Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes
Insung Hwang A , Yeon Woo Jeong A , Joung Joo Kim A , Hyo Jeong Lee A , Mina Kang A , Kang Bae Park A , Jung Hwan Park A , Yeun Wook Kim A , Woo Tae Kim B , Taeyoung Shin A , Sang Hwan Hyun C , Eui-Bae Jeung C and Woo Suk Hwang A DA Sooam Biotech Research Foundation, 64 Kyungin-ro, Guro-gu, Seoul 152-895, Republic of Korea.
B Korea Gene Information Center, Inc., 201, A-command, 19-4, Yangpyeong-dong 2 ga, Yeongdeungpo-gu, Seoul 150-102, Republic of Korea.
C College of Veterinary Medicine, Chungbuk National University, 410 Sungbong-ro, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea.
D Corresponding author. Email: hwangws@sooam.org
Reproduction, Fertility and Development 25(8) 1142-1148 https://doi.org/10.1071/RD12256
Submitted: 7 August 2012 Accepted: 23 October 2012 Published: 7 December 2012
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature’s diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (P < 0.05). The use of domestic dog oocytes in the cloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones’ inheritance of maternal domestic dog mitochondrial DNA.
Additional keywords: assisted reproductive technology, cloning efficiency, donor cell type, species conservation.
References
Adams, J. R., Leonard, J. A., and Waits, L. P. (2003). Widespread occurrence of a domestic dog mitochondrial DNA haplotype in southeastern US coyotes. Mol. Ecol. 12, 541–546.| Widespread occurrence of a domestic dog mitochondrial DNA haplotype in southeastern US coyotes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s%2FlsVShsQ%3D%3D&md5=bf675c81013e3ea8e39dda1d1e7bea0fCAS | 12535104PubMed |
Beyhan, Z., Iager, A. E., and Cibelli, J. B. (2007). Interspecies nuclear transfer: implications for embryonic stem cell biology. Cell Stem Cell 1, 502–512.
| Interspecies nuclear transfer: implications for embryonic stem cell biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVahtrvI&md5=25ea38f700db841aa3b4896031b8d21cCAS | 18371390PubMed |
Collado, M., Blasco, M. A., and Serrano, M. (2007). Cellular senescence in cancer and aging. Cell 130, 223–233.
| Cellular senescence in cancer and aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFaltrc%3D&md5=68887bf5ccb046c1d10542341307e927CAS | 17662938PubMed |
Farstad, W. (2000). Assisted reproductive technology in canid species. Theriogenology 53, 175–186.
| Assisted reproductive technology in canid species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvFantQ%3D%3D&md5=e5fdca625df3aa2f9daadfb18c3733c4CAS | 10735072PubMed |
Fujimura, T., Murakami, H., Kurome, M., Takahagi, Y., Shigehisa, T., and Nagashima, H. (2008). Effects of recloning on the efficiency of production of α1,3-galactosyltransferase knockout pigs. J. Reprod. Dev. 54, 58–62.
| Effects of recloning on the efficiency of production of α1,3-galactosyltransferase knockout pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVGqtr0%3D&md5=3b667016ab3beb72f473be1798937244CAS | 18094530PubMed |
Gómez, M. C., Pope, C. E., Giraldo, A., Lyons, L. A., Harris, R. F., King, A. L., Cole, A., Godke, R. A., and Dresser, B. L. (2004). Birth of African wildcat cloned kittens born from domestic cats. Cloning Stem Cells 6, 247–258.
| 15671671PubMed |
Gómez, M. C., Pope, C. E., Ricks, D. M., Lyons, J., Dumas, C., and Dresser, B. L. (2009). Cloning endangered felids using heterospecific donor oocytes and interspecies embryo transfer. Reprod. Fertil. Dev. 21, 76–82.
| Cloning endangered felids using heterospecific donor oocytes and interspecies embryo transfer.Crossref | GoogleScholarGoogle Scholar | 19152748PubMed |
Hase, M., Hori, T., Kawakami, E., and Tsutsui, T. (2000). Plasma LH and progesterone levels before and after ovulation and observation of ovarian follicles by ultrasonographic diagnosis system in dogs. J. Vet. Med. Sci. 62, 243–248.
| Plasma LH and progesterone levels before and after ovulation and observation of ovarian follicles by ultrasonographic diagnosis system in dogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Sks70%3D&md5=7e7b359f40bfc00a3fa1f418253d1c1eCAS | 10770594PubMed |
Holt, W. V., Pickard, A. R., and Prather, R. S. (2004). Wildlife conservation and reproductive cloning. Reproduction 127, 317–324.
| Wildlife conservation and reproductive cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Ols7w%3D&md5=f2f92e20c8c34f9a99e6ea27defa9fa3CAS | 15016951PubMed |
Hong, I. H., Jeong, Y. W., Shin, T., Hyun, S. H., Park, J. K., Ki, M. R., Han, S. Y., Park, S. I., Lee, J. H., Lee, E. M., Kim, A. Y., You, S. Y., Hwang, W. S., and Jeong, K. S. (2011). Morphological abnormalities, impaired fetal development and decrease in myostatin expression following somatic cell nuclear transfer in dogs. Mol. Reprod. Dev. 78, 337–346.
| Morphological abnormalities, impaired fetal development and decrease in myostatin expression following somatic cell nuclear transfer in dogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVGht7o%3D&md5=6c14f85dfddd26348825649b65d6ad3bCAS | 21520324PubMed |
Hong, S. G., Jang, G., Kim, M. K., Oh, H. J., Park, J. E., Kang, J. T., Koo, O. J., Kim, D. Y., and Lee, B. C. (2009). Dogs cloned from fetal fibroblasts by nuclear transfer. Anim. Reprod. Sci. 115, 334–339.
| Dogs cloned from fetal fibroblasts by nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2hsrw%3D&md5=f463d511eb21e4c989699230d84999fbCAS | 19135320PubMed |
Hossein, M. S., Kim, M. K., Jang, G., Fibrianto, H. Y., Oh, H. J., Kim, H. J., Kang, S. K., and Lee, B. C. (2007). Influence of season and parity on the recovery of in vivo canine oocytes by flushing fallopian tubes. Anim. Reprod. Sci. 99, 330–341.
| Influence of season and parity on the recovery of in vivo canine oocytes by flushing fallopian tubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslGkurk%3D&md5=dba8119db5bf3c3f922bc8ab8cdd6fadCAS | 16806748PubMed |
Hossein, M. S., Jeong, Y. W., Park, S. W., Kim, J. J., Lee, E., Ko, K. H., Hyuk, P., Hoon, S. S., Kim, Y. W., Hyun, S. H., Shin, T., and Hwang, W. S. (2009a). Birth of beagle dogs by somatic cell nuclear transfer. Anim. Reprod. Sci. 114, 404–414.
| Birth of beagle dogs by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 19059739PubMed |
Hossein, M. S., Jeong, Y. W., Park, S. W., Kim, J. J., Lee, E., Ko, K. H., Kim, H. S., Kim, Y. W., Hyun, S. H., Shin, T., Hawthorne, L., and Hwang, W. S. (2009b). Cloning Missy: obtaining multiple offspring of a specific canine genotype by somatic cell nuclear transfer. Cloning Stem Cells 11, 123–130.
| Cloning Missy: obtaining multiple offspring of a specific canine genotype by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1CmtL0%3D&md5=dee66b6d54194dda1b615ad5554ff0edCAS | 19226214PubMed |
Janssen, D. L., Edwards, M. L., Koster, J. A., Lanza, R. P., and Ryder, O. A. (2004). Postnatal management of chryptordich banteng calves cloned by nuclear transfer utilizing frozen fibroblast cultures and enucleated cow ova. Reprod. Fertil. Dev. 16, 224.
| Postnatal management of chryptordich banteng calves cloned by nuclear transfer utilizing frozen fibroblast cultures and enucleated cow ova.Crossref | GoogleScholarGoogle Scholar |
Kato, Y., Tani, T., and Tsunoda, Y. (2000). Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J. Reprod. Fertil. 120, 231–237.
| 1:CAS:528:DC%2BD3cXovVajtbc%3D&md5=1d24f527517084a9fd297fd123db0287CAS | 11058438PubMed |
Kennelly, J. J., and Johns, B. E. (1976). The estrous cycle of coyotes. J. Wildl. Manage. 40, 272–277.
| The estrous cycle of coyotes.Crossref | GoogleScholarGoogle Scholar |
Kim, M. K., Jang, G., Oh, H. J., Yuda, F., Kim, H. J., Hwang, W. S., Hossein, M. S., Kim, J. J., Shin, N. S., Kang, S. K., and Lee, B. C. (2007). Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 9, 130–137.
| Endangered wolves cloned from adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVWrtLs%3D&md5=548828c7d976c210345a25cc02f559f4CAS | 17386020PubMed |
Kothapalli, K., Kirkness, E., Pujar, S., Van Wormer, R., and Meyers-Wallen, V. N. (2005). Exclusion of candidate genes for canine SRY-negative XX sex reversal. J. Hered. 96, 759–763.
| Exclusion of candidate genes for canine SRY-negative XX sex reversal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ent7nK&md5=e1ad25cee7023e7ec620014631f094ccCAS | 16267164PubMed |
Krisher, R. L. (2004). The effect of oocyte quality on development. J. Anim. Sci. 82, E14–E23.
| 15471793PubMed |
Lee, B. C., Kim, M. K., Jang, G., Oh, H. J., Yuda, F., Kim, H. J., Shamim, M. H., Kim, J. J., Kang, S. K., Schatten, G., and Hwang, W. S. (2005). Dogs cloned from adult somatic cells. Nature 436, 641.
| Dogs cloned from adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFentLY%3D&md5=690aaaa3954a8dc17a8c4cbaab4c21fcCAS | 16079832PubMed |
Lee, E., Kim, J. H., Park, S. M., Jeong, Y. I., Lee, J. Y., Park, S. W., Choi, J., Kim, H. S., Jeong, Y. W., Kim, S., Hyun, S. H., and Hwang, W. S. (2008). The analysis of chromatin remodeling and the staining for DNA methylation and histone acetylation do not provide definitive indicators of the developmental ability of inter-species cloned embryos. Anim. Reprod. Sci. 105, 438–450.
| The analysis of chromatin remodeling and the staining for DNA methylation and histone acetylation do not provide definitive indicators of the developmental ability of inter-species cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVWhsrk%3D&md5=cc419c73e4ed38e99a0f9777253709f7CAS | 18276088PubMed |
Loi, P., Ptak, G., Barboni, B., Fulka, J., , Cappai, P., and Clinton, M. (2001). Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 19, 962–964.
| Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntl2msL8%3D&md5=5cc38e0259d45565070fda64ed0576caCAS | 11581663PubMed |
Meirelles, F. V., Bordignon, V., Watanabe, Y., Watanabe, M., Dayan, A., Lôbo, R. B., Garcia, J. M., and Smith, L. C. (2001). Complete replacement of the mitochondrial genotype in a Bos indicus calf reconstructed by nuclear transfer to a Bos taurus oocyte. Genetics 158, 351–356.
| 1:CAS:528:DC%2BD3MXkt1Ojsbg%3D&md5=7515c8a46adbb149d1f967f008625626CAS | 11333243PubMed |
Mohammed, F., and Tayel, S. M. (2005). Sex identification of normal persons and sex reverse cases from bloodstains using FISH and PCR. J. Clin. Forensic Med. 12, 122–127.
| Sex identification of normal persons and sex reverse cases from bloodstains using FISH and PCR.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3ntF2gsQ%3D%3D&md5=e61ccf98da80c4bb4542ebfb897a1200CAS | 15914305PubMed |
Murakami, M., Otoi, T., Wongsrikeao, P., Agung, B., Sambuu, R., and Suzuki, T. (2005). Development of interspecies cloned embryos in yak and dog. Cloning Stem Cells 7, 77–81.
| Development of interspecies cloned embryos in yak and dog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlymsb0%3D&md5=3c79cda114143b67985b341ef5028487CAS | 15971981PubMed |
Rodrigues, B. A., and Rodrigues, J. L. (2010). In vitro maturation of canine oocytes: a unique conundrum. Anim. Reprod. 7, 3–15.
Sacks, B. N. (2005). Reproduction and body condition of California coyotes (Canis latrans). J. Mammal. 86, 1036–1041.
| Reproduction and body condition of California coyotes (Canis latrans).Crossref | GoogleScholarGoogle Scholar |
Vogel, G. (2001). Endangered species. Cloned gaur a short-lived success. Science 291, 409.
| Endangered species. Cloned gaur a short-lived success.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Gksg%3D%3D&md5=ad05c263aa28e9420cc3dad6b49cbb50CAS | 11228123PubMed |
Wilson, D. E., and Reeder, D. M. (2005). ‘Mammal Species of the World. A Taxonomic and Geographic Reference’. 3rd edn. (Johns Hopkins University Press: Baltimore, MA.)
Yan, Z., Zhou, Y., Fu, J., Jiao, F., Zhao, L., Guan, P., Huang, S., Zeng, Y., and Zeng, F. (2010). Donor–host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev. Biol. 10, 31.
| Donor–host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Sjsr8%3D&md5=10753dcd44ea0aeaee14faa2265db909CAS | 20302653PubMed |
Zakhartchenko, V., Durcova-Hills, G., Stojkovich, M., Schernthaner, W., Prelle, K., Steinborn, R., Müller, M., Brem, G., and Wolf, E. (1999). Effects of serum starvation and re-cloning on the efficiency of nuclear transfer using bovine fetal fibroblasts. J. Reprod. Fertil. 115, 325–331.
| Effects of serum starvation and re-cloning on the efficiency of nuclear transfer using bovine fetal fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFWku7w%3D&md5=d67a95a630942e7e23eada3abe6685feCAS | 10434938PubMed |