Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Genotype and fetal size affect maternal­–fetal amino acid status and fetal endocrinology in Large White × Landrace and Meishan pigs

Cheryl J. Ashworth A B C , Margaret O. Nwagwu B and Harry J. McArdle B
+ Author Affiliations
- Author Affiliations

A The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.

B The Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, AB21 9SB, Scotland, UK.

C Corresponding author. Email: cheryl.ashworth@roslin.ed.ac.uk

Reproduction, Fertility and Development 25(2) 439-445 https://doi.org/10.1071/RD12024
Submitted: 3 February 2012  Accepted: 5 April 2012   Published: 24 May 2012

Abstract

This study compared maternal plasma amino acid concentrations, placental protein secretion in vitro and fetal body composition and plasma amino acid and hormone concentrations in feto–placental units from the smallest and a normally-sized fetus carried by Large White × Landrace or Meishan gilts on Day 100 of pregnancy. Compared with Large White × Landrace, Meishan placental tissue secreted more protein and Meishan fetuses contained relatively more fat and protein, but less moisture. Fetal plasma concentrations of insulin, triiodothryonine, thyroxine and insulin-like growth factor (IGF)-II were higher in Meishan than Large White × Landrace fetuses. In both breeds, fetal cortisol concentrations were inversely related to fetal size, whereas concentrations of IGF-I were higher in average-sized fetuses. Concentrations of 10 amino acids were higher in Large White × Landrace than Meishan gilts, while glutamine concentrations were higher in Meishan gilts. Concentrations of alanine, aspartic acid, glutamic acid and threonine were higher in Meishan than Large White × Landrace fetuses. Average-sized fetuses had higher concentrations of asparagine, leucine, lysine, phenylalanine, threonine, tyrosine and valine than the smallest fetus. This study revealed novel genotype and fetal size differences in porcine maternal–fetal amino acid status and fetal hormone and metabolite concentrations.

Additional keywords: breed, feto-placental, hormones, pregnancy.


References

Ashworth, C. J., Finch, A. M., Page, K. R., Nwagwu, M. O., and McArdle, H. J. (2001). Causes and consequences of fetal growth retardation in pigs. Reprod. Suppl. 58, 233–246.
| 1:STN:280:DC%2BD383kt1Smtw%3D%3D&md5=f2996f980c11222cac94a7e87f035323CAS | 11980193PubMed |

Ashworth, C. J., Dwyer, C. M., McIlvaney, K., Werkman, M., and Rooke, J. A. (2011). Breed differences in foetal and placental development and feto–maternal amino acid status following undernutrition during early and mid pregnancy in Scottish Blackface and Suffolk sheep. Reprod. Fertil. Dev. 23, 1024–1033.
Breed differences in foetal and placental development and feto–maternal amino acid status following undernutrition during early and mid pregnancy in Scottish Blackface and Suffolk sheep.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38%2Fjs1SmtQ%3D%3D&md5=939434e653b82708261bbfde0152faddCAS | 22127007PubMed |

Bidanel, J. P., Bonneau, M., Pointillart, A., Gruand, J., Mourot, J., and Demande, I. (1991). Effects of exogenous porcine somatotropin (pST) administration on growth performance, carcass traits and pork meat quality of Meishan, Pietrain and crossbred gilts. J. Anim. Sci. 69, 3511–3522.
| 1:CAS:528:DyaK3MXmtlWju7k%3D&md5=e105bcd0a0e5d1ba84a7d247959fd500CAS | 1938638PubMed |

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein, utilising the principle of protein dye binding. Anal. Biochem. 72, 248–254.
A rapid and sensitive method for the quantitation of microgram quantities of protein, utilising the principle of protein dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=a7b3d941b2d4571e1bf03cdd05e3fd69CAS | 942051PubMed |

Finch, A. M., Yang, L. G., Nwagwu, M. O., Page, K. R., McArdle, H. J., and Ashworth, C. J. (2004). Placental transport of leucine in a porcine model of low birth weight. Reproduction 128, 229–235.
Placental transport of leucine in a porcine model of low birth weight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFeit7w%3D&md5=99fadb554a42f986210da2a869017611CAS | 15280562PubMed |

Fowden, A. L. (1995). Endocrine regulation of fetal growth. Reprod. Fertil. Dev. 7, 351–363.
Endocrine regulation of fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVShtr4%3D&md5=2a0308f10535d0f01f97c44a55137092CAS | 8606944PubMed |

Fowden, A. L., and Silver, M. (1995). The effects of thyroid hormones on oxygen and glucose metabolism in the sheep fetus during late gestation. J. Physiol. 482, 203–213.
| 1:CAS:528:DyaK2MXjsVShs7s%3D&md5=d3ee1bdf4b70b6153f39610cb50b367bCAS | 7730983PubMed |

Fowden, A. L., Bloom, S. R., Comline, R. S., and Silver, M. (1986). The endocrine pancreas of the fetal pig. In ‘Swine in Biomedical Research’. (Ed. M. E. Tubleson.) pp. 1185–1203. (Plenum Press: New York.)

Fuller, M. F. (1983). Energy and nitrogen balances in young pigs maintained at constant weight with diets of differing protein content. J. Nutr. 113, 15–20.
| 1:STN:280:DyaL3s7htFWrtQ%3D%3D&md5=35e417dceca5b6227677a5348de119e4CAS | 6822884PubMed |

Jones, H. N., Ashworth, C. J., Page, K. R., and McArdle, H. J. (2006). Cortisol stimulates system A amino acid transport and SNAT2 expression in a human placental cell line (BeWo). Am. J. Physiol. Endocrinol. Metab. 291, E596–E603.
Cortisol stimulates system A amino acid transport and SNAT2 expression in a human placental cell line (BeWo).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSlu7bM&md5=42a325409e2e777f88a1bb916800adc8CAS | 16621896PubMed |

Klemcke, H. G., and Christenson, R. K. (1997). Porcine fetal and maternal adrenocorticotropic hormone and corticosteroid concentrations during gestation and their relation to fetal size. Biol. Reprod. 57, 99–106.
Porcine fetal and maternal adrenocorticotropic hormone and corticosteroid concentrations during gestation and their relation to fetal size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFCmtLw%3D&md5=ee46e7c205748b8f7eb9d15f5de6cdbaCAS | 9209086PubMed |

Le Dividich, J., Momede, P., Catheline, M., and Caritez, J. C. (1991). Body composition and cold resistance of the neonatal pig from European (Large White) and Chinese (Meishan) breed. Biol. Neonate 59, 268–277.
Body composition and cold resistance of the neonatal pig from European (Large White) and Chinese (Meishan) breed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVGksro%3D&md5=4adb7804d193cc94144fb384cac2c486CAS | 1873362PubMed |

Mans, R. J., and Novelli, G. D. (1961). Measurement of the incorporation of radioactive amino acids into protein by a filter-paper disk method. Arch. Biochem. Biophys. 94, 48–53.
Measurement of the incorporation of radioactive amino acids into protein by a filter-paper disk method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhtlyjsrs%3D&md5=153ae881b7365124a3d5341edc138308CAS |

McCoard, S. A., Wise, T. H., and Ford, J. J. (2003). Endocrine and molecular influences on testicular development in Meishan and White Composite boars. J. Endocrinol. 178, 405–416.
Endocrine and molecular influences on testicular development in Meishan and White Composite boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFOhsbg%3D&md5=6fdf0828e7450ab77eca54830b523638CAS | 12967333PubMed |

McNeil, C. J., Nwagwu, M. O., Finch, A. M., Page, K. R., Thain, A., and Ashworth, C. J. (2007). Glucocorticoid exposure and tissue gene expression of 11β HSD-1, 11β HSD-2 and glucocorticoid receptor in a porcine model of differential fetal growth. Reproduction 133, 653–661.
Glucocorticoid exposure and tissue gene expression of 11β HSD-1, 11β HSD-2 and glucocorticoid receptor in a porcine model of differential fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1ygu74%3D&md5=fe4c5fbc62f30764de36ca19ddaa5b8cCAS | 17379659PubMed |

Mercer, J. G., Lawrence, C. B., Beck, B., Burlet, A., Atkinson, T., and Barrett, P. (1995). Hypothalamic NPY and prepro-NPY in Djungarian hamsters: effects of food deprivation and photoperiod. Am. J. Physiol. 269, R1099–R1106.
| 1:CAS:528:DyaK2MXpslOksbc%3D&md5=3a4851b19fb6658585519934e9bc3654CAS | 7503297PubMed |

Miller, E., and Ulkey, D. E. (1987). The pig as a model for human nutrition. Annu. Rev. Nutr. 7, 361–382.
The pig as a model for human nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvFGksrg%3D&md5=5e9e016d3068cbda1f1996c244f52814CAS | 3300739PubMed |

Mostyn, A., Sebert, S., Litten, J. C., Perkins, K. S., Laws, J., Symonds, M. E., and Clarke, L. (2006). Influence of porcine genotype on the abundance of thyroid hormones and leptin in sow milk and its impact on growth, metabolism and expression of key adipose tissue genes in offspring. J. Endocrinol. 190, 631–639.
Influence of porcine genotype on the abundance of thyroid hormones and leptin in sow milk and its impact on growth, metabolism and expression of key adipose tissue genes in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWqtrzM&md5=75d7c765cb6f52c3b331ab2e145a36faCAS | 17003264PubMed |

Owens, P. C., Conlon, M. A., Campbell, R. G., Johnson, R. J., King, R., and Ballard, F. J. (1991). Developmental changes in growth hormone, insulin-like growth factors (IGF-I and IGF-II) and IGF-binding proteins in plasma of young growing pig. J. Endocrinol. 128, 439–447.
Developmental changes in growth hormone, insulin-like growth factors (IGF-I and IGF-II) and IGF-binding proteins in plasma of young growing pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtFGgur4%3D&md5=f280afc976be4d1529867650fe4d7f38CAS | 1707435PubMed |

Ritacco, G., Radecki, S. V., and Schoknecht, P. A. (1997). Compensatory growth in runt pigs is not mediated by insulin-like growth factor. J. Anim. Sci. 75, 1237–1243.
| 1:CAS:528:DyaK2sXjsV2mu7w%3D&md5=865726dbb2b3922aafe53d35221bef9fCAS | 9159270PubMed |

Sara, V. R., and Hall, K. (1990). Insulin-like growth factors and their binding proteins. Physiol. Rev. 70, 591–614.
| 1:CAS:528:DyaK3cXls1Gnt7c%3D&md5=5240bbf7a6acf21dfe3c4c04e7090c08CAS | 1694588PubMed |

Sibley, C., Glazier, J., and D’Sousa, S. (1997). Placental transporter activity and expression in relation to fetal growth. Exp. Physiol. 82, 389–402.
| 1:CAS:528:DyaK2sXivFemtbk%3D&md5=dc615b5428a2b1b4e0c1be8b6e58e4a7CAS | 9129953PubMed |

Slebodzinski, A. B., and Brzezinska-Slebodzinska, E. (1994). The appearance and activity of tissue thyroxine 5′- and 5-monodeiodinase during ontogenesis in the fetal pig. J. Endocrinol. 141, 243–249.
The appearance and activity of tissue thyroxine 5′- and 5-monodeiodinase during ontogenesis in the fetal pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlWrsrw%3D&md5=124f3bd0714e8949eece757b573942cfCAS | 8046293PubMed |

Wu, G., Ott, T. L., Knabe, D. A., and Bazer, F. W. (1999). Amino acid composition of the fetal pig. J. Nutr. 129, 1031–1038.
| 1:CAS:528:DyaK1MXivVynsr8%3D&md5=b94dfeb9690b5c7fc7e9e1b8cd3a7e18CAS | 10222396PubMed |

Wu, G., Bazer, F. W., Datta, S., Johnson, G. A., Li, P., Satterfield, M. C., and Spencer, T. E. (2008). Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35, 691–702.
Proline metabolism in the conceptus: implications for fetal growth and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ais77O&md5=591b91140cb11a1f654f8dba271945ffCAS | 18330497PubMed |

Wu, G., Bazer, F. W., Burghardt, R. C., Johnson, G. A., Kim, S. W., Li, X. L., Satterfield, M. C., and Spencer, T. E. (2010). Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J. Anim. Sci. 88, E195–E204.
Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3pslOrsA%3D%3D&md5=90b9794c6e7cf0717b4eeb4ee1f6fe6bCAS | 19854987PubMed |