Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

In vitro development of preimplantation porcine embryos using alginate hydrogels as a three-dimensional extracellular matrix

Catherine N. Sargus-Patino A , Elane C. Wright B , Sarah A. Plautz A , Jeremy R. Miles B D , Jeff L. Vallet B and Angela K. Pannier A C D
+ Author Affiliations
- Author Affiliations

A Department of Biological Systems Engineering, University of Nebraska-Lincoln, PO Box 830726, Lincoln, NE 68583, USA.

B USDA1-ARS US Meat Animal Research Center (USMARC), PO Box 166, Clay Center, NE 68933, USA.

C Center for Nanohybrid Functional Materials, 220N Scott Engineering Center, Lincoln, NE 68588, USA.

D Corresponding authors. Emails: jeremy.miles@ars.usda.gov; apannier2@unl.edu

Reproduction, Fertility and Development 26(7) 943-953 https://doi.org/10.1071/RD13008
Submitted: 14 January 2013  Accepted: 13 June 2013   Published: 6 August 2013

Abstract

Between Days 10 and 12 of gestation, porcine embryos undergo a dramatic morphological change, known as elongation, with a corresponding increase in oestrogen production that triggers maternal recognition of pregnancy. Elongation deficiencies contribute to embryonic loss, but exact mechanisms of elongation are poorly understood due to the lack of an effective in vitro culture system. Our objective was to use alginate hydrogels as three-dimensional scaffolds that can mechanically support the in vitro development of preimplantation porcine embryos. White cross-bred gilts were bred at oestrus (Day 0) to Duroc boars and embryos were recovered on Days 9, 10 or 11 of gestation. Spherical embryos were randomly assigned to be encapsulated within double-layered 0.7% alginate beads or remain as non-encapsulated controls (ENC and CONT treatment groups, respectively) and were cultured for 96 h. Every 24 h, half the medium was replaced with fresh medium and an image of each embryo was recorded. At the termination of culture, embryo images were used to assess morphological changes and cell survival. 17β-Oestradiol levels were measured in the removed media by radioimmunoassay. Real-time polymerase chain reaction was used to analyse steroidogenic transcript expression at 96 h in ENC and CONT embryos, as well as in vivo-developed control embryos (i.e. spherical, ovoid and tubular). Although no differences in cell survival were observed, 32% (P < 0.001) of the surviving ENC embryos underwent morphological changes characterised by tubal formation with subsequent flattening, whereas none of the CONT embryos exhibited morphological changes. Expression of steroidogenic transcripts STAR, CYP11A1 and CYP19A1 was greater (P < 0.07) in ENC embryos with morphological changes (ENC+) compared with CONT embryos and ENC embryos with no morphological changes (ENC–), and was more similar to expression of later-stage in vivo-developed controls. Furthermore, a time-dependent increase (P < 0.001) in 17β-oestradiol was observed in culture media from ENC+ compared with ENC– and CONT embryos. These results illustrate that preimplantation pig embryos encapsulated in alginate hydrogels can undergo morphological changes with increased expression of steroidogenic transcripts and oestrogen production, consistent with in vivo-developed embryos. This alginate culture system can serve as a tool for evaluating specific mechanisms of embryo elongation that could be targeted to improve pregnancy outcomes.

Additional keywords: elongation, pig, steroidogenesis.


References

Amsden, B., and Turner, N. (1999). Diffusion characteristics of calcium alginate gels. Biotechnol. Bioeng. 65, 605–610.
Diffusion characteristics of calcium alginate gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntVaqsbw%3D&md5=5d3b3813d13d1d348cca62a6c3756fe8CAS | 10516587PubMed |

Bennett, G. L., and Leymaster, K. A. (1989). Integration of ovulation rate, potential embryonic viability and uterine capacity into a model of litter size in swine. J. Anim. Sci. 67, 1230–1241.
| 1:STN:280:DyaL1M3ptFKjtQ%3D%3D&md5=765ae5584e14ff2788247bdacfeb6bf0CAS | 2737980PubMed |

Blomberg, L. A., and Zuelke, K. A. (2005). Expression analysis of the steroidogenic acute regulatory protein (STAR) gene in developing porcine conceptuses. Mol. Reprod. Dev. 72, 419–429.
Expression analysis of the steroidogenic acute regulatory protein (STAR) gene in developing porcine conceptuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGmurvE&md5=94f55e1993870f7efbf3faacc2b11843CAS | 16155961PubMed |

Blomberg, L. A., Long, E. L., Sonstegard, T. S., Van Tassell, C. P., Dobrinsky, J. R., and Zuelke, K. A. (2005). Serial analysis of gene expression during elongation of the peri-implantation porcine trophectoderm (conceptus). Physiol. Genomics 20, 188–194.
Serial analysis of gene expression during elongation of the peri-implantation porcine trophectoderm (conceptus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVGjtbs%3D&md5=2598b64ba8faa14abf8949bcb90dff3dCAS | 15536174PubMed |

Brandão, D. O., Maddox-Hyttel, P., Løvendahl, P., Rumpf, R., Stringfellow, D., and Callesen, H. (2004). Post hatching development: a novel system for extended in vitro culture of bovine embryos. Biol. Reprod. 71, 2048–2055.
Post hatching development: a novel system for extended in vitro culture of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 15329327PubMed |

Čikoš, S., Bukovská, A., and Koppel, J. (2007). Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Mol. Biol. 8, 113–127.
Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis.Crossref | GoogleScholarGoogle Scholar | 18093344PubMed |

Edwards, J. L., and Hansen, P. J. (1996). Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes. Biol. Reprod. 55, 341–346.
Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28vis1Gmuw%3D%3D&md5=a9286bcf887a3ba85ef773980a98481cCAS | 8828838PubMed |

Geisert, R. D., and Schmitt, R. A. M. (2002). Early embryonic survival in the pig: can it be improved? J. Anim. Sci. 80, E54–E65.

Geisert, R. D., and Yelich, J. V. (1997). Regulation of conceptus development and attachment in pigs. J. Reprod. Fertil. Suppl. 52, 133–149.
| 1:STN:280:DyaK1c3msFCgtw%3D%3D&md5=7cfe6aec26cec45434c5ab65247bffe2CAS | 9602725PubMed |

Geisert, R. D., Brookbank, J. W., Roberts, R. M., and Bazer, F. W. (1982a). Establishment of pregnancy in the pig. 2. Cellular remodeling of the porcine blastocyst during elongation on Day-12 of pregnancy. Biol. Reprod. 27, 941–955.
Establishment of pregnancy in the pig. 2. Cellular remodeling of the porcine blastocyst during elongation on Day-12 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s%2FnsFKjtw%3D%3D&md5=13a2832647e66577dbca314704f99bd7CAS | 6184080PubMed |

Geisert, R. D., Renegar, R. H., Thatcher, W. W., Roberts, R. M., and Bazer, F. W. (1982b). Establishment of pregnancy in the Pig. 1. Interrelationships between pre-implantation development of the pig blastocyst and uterine endometrial secretions. Biol. Reprod. 27, 925–939.
Establishment of pregnancy in the Pig. 1. Interrelationships between pre-implantation development of the pig blastocyst and uterine endometrial secretions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXjt1Wrtw%3D%3D&md5=b1919f4d4c18d21ab03d60f48a915bb0CAS | 6959653PubMed |

Gombotz, W. R., and Wee, S. (1998). Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31, 267–285.
Protein release from alginate matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvVSjsLc%3D&md5=efa361992c1fc430a5af2f031cc7a226CAS | 10837629PubMed |

Kreeger, P. K., Deck, J. W., Woodruff, T. K., and Shea, L. D. (2006). The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials 27, 714–723.
The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFakur3E&md5=35b85453b0d8901db0a2503dec95ba9cCAS | 16076485PubMed |

Krentz, K. J., Nebel, R. L., Canseco, R. S., and Mcgilliard, M. L. (1993). In vitro and in vivo development of mouse morulae encapsulated in 2-percent sodium alginate or 0.1-percent poly-L-lysine. Theriogenology 39, 655–667.
In vitro and in vivo development of mouse morulae encapsulated in 2-percent sodium alginate or 0.1-percent poly-L-lysine.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVSjtg%3D%3D&md5=31ff7196a04c2190fa710e751bee878fCAS | 16727243PubMed |

Lee, K. Y., and Mooney, D. J. (2001). Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879.
Hydrogels for tissue engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFSqu7w%3D&md5=423f7a83fcd3f17fbeb01588fc0a4a1eCAS | 11710233PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=9cad4ff7133d540452bb50aaaa4ededfCAS | 11846609PubMed |

Machado, G. M., Caixeta, E. S., Lucci, C. M., Rumpf, R., Franco, M. M., and Dode, M. A. (2012). Post-hatching development of bovine embryos in vitro: the effects of tunnel preparation and gender. Zygote 20, 123–134.
Post-hatching development of bovine embryos in vitro: the effects of tunnel preparation and gender.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVCrtb8%3D&md5=926f7fc77368a9c9a5633f6487b20760CAS | 21426624PubMed |

Machado, G. M., Ferreira, A. R., Guardieiro, M. M., Bastos, M. R., Carvalho, J. O., Lucci, C. M., Diesel, T. O., Sartori, R., Rumpf, R., Franco, M. M., and Dode, M. A. (2013). Morphology, sex ratio and gene expression of Day 14 in vivo and in vitro bovine embryos. Reprod. Fertil. Dev. 25, 600–608.
Morphology, sex ratio and gene expression of Day 14 in vivo and in vitro bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1CgsL8%3D&md5=a41367c7098fcffdc6829ef2a66ac329CAS | 22958400PubMed |

Miles, J. R., Freking, B. A., Blomberg, L. A., Vallet, J. L., and Zuelke, K. A. (2008). Conceptus development during blastocyst elongation in lines of pigs selected for increased uterine capacity or ovulation rate. J. Anim. Sci. 86, 2126–2134.
Conceptus development during blastocyst elongation in lines of pigs selected for increased uterine capacity or ovulation rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFansLfF&md5=8990c67609f6de5da6cc9d2fa3a9e3adCAS | 18469062PubMed |

Miyajima, H., Matsumoto, T., Sakai, T., Yamaguchi, S., An, S. H., Abe, M., Wakisaka, S., Lee, K. Y., Egusa, H., and Imazato, S. (2011). Hydrogel-based biomimetic environment for in vitro modulation of branching morphogenesis. Biomaterials 32, 6754–6763.
Hydrogel-based biomimetic environment for in vitro modulation of branching morphogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1art7k%3D&md5=f7eba3c61bc71d78cdfd9d89f871a05bCAS | 21683999PubMed |

Pope, W. F. (1994). Embryonic mortality in swine. In ‘Embryonic Mortality in Domestic Species’. (Eds M. T. Zavy and R. D. Geisert.) pp. 53–77. (CRC Press: Boca Raton, FL.)

Pusateri, A. E., Rothschild, M. F., Warner, C. M., and Ford, S. P. (1990). Changes in morphology, cell number, cell-size and cellular estrogen content of individual littermate pig conceptuses on Day-9 to Day-13 of gestation. J. Anim. Sci. 68, 3727–3735.
| 1:STN:280:DyaK3M%2Fos1agtQ%3D%3D&md5=36e281ca757f2ccb43ac3b6461453a9aCAS | 2262423PubMed |

Redmer, D. A., and Day, B. N. (1981). Ovarian activity and hormonal patterns in gilts fed allyl trenbolone. J. Anim. Sci. 53, 1088–1094.
| 1:CAS:528:DyaL3MXmtVanurc%3D&md5=9ce547e2d21ffc9d3feb257761b558b3CAS | 7198641PubMed |

Ross, J. W., Malayer, J. R., Ritchey, J. W., and Geisert, R. D. (2003). Characterization of the interleukin-1 beta system during porcine trophoblastic elongation and early placental attachment. Biol. Reprod. 69, 1251–1259.
Characterization of the interleukin-1 beta system during porcine trophoblastic elongation and early placental attachment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsL4%3D&md5=ef245a74f61acbe2e0861f9ca6a7f5d6CAS | 12801990PubMed |

Rowley, J. A., Madlambayan, G., and Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53.
Alginate hydrogels as synthetic extracellular matrix materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlWnug%3D%3D&md5=a488181169b1bb077bcb14f6bc9b85c6CAS | 9916770PubMed |

SAS (2003). ‘The SAS System for Windows, Release 9.1.’ (Statistical Analysis System Institute: Cary, NC.)

Smitz, J. E., and Cortvrindt, R. G. (2002). The earliest stages of folliculogenesis in vitro. Reproduction 123, 185–202.
The earliest stages of folliculogenesis in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFChsbo%3D&md5=71b2fb7efe00fdb33474a5f1b242272cCAS | 11866686PubMed |

Steel, R. G. D., Torrie, J. H., and Dickey, D. A. (1997). ‘Principles and Procedures of Statistics: A Biometrical Approach’, 3rd edn. (McGraw-Hill: New York.)

Stocco, D. M., and Clark, B. J. (1997). The role of the steroidogenic acute regulatory protein in steroidogenesis. Steroids 62, 29–36.
The role of the steroidogenic acute regulatory protein in steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVylt7Y%3D&md5=8060991c5275189c856d05c9ed5b748fCAS | 9029711PubMed |

USDA (1995). Title 9 Code of Federal Regulations. Chapter 1, Subchapter A- Animal Welfare. (U.S. Government Printing Office: Washington, D.C.)

Vajta, G., Alexopoulos, N. I., and Callesen, H. (2004). Rapid growth and elongation of bovine blastocysts in vitro in a three-dimensional gel system. Theriogenology 62, 1253–1263.
Rapid growth and elongation of bovine blastocysts in vitro in a three-dimensional gel system.Crossref | GoogleScholarGoogle Scholar | 15325552PubMed |

Vallet, J. L., Christenson, R. K., and McGuire, W. J. (1996). Association between uteroferrin, retinol-binding protein, and transferrin within the uterine and conceptus compartments during pregnancy in swine. Biol. Reprod. 55, 1172–1178.
Association between uteroferrin, retinol-binding protein, and transferrin within the uterine and conceptus compartments during pregnancy in swine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmtlejs7s%3D&md5=54a77d0c63c865d86d0836d8483432bfCAS | 8902231PubMed |

Vejlsted, M., Du, Y., Vajta, G., and Maddox-Hyttel, P. (2006). Post-hatching development of the porcine and bovine embryo: defining criteria for expected development in vivo and in vitro. Theriogenology 65, 153–165.
Post-hatching development of the porcine and bovine embryo: defining criteria for expected development in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 16257443PubMed |

Vogel, V., and Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275.
Local force and geometry sensing regulate cell functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt12qsLs%3D&md5=d73b1cd87c3cf5e21f200562c890911cCAS | 16607289PubMed |

West, E. R., Xu, M., Woodruff, T. K., and Shea, L. D. (2007). Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28, 4439–4448.
Physical properties of alginate hydrogels and their effects on in vitro follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSqtr4%3D&md5=f82b72130841c21e36b29287ad8c5f84CAS | 17643486PubMed |

Wozniak, M. A., and Chen, C. S. (2009). Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43.
Mechanotransduction in development: a growing role for contractility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlSm&md5=8acdcb5c7689fd8451744829b05b891aCAS | 19197330PubMed |

Xu, M., Kreeger, P. K., Shea, L. D., and Woodruff, T. K. (2006a). Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 12, 2739–2746.
Tissue-engineered follicles produce live, fertile offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSht7fF&md5=6e5b5e9bcf061e1d1e521ab717d05aeaCAS | 17518643PubMed |

Xu, M., West, E., Shea, L. D., and Woodruff, T. K. (2006b). Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biol. Reprod. 75, 916–923.
Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjtr7O&md5=e992a3bd697a75b47decc6f87fc0f142CAS | 16957022PubMed |

Xu, M., West-Farrell, E. R., Stouffer, R. L., Shea, L. D., Woodruff, T. K., and Zelinski, M. B. (2009). Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol. Reprod. 81, 587–594.
Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7zL&md5=14dfde046d3b8e06cb1af4c9d240d0abCAS | 19474063PubMed |

Yániz, J. L., Santolaria, P., and López-Gatius, F. (2002). In vitro development of bovine embryos encapsulated in sodium alginate. J. Vet. Med. A Physiol. Pathol. Clin. Med. 49, 393–395.
In vitro development of bovine embryos encapsulated in sodium alginate.Crossref | GoogleScholarGoogle Scholar | 12450185PubMed |

Yelich, J. V., Pomp, D., and Geisert, R. D. (1997). Ontogeny of elongation and gene expression in the early developing porcine conceptus. Biol. Reprod. 57, 1256–1265.
Ontogeny of elongation and gene expression in the early developing porcine conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFSkur4%3D&md5=3bff99216eeb1e0bd75fa79a6672a12dCAS | 9369195PubMed |