Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of glial cell line-derived neurotrophic factor, fibroblast growth factor 2 and epidermal growth factor on proliferation and the expression of some genes in buffalo (Bubalus bubalis) spermatogonial cells

Prashant H. Kadam A , Sushila Kala A , Himanshu Agrawal A , Karn P. Singh A , Manoj K. Singh A , Manmohan S. Chauhan A , Prabhat Palta A , Suresh K. Singla A and Radhay S. Manik A B
+ Author Affiliations
- Author Affiliations

A Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal-132001, India.

B Corresponding author. Email: manik_rs@rediffmail.com

Reproduction, Fertility and Development 25(8) 1149-1157 https://doi.org/10.1071/RD12330
Submitted: 25 August 2012  Accepted: 27 October 2012   Published: 22 November 2012

Abstract

The present study evaluated the effects of glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor (FGF) 2 and epidermal growth factor (EGF) on proliferation and the expression of some genes in spermatogonial cells. Spermatogonial cells were isolated from prepubertal buffalo testes and enriched by double enzyme treatment, filtration through 80- and 60-μm nylon mesh filters, differential plating on lectin-coated dishes and Percoll density gradient centrifugation. Cells were then cultured on a buffalo Sertoli cell feeder layer and formed colonies within 15–18 days. The colonies were found to predominantly contain undifferentiated Type A spermatogonia because they bound Dolichos biflorus agglutinin and did not express c-kit. The colonies expressed alkaline phosphatase, NANOG, octamer-binding transcription factor (OCT)-4 and tumour rejection antigen (TRA)-1–60. Cells were subcultured for 15 days, with or without growth factor supplementation. After 15 days, colony area and the relative mRNA abundance of PLZF were higher (P < 0.05) following supplementation with 40 ng mL–1 GDNF + 10 ng mL–1 EGF + 10 ng mL–1 FGF2 than with the same concentrations of GDNF alone or GDNF plus either EGF or FGF2. Expression of TAF4B was higher (P < 0.05) in the presence of FGF2, whereas the expression of THY1 was not affected by growth factor supplementation. In the Sertoli cell feeder layer, EGF and FGF2 decreased (P < 0.05), whereas GDNF increased (P < 0.05), the relative mRNA abundance of ETV5 compared with control. In conclusion, an in vitro culture system that incorporates various growth factors was developed for the short-term culture of buffalo spermatogonia.

Additional keywords : in vitro culture, spermatogenesis, spermatogonial stem cells.


References

Anand, T., Kumar, D., Singh, M. K., Shah, R. A., Chauhan, M. S., Manik, R. S., Singla, S. K., and Palta, P. (2011). Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens. Reprod. Domest. Anim. 46, 50–58.
Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itlChuw%3D%3D&md5=50617dd324fee2be8b0c6b25114bd263CAS | 20042025PubMed |

Anjamrooz, S. H., Movahedin, M., Tiraihi, T., and Mowla, S. J. (2006). In vitro effects of epidermal growth factor, follicle stimulating hormone and testosterone on mouse spermatogonial cell colony formation. Reprod. Fertil. Dev. 18, 709–720.
In vitro effects of epidermal growth factor, follicle stimulating hormone and testosterone on mouse spermatogonial cell colony formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1ersb4%3D&md5=d3e220485ae397c34bd5ad798cedbd27CAS | 16930518PubMed |

Aponte, P. M., Takeshi, S., van de Kant, H. J., and Rooij, D. G. (2006). Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology 65, 1828–1847.
Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVCksbs%3D&md5=0f89ec2b8951463d24dfa728625a76c9CAS | 16321433PubMed |

Aponte, P.M., Takeshi, S., Teerds, K. J., Mizrak, S. C., van de Kant, H. J. G., and de Rooij, D. G. (2008). Propagation of bovine spermatogonial stem cells in vitro. Reproduction 136, 543–557.
Propagation of bovine spermatogonial stem cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCjtrnL&md5=cd7aafb09d99dad4e19790d4cb742013CAS | 18663014PubMed |

Buzzard, J. J., Wreford, N. G., and Morrison, J. R. (2002). Marked extension of proliferation of rat Sertoli cells in culture using recombinant human FSH. Reproduction 124, 633–641.
Marked extension of proliferation of rat Sertoli cells in culture using recombinant human FSH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1KltQ%3D%3D&md5=bd1221b3ca1c41edb376396b456bf279CAS | 12417001PubMed |

Costoya, J. A., Hobbs, R. M., Barna, M., Cattoretti, G., Manova, K., Sukhwani, M., Orwig, K. E., Wolgemuth, D. J., and Pandolfi, P. P. (2004). Essential role of Plzf in maintenance of spermatogonial stem cells. Nat. Genet. 36, 653–659.
Essential role of Plzf in maintenance of spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVajtL4%3D&md5=5a584b68a95f3d378691f25e65a06d21CAS | 15156143PubMed |

Ebata, K. T., Yeh, J. R., Zhang, X., and Nagano, M. C. (2011). Soluble growth factors stimulate spermatogonial stem cell divisions that maintain a stem cell pool and produce progenitors in vitro. Exp. Cell Res. 317, 1319–1329.
Soluble growth factors stimulate spermatogonial stem cell divisions that maintain a stem cell pool and produce progenitors in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFGnurs%3D&md5=bb43c63cda631f0ad3d83be040906d68CAS | 21420950PubMed |

George, A., Sharma, R., Singh, K. P., Panda, S. K., Singla, S. K., Palta, P., Manik, R. S., and Chauhan, M. S. (2011). Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell like cells isolated from in vitro fertilized and cloned blastocysts. Cell. Reprogram 13, 263–272.
Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell like cells isolated from in vitro fertilized and cloned blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFCntL0%3D&md5=17a4dfa01c1604a31c4649b44c4757cfCAS | 21548826PubMed |

Goel, S., Reddy, N., Mandal, S., Fujihara, M., Kim, S. M., and Hiroshi, I. (2010). Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia. Theriogenology 74, 1221–1232.
Spermatogonia-specific proteins expressed in prepubertal buffalo (Bubalus bubalis) testis and their utilization for isolation and in vitro cultivation of spermatogonia.Crossref | GoogleScholarGoogle Scholar | 20708247PubMed |

Han, I. S., Sylvester, S. R., Kim, K. H., Schelling, M. E., Venkateswaran, S., Blanckaert, V. D., McGuinness, M. P., and Griswold, M. D. (1993). Basic fibroblast growth factor is a testicular germ cell product which may regulate Sertoli cell function. Mol. Endocrinol. 7, 889–897.
Basic fibroblast growth factor is a testicular germ cell product which may regulate Sertoli cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlslCntLk%3D&md5=5be33dd431b9721ca7c9bf18165d96b8CAS | 8413313PubMed |

Honaramooz, A., Behboodi, E., Blash, S., Megee, S. O., and Dobrinski, I. (2003a). Germ cell transplantation in goats. Mol. Reprod. Dev. 64, 422–428.
Germ cell transplantation in goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislOqsr0%3D&md5=b2106fac51fd5902f007124051978ff6CAS | 12589654PubMed |

Honaramooz, A., Behboodi, E., Megee, S. O., Overton, S. A., Galantino-Homer, H., Echelard, Y., and Dobrinski, I. (2003b). Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol. Reprod. 69, 1260–1264.
Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsL8%3D&md5=f88dac11f9b2caf07030ec5392579e96CAS | 12801978PubMed |

Izadyar, F., Spierenberg, G. T., Creemers, L. B., Den Ouden, K., and Rooij, D. G. (2002). Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124, 85–94.
Isolation and purification of type A spermatogonia from the bovine testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtFaksL8%3D&md5=f40bd64ef398cf365bc0259f595fdb50CAS | 12090922PubMed |

Izadyar, F., DenOuden, K., Stout, T. A., Stout, J., Coret, J., Lankveld, D. P., Spoormakers, T. J., Colenbrander, B., Oldenbroek, J. K., and Van der Ploeg, K. D. (2003). Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 126, 765–774.
Autologous and homologous transplantation of bovine spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFWktw%3D%3D&md5=2ea8e80b581f2ebc46e21cd912cbbc9dCAS | 14748695PubMed |

Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Miki, H., Ogura, A., Toyokuni, S., and Shinohara, T. (2003). Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69, 612–616.
Long-term proliferation in culture and germline transmission of mouse male germline stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVerurc%3D&md5=8bcce1982742499252621af2a7180ee7CAS | 12700182PubMed |

Kanatsu-Shinohara, M., Miki, H., Inoue, K., Ogonuki, N., and Toyokuni, S. (2005). Long-term culture of mouse male germline stem cells under serum- or feeder-free conditions. Biol. Reprod. 72, 985–991.
Long-term culture of mouse male germline stem cells under serum- or feeder-free conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12hsLY%3D&md5=98a01364a4d17226bfdf58dce05d9212CAS | 15601913PubMed |

Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Morimoto, H., Ogura, A., and Shinohara, T. (2011). Serum- and feeder-free culture of mouse germline stem cells. Biol. Reprod. 84, 97–105.
Serum- and feeder-free culture of mouse germline stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVegurw%3D&md5=89b7a0b19578cb3c4df8c1d73c5abc85CAS | 20844279PubMed |

Kubota, H., Avarbock, M. R., and Brinster, R. L. (2004a). Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 71, 722–731.
Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFejtLk%3D&md5=5bb641879064fe5bb357bd0919b8a216CAS | 15115718PubMed |

Kubota, H., Avarbock, M. R., and Brinster, R. L. (2004b). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA 101, 16 489–16 494.
Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOisbvP&md5=76a8389c8694b65c3f7440b1c57825f1CAS |

Kuijk, E. W., Colenbrander, B., and Roelen, B. A. (2009). The effects of growth factors on in vitro-cultured porcine testicular cells. Reproduction 138, 721–731.
The effects of growth factors on in vitro-cultured porcine testicular cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlShurrK&md5=b18aa0457f8155962208849b76e8a4f1CAS | 19633132PubMed |

Le Magueresse-Battistoni, B., Wolff, J., Morera, A. M., and Benahmed, M. (1994). Fibroblast growth factor receptor type 1 expression during rat testicular development and its regulation in cultured sertoli cells. J. Endocrinol. 135, 2404–2411.
Fibroblast growth factor receptor type 1 expression during rat testicular development and its regulation in cultured sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFWqtro%3D&md5=df3b5d473724e95bbaeac6e65e24f881CAS |

Mahla, R.S., Reddy, N., and Goel, S. (2012). Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis. PLoS One 7, e36020.
Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1Cgur4%3D&md5=12766bb12fc7a8cf233d24a0c72f367bCAS | 22536454PubMed |

Meng, X., Lindahl, M., Hyvönen, M. E., Parvinen, M., Rooij, D. G., Hess, M. W., Raatikainen-Ahokas, A., Sainio, K., Rauvala, H., Lakso, M., Pichel, J. G., Westphal, H., Saarma, M., and Sariola, H. (2000). Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493.
Regulation of cell fate decision of undifferentiated spermatogonia by GDNF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsV2qtL8%3D&md5=564c9db8bda734a34a84b142e50c7329CAS | 10688798PubMed |

Oatley, J. M., Reeves, J. J., and McLean, D. J. (2004). Biological activity of cryopreserved bovine spermatogonial stem cells during in vitro culture. Biol. Reprod. 71, 942–947.
Biological activity of cryopreserved bovine spermatogonial stem cells during in vitro culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFeju70%3D&md5=a907c5775e31d931d24b25ed26ba2102CAS | 15151932PubMed |

Reding, S. C., Stepnoski, A. L., Cloninger, E. W., and Oatley, J. M. (2010). THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 139, 893–903.
THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsLc%3D&md5=9d11cffab402742775ed1ec0744805f4CAS | 20154176PubMed |

Schrans-Stassen, B. H., van de Kant, H. J., de Rooij, D. G., and van Pelt, A. M. (1999). Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology 140, 5894–5900.
Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns12htbc%3D&md5=44686e3a6d24fed53771b97656c31e95CAS | 10579355PubMed |

Simon, L., Ekman, G. C., Tyagi, G., Hess, R. A., Murphy, K. M., and Cooke, P. S. (2007). Common and distinct factors regulate expression of mRNA for ETV5 and GDNF, Sertoli cell proteins essential for spermatogonial stem cell maintenance. Exp. Cell Res. 313, 3090–3099.
Common and distinct factors regulate expression of mRNA for ETV5 and GDNF, Sertoli cell proteins essential for spermatogonial stem cell maintenance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFyktbs%3D&md5=a3ee6cc0ffd3eee20aff3a37d6ff89a3CAS | 17574550PubMed |

Sousa, M., Cremades, N., Alves, C., Silva, J., and Barros, A. (2002). Developmental potential of human spermatogenic cells co-cultured with Sertoli cells. Hum. Reprod. 17, 161–172.
Developmental potential of human spermatogenic cells co-cultured with Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 11756382PubMed |

Tadokoro, Y., Yomogida, K., Ohta, H., Tohda, A., and Nishimune, Y. (2002). Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech. Dev. 113, 29–39.
Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFejur4%3D&md5=31f139c7200aec1a89897bdf41b28239CAS | 11900972PubMed |

Tagelenbosch, R., and de Rooij, D. G. (1993). A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290, 193–200.
A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse.Crossref | GoogleScholarGoogle Scholar |

van Pelt, A. M., Morena, A. R., van Dissel-Emiliani, F. M., Boitani, C., Gaemers, I. C., de Rooji, D. G., and Stefanini, M. (1996). Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biol. Reprod. 55, 439–444.
Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltlGhsr8%3D&md5=e8ce787910988715ef38db41d0f15adfCAS | 8828852PubMed |

Wahab-Wahlgren, A., Martinelle, N., Holst, M., Jahnukainen, K., Parvinen, M., and Soder, O. (2003). EGF stimulates rat spermatogonial DNA synthesis in seminiferous tubule segments in vitro. Mol. Cell. Endocrinol. 201, 39–46.
EGF stimulates rat spermatogonial DNA synthesis in seminiferous tubule segments in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFeru7c%3D&md5=c0280017c9a7ad1f00f52e15d7fff30aCAS | 12706292PubMed |

Wu, Z., Falciatori, I., Molyneux, L. A., Richardson, T. E., Chapman, K. M., and Hamra, F. K. (2009). Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells. Biol. Reprod. 81, 77–86.
Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslaru7c%3D&md5=790dcf28a19e767fe59a423799981d45CAS | 19299316PubMed |

Yeh, J. R., Zhang, X., and Nagano, M. C. (2007). Establishment of a short-term in vitro assay for mouse spermatogonial stem cells. Biol. Reprod. 77, 897–904.
Establishment of a short-term in vitro assay for mouse spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Cnu77L&md5=08fba6e434c265a9a70cd6adab5e2e2fCAS | 17687116PubMed |

Yomogida, K., Yagura, Y., Tadokoro, Y., and Nishimune, Y. (2003). Dramatic expansion of germinal stem cells by ectopically expressed human glial cell line-derived neurotrophic factor in mouse Sertoli cells. Biol. Reprod. 69, 1303–1307.
Dramatic expansion of germinal stem cells by ectopically expressed human glial cell line-derived neurotrophic factor in mouse Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsLg%3D&md5=595ac1d2683812479e43d707c62d1258CAS | 12801989PubMed |