmentally important genes compared with in vitro-produced horse blastocysts. Reprod. Fertil. Dev. 23, 364–375.
In vivo-derived horse blastocysts show transcriptional upregulation of developmentally important genes compared with in vitro-produced horse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFeruw%3D%3D&md5=d727050c53ebaf07229aaa3b6df0a2cbCAS | 21211470PubMed |

Smits, K., Govaere, J., Hoogewijs, M., Piepers, S., and Van Soom, A. (2012). A pilot comparison of laser-assisted vs piezo drill ICSI for the in vitro production of horse embryos. Reprod. Domest. Anim. 47, e1–e3.
A pilot comparison of laser-assisted vs piezo drill ICSI for the in vitro production of horse embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC387ivFKisw%3D%3D&md5=a8a7ce26edfcaded23b7a89ef9a70210CAS | 21950451PubMed |

Stadelmann, C., and Lassmann, H. (2000). Detection of apoptosis in tissue sections. Cell Tissue Res. 301, 19–31.
Detection of apoptosis in tissue sections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFGnsrs%3D&md5=074dc057afdc47bf7cfdef404bc6af3eCAS | 10928278PubMed |

Tadokoro, C., Yoshimoto, Y., Sakata, M., Imai, T., Yamaguchi, M., Kurachi, H., Oka, Y., Maeda, T., and Miyake, A. (1995). Expression and localization of glucose-transporter-1 (Glut1) in the rat oviduct – a possible supplier of glucose to embryo during early embryonic development. Biochem. Biophys. Res. Commun. 214, 1211–1218.
Expression and localization of glucose-transporter-1 (Glut1) in the rat oviduct – a possible supplier of glucose to embryo during early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1yhtbw%3D&md5=d8c26e771703e135d69150ccbf38b04aCAS | 7575532PubMed |

Thibodeaux, J. K., Myers, M. W., Goodeaux, L. L., Menezo, Y., Roussel, J. D., Broussard, J. R., and Godke, R. A. (1992a). Evaluating an in vitro culture system of bovine uterine and oviduct epithelial cells for subsequent embryo co-culture. Reprod. Fertil. Dev. 4, 573–583.
Evaluating an in vitro culture system of bovine uterine and oviduct epithelial cells for subsequent embryo co-culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3jsVyhsA%3D%3D&md5=098d548f21fef11209deeee92edbb205CAS | 1299832PubMed |

Thomas, P. G. A., Ignotz, G. G., Ball, B. A., Miller, P. G., Brinsko, S. P., and Currie, B. (1995). Isolation, culture and characterization of equine oviduct epithelial cells in vitro. Mol. Reprod. Dev. 41, 468–478.
Isolation, culture and characterization of equine oviduct epithelial cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnt1Wrsbo%3D&md5=8dcf6221d00ab822609233e28d325edcCAS |

Ulbrich, S. E., Kettler, A., and Einspanier, R. (2003). Expression and localization of oestrogen receptor alpha, oestrogen receptor beta and progesterone receptor in the bovine oviduct in vivo and in vitro. J. Steroid Biochem. Mol. Biol. 84, 279–289.
Expression and localization of oestrogen receptor alpha, oestrogen receptor beta and progesterone receptor in the bovine oviduct in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWgs7o%3D&md5=8e33513e10e9b849984230030c264edeCAS | 12711014PubMed |

Ulbrich, S. E., Groebner, A. E., and Bauersachs, S. (2013). Transcriptional profiling to address molecular determinants of endometrial receptivity – lessons from studies in livestock species. Methods 59, 108–115.
Transcriptional profiling to address molecular determinants of endometrial receptivity – lessons from studies in livestock species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWgtbnL&md5=bdcbfc7b989fd5afc50876e6169b6513CAS | 23178633PubMed |

Vandaele, L., Mateusen, B., Maes, D. G. D., de Kruif, A., and van Soom, A. (2007). Temporal detection of caspase-3 and-7 in bovine in vitro-produced embryos of different developmental capacity. Reproduction 133, 709–718.
Temporal detection of caspase-3 and-7 in bovine in vitro-produced embryos of different developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFeku70%3D&md5=e93e2f002f019866757073f44161b244CAS | 17504915PubMed |

Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.
Understanding the Warburg effect: the metabolic requirements of cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVKlsbg%3D&md5=b4386d06beb5422eabf4e58641853b81CAS | 19460998PubMed |

Van Soom, A., Van Vlaenderen, I., Mahmoudzadeh, A. R., Deluyker, H., and de Kruif, A. (1992). Compaction rate of in vitro-fertilized bovine embryos related to the interval from insemination to first cleavage. Theriogenology 38, 905–919.
Compaction rate of in vitro-fertilized bovine embryos related to the interval from insemination to first cleavage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvF2msw%3D%3D&md5=20f0ad7ae4bcef588212704ba1b53f43CAS | 16727189PubMed |

Walter, I. (1995a). Culture of bovine oviduct epithelial cells (BOEC). Anat. Rec. 243, 347–356.
Culture of bovine oviduct epithelial cells (BOEC).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287ls1alsA%3D%3D&md5=12a691a6dced509400f366a9221ee502CAS | 8579254PubMed |

Wijayagunawardane, M. P. B., Kodithuwakku, S. P., Yamamoto, D., and Miyamoto, A. (2005). Vascular endothelial growth factor system in the cow oviduct: a possible involvement in the regulation of oviductal motility and embryo transport. Mol. Reprod. Dev. 72, 511–520.
Vascular endothelial growth factor system in the cow oviduct: a possible involvement in the regulation of oviductal motility and embryo transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGmurjL&md5=c0ff061b5aa6b0c45f56ad58822ddb42CAS |

Wrenzycki, C., Herrmann, D., Lemme, E., Korsawe, K., Carnwath, J. W., and Niemann, H. (1998). Transcriptional level of developmentally important genes in bovine preimplantation embryos generated in vitro. Theriogenology 49, 191.
Transcriptional level of developmentally important genes in bovine preimplantation embryos generated in vitro.Crossref | GoogleScholarGoogle Scholar |

Wrenzycki, C., Herrmann, D., Keskintepe, L., Martins, A., Sirisathien, S., Brackett, B., and Niemann, H. (2001). Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum. Reprod. 16, 893–901.
Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1Cqs74%3D&md5=9ff7c005afaaa61d260c265d99067525CAS | 11331635PubMed |

Wydooghe, E., Vandaele, L., Beek, J., Favoreel, H., Heindryckx, B., De Sutter, P., and Van Soom, A. (2011). Differential apoptotic staining of mammalian blastocysts based on double immunofluorescent CDX2 and active caspase-3 staining. Anal. Biochem. 416, 228–230.
Differential apoptotic staining of mammalian blastocysts based on double immunofluorescent CDX2 and active caspase-3 staining.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVaku7o%3D&md5=6f031102c845619b46d1108db9c71934CAS | 21684250PubMed |

Yuan, Y. Q., Van Soom, A., Coopman, F. O. J., Mintiens, K., Boerjan, M. L., Van Zeveren, A., de Kruif, A., and Peelman, L. J. (2003). Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro. Theriogenology 59, 1585–1596.
Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s%2FltFSrsA%3D%3D&md5=cd53f85298d1253c1949a6b621aaeb3bCAS | 12559463PubMed |

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.
Mfold web server for nucleic acid folding and hybridization prediction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVWisr8%3D&md5=baa1f6b198b63b61d390bc5f3a66f3a0CAS | 12824337PubMed |